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Abstract 29 

Functional diversity (FD), represented by plant traits, is fundamentally linked to an ecosystem’s 30 

capacity to respond to environmental change. Yet, little is known about the spatial distribution of 31 

FD and its drivers. These knowledge gaps prevent the development of FD-based forest 32 

management approaches to increase the trait diversity insurance (i.e., the response diversity) 33 

against future environmental fluctuations and disturbances. Our study helps fill these knowledge 34 

gaps by (i) mapping the current FD distribution, (ii) and analyzing FD drivers across northeastern 35 

North America. Following the stress-dominance hypothesis, we expected a strong environmental 36 

filtering effect on FD. Moreover, we expected abundant species to determine the bulk of FD 37 

distributions as suggested by the mass-ratio hypothesis.  38 

We combined a literature and database review of 44 traits for 43 tree species with terrestrial 39 

inventory data of 48,426 plots spanning an environmental gradient from northern boreal to 40 

temperate biomes. We evaluated the statistical influence of 25 covariates related to forest structure, 41 

climate, topography, soils, and stewardship on FD by employing an ensemble approach consisting 42 

of 90 non-parametric models.  43 

Temperate forests and the boreal-temperate ecotone east and northeast of the Great Lakes were 44 

identified as FD hotspots. Environmental filtering by climate was of secondary importance, with 45 

forest structure explaining most of the FD distribution of tree species in northeastern North 46 

America. Thus, our study provides only partial support for the stress-dominance hypothesis. 47 

Species abundance weightings altered trait diversity distributions and drivers only marginally, 48 

supporting the mass-ratio hypothesis. Our results suggest that forest management could increase 49 

FD without requiring knowledge of functional ecology by fostering stand structural complexity 50 
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instead. Further, mixing species from different functional groups identified in this study can 51 

enhance the trait diversity insurance of forests to an uncertain future. 52 

 53 

Keywords: boreal forests; functional diversity hotspots; mass-ratio hypothesis; stress-dominance 54 

hypothesis; temperate forests; trait diversity insurance  55 

 56 

 57 

1. Introduction 58 

Climate change is one of the greatest threats facing forest biodiversity (Bellard et al., 2012) and 59 

the provisioning of ecosystem services (Schröter et al., 2005). Consequently, scientists are 60 

investigating ecosystem traits (i.e., quantitative characteristics of organisms at the community 61 

level (He et al., 2019)) that lend resilience to climate change (Barros et al., 2016; Enright et al., 62 

2014; Thom et al., 2019). One such measure is the functional diversity (FD) of plants coexisting 63 

in communities, which potentially renders a “functional trait insurance” against future changes, 64 

and is linked to the adaptive capacity of ecosystems (Aubin et al., 2016; Díaz et al., 2016; Stahl et 65 

al., 2013). Although future forest ecosystem dynamics and functioning will likely strongly depend 66 

on FD (Hisano et al., 2018), little is known about FD distributions, and their drivers. 67 

FD is a measure of the diversity of functional traits that express morphological, physiological and 68 

phenological features affecting growth, survival, and reproductive success of plants (Violle et al., 69 

2007). Thus, functional traits determine the tolerance ranges and competitive ability of plants 70 

within their biotic and abiotic environment (Lavorel and Garnier, 2002). FD is fundamentally 71 
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linked to ecosystem functioning as species occupy different niches based on their traits (Goswami 72 

et al., 2017). Consequently, FD is a proxy for drivers of ecosystem dynamics and resilience (Kéfi 73 

et al., 2016), as well as the quantity and quality of services available for human well-being (Cadotte 74 

et al., 2011).  75 

Functional richness (FR) and functional evenness (FE) are two principal components of FD (Chiu 76 

and Chao, 2014), providing different information about an ecosystem’s resistance and resilience 77 

to environmental change (Kéfi et al., 2016). FR quantifies the total functional trait space occupied 78 

by a species community while FE describes how regular the functional trait space is filled by a 79 

plant community (Mason et al., 2005). We here define FD as the aggregated information provided 80 

by FR and FE. A number of indices have been developed to quantify FD (Schleuter et al., 2010). 81 

Hill numbers are increasingly used to assess FD as they combine FR and FE, have computational 82 

advantages over many other indices (e.g., they satisfy a replication principle which implies a linear 83 

relationship between species trait additions and the index), and are easy to interpret (Chiu and 84 

Chao, 2014). In effect, functional Hill numbers quantify the effective number of equally abundant 85 

and functionally distinct species (Chiu and Chao, 2014). Additionally, they allow variable 86 

emphasis to be placed on rare versus common species in estimating FD (e.g., by generalizing 87 

Shannon entropy and Rao’s quadratic entropy). Such an abundance weighting can improve the 88 

understanding of community assembly rules (Chalmandrier et al., 2015). For instance, abundance 89 

weightings can indicate whether species occupy similar or diverging niches in forest ecosystems, 90 

and thus whether they contribute to ecosystem functioning proportionally to their abundance as 91 

proposed by the mass ratio hypothesis (Grime, 1998). 92 

Functional trait representation can vary considerably across a geographical region, depending on 93 

the distribution and relative abundance of constituent species (Butler et al., 2017; Ordonez and 94 

a mis en forme : Anglais (E.U.)
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Svenning, 2016). Regional differences in functional trait diversity imply variation in the insurance 95 

effect against future changes, with high diversity potentially buffering against environmental 96 

fluctuations and catalyzing reorganization after disturbance (Mori et al., 2013; Wüest et al., 2018). 97 

Tree species distribution in northeastern North America is generally limited by temperature to the 98 

north and precipitation to the west (Fei et al., 2017; McKenney et al., 2007). Current species 99 

distributions are largely the result of individual migration processes and biotic interactions since 100 

the last ice age (Clark, 1998). Pollen analyses indicate taxa-specific differences in migration, with 101 

the last major migration wave ending about 4,000 years ago (Webb, 1981). At the local scale, the 102 

species composition of northeastern North American forests is highly variable due to differences 103 

in soils, topography, and natural disturbance regimes (Lorimer and White, 2003; Nichols, 1935). 104 

Additionally, European colonization and land clearing during the 17th – 19th centuries, followed 105 

by agricultural abandonment and secondary forest succession, have strongly modified the forest 106 

composition and structure throughout this region (Foster et al., 1998; Thompson et al., 2013). 107 

Current management intensity varies markedly throughout northeastern North America, ranging 108 

from short-rotation, even-aged to uneven-aged, selection systems which, combined with other 109 

anthropogenic stressors, continue to alter successional trajectories (Donato et al., 2012) and forest 110 

structure (Thom and Keeton, 2020). 111 

The relationship between species composition and FD has been described in several studies (e.g., 112 

Loreau et al. 2001; Lavorel and Garnier 2002; Hooper et al. 2005). However, the correlation 113 

between forest structure (e.g., variation in tree sizes, stand density, and canopy complexity) and 114 

FD remains poorly understood. Previous work has tested only a relative small number of 115 

explanatory variables related to forest structure (e.g., basal area) for their effects on FD (Whitfeld 116 

et al., 2014). This is surprising, as structural elements and ecosystem functions, such as Net 117 

Code de champ modifié
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Ecosystem Productivity and hydrologic regulation, change with forest stand development 118 

(Bormann and Likens, 1979; Franklin et al., 2002). For instance, an increase in structural 119 

complexity during forest development (e.g., including heterogeneity in tree dimensions and gap 120 

sizes) likely also causes an increase in FD by creating niches for a variety of species (Bauhus, 121 

2009; Taylor et al., 2020). Canopy complexity of old forests supports species with very different 122 

life history traits (e.g., mixes of shade-tolerant and shade-intolerant species), and disturbance 123 

legacies (e.g., nurse trees and tip-up mounds) provide habitat for species with specialized traits 124 

(Fahey et al., 2018). Also, changes in forest structure during stand development can alter litter 125 

production and decomposition (Chen et al., 2017; O’Keefe and Naiman, 2006). Thus, edaphic 126 

conditions may support regeneration of different species as forests age. 127 

Direct and indirect (e.g., intensifying natural disturbance regimes) climate change effects on forest 128 

ecosystems will alter nutrient and water cycles (Davis et al., 2019). Ecosystem responses (e.g., 129 

growth and competition) to these changes will depend on the functional traits of the species 130 

community (Stahl et al., 2013). Temperatures may rise by more than 4°C in most parts of North 131 

America by the end of the 21th century (Romero-Lankao et al., 2014). The boreal forest, which 132 

constitutes the northernmost forest zone of North America, is critical to regulating global carbon 133 

flux and climate (Pan et al., 2011). However, the inherently low biodiversity of the boreal biome 134 

(Brooks et al., 2006) renders it vulnerable to changes in climate and disturbance regimes (Liang et 135 

al., 2016; Paquette and Messier, 2011). Further, the boreal-temperate ecotone, linking the northern 136 

boreal to the more southerly temperate forests of North America, may be particularly susceptible 137 

to climate change as many constituent species are at their climatic range limits (Boulanger et al., 138 

2017; Evans and Brown, 2017). A shift in climate could drive rapid changes in composition 139 
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(Taylor et al., 2017) and may induce decreases in biodiversity and ecosystem services, such as 140 

carbon storage (Thom et al., 2019).  141 

Fostering FD offers a promising and yet still uncertain strategy for enhancing the adaptive capacity 142 

of ecosystems to environmental change (Messier et al., 2015). Integrating FD into proactive forest 143 

management planning to safeguard biodiversity and ecosystem services under climate change is 144 

increasingly encouraged (Aubin et al., 2016; Fahey et al., 2018; Messier et al., 2013). However, 145 

the concept of FD is not readily accessible to most forest practitioners, and knowledge gaps often 146 

limit its application to forest management. For instance, it remains uncertain which species 147 

combinations maximize FD, and which stand structures provide niches for those species. 148 

In this study, we analyzed the FD of forests in northeastern North America. Our objectives were 149 

to (i) map the current trait diversity distribution throughout northeastern North America, (ii) and 150 

quantify the drivers of FD. The “stress-dominance hypothesis” assumes that environmental 151 

filtering (i.e., abiotic factors selecting species with specific traits) is most distinct in harsh 152 

environments, only allowing adapted species with similar traits to establish (Chapman and 153 

McEwan, 2018a, 2018b; Swenson and Enquist, 2007). When conditions become more favorable, 154 

competitive interactions increasingly determine species establishment. As our study region 155 

consists primarily of boreal, and boreal-temperate forests, we hypothesized that environmental 156 

filtering, primarily climate, determines the trait diversity distribution. More specifically, we 157 

expected a distinct north-south gradient in the trait diversity distribution, with southern reaches 158 

being more diverse. Following the mass-ratio hypothesis, we further anticipated only moderate 159 

variation in our results when weighting FD by different species aggregation levels (i.e., we 160 

expected abundant species to determine the bulk of FD distributions) (Ohlmann et al., 2019).  161 

 162 
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 163 

2. Materials and methods 164 

2.1. Study area 165 

Our study spans a wide environmental gradient, encompassing five ecoregions. These range from 166 

Saskatchewan and Labrador in the north to Illinois and Ohio in the south (Fig. 1). Ecoregions are 167 

delineated around areas sharing similar vegetation, climate, and topography (EPA, 2016). Mean 168 

annual temperatures and annual precipitation vary considerably across the study region, ranging 169 

from -4.3 °C to 12.7 °C and 453 mm to 1,814 mm, respectively. Eastern boreal forests are 170 

dominated by cold-tolerant species, such as white spruce (Picea glauca [Moench]), black spruce 171 

(Picea mariana [Mill.]), balsam fir (Abies balsamea [L.]), trembling aspen (Populus tremuloides 172 

[Michx.]), and white birch (Betula papyrifera [Marsh.]). The boreal-temperate ecotone 173 

encompasses northern hardwood and mixed hardwood-conifer forest types that are more diverse, 174 

with sugar maple (Acer saccharum [Marsh.]), red maple (Acer rubrum [L.]), yellow birch (Betula 175 

alleghaniensis [Britton]), American beech (Fagus grandifolia [Ehrh.]), and eastern hemlock 176 

(Tsuga canadensis [L.]) being the dominant tree species. While those species also occur in 177 

temperate forests south of the ecotone, central hardwoods are rather dominated by oak species, 178 

particularly white (Quercus alba [L.]) and red oak (Quercus rubra [L.]). 179 

 180 

2.2 Community data 181 

We obtained relative species abundance from permanent sample plot (PSP) data. In particular, we 182 

employed the databases of the U.S. Forest Inventory and Analysis (FIA) Program, the Canadian 183 

National Forest Inventory (NFI), as well as PSP datasets from the Canadian provinces of 184 



10 
 

Saskatchewan, Manitoba, Ontario, Québec, New Brunswick, and Nova Scotia to collect data from 185 

the latest inventory (i.e., excluding earlier inventories). All individual datasets were harmonized 186 

and controlled for unrealistic entries, duplicates etc. before being compiled into a single 187 

comprehensive database. We omitted PSPs from the database if the 43 focal tree species did not 188 

comprise at least 95% of plot basal area, or if information for an explanatory variable (see below) 189 

was absent. In total, 48,426 PSPs were retained for analysis (Fig. 1). 190 

 191 

2.3 Functional trait data  192 

We collected functional trait data for 43 tree species (see Appendix S1, Supporting Information). 193 

Tree species were selected if they were abundant in the study region (i.e., relative basal area within 194 

the study region > 0.01%), or assumed to be of high ecological importance (e.g., due to a unique 195 

set of specialized functional traits). Following widely accepted systematics (Adler et al., 2014; 196 

Díaz et al., 2016), we categorized traits based on their hypothesized relevance for the three main 197 

demography processes: growth, recruitment, and survival of trees. These categories address 198 

different aspects for the overall adaptive capacity of species communities (Aubin et al., 2016). For 199 

instance, in a warmer world, growth traits (e.g., optimum temperature for photosynthesis) will 200 

influence productivity, recruitment traits (e.g., max. seed dispersal distance) will affect species 201 

migration speed, and survival traits (e.g., drought tolerance) enable existing organisms of an 202 

ecosystem to withstand environmental change.  203 

To derive functional traits, we searched the TRY Plant Trait Database (Kattge et al., 2020, 2011), 204 

and performed an extensive literature review. The literature review did not follow a strict 205 

systematic approach (Nakagawa et al., 2017) as we aimed to include grey literature, for instance, 206 
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books and reports (see also Thorn et al. 2018). Additionally, we used forest inventory data (see 207 

below) to estimate two traits (recruitment growth potential and top height growth). In total, we 208 

searched for 17 growth, 14 regeneration, and 13 survival traits (in sum 44 traits) of 43 species, i.e., 209 

1892 trait parameter values. We found data for 1570 traits (83.0%) for the analysis (Fig. 2, 210 

Appendix S1). Most information was available for highly abundant tree species, such as red maple, 211 

sugar maple, paper birch, white spruce, and black spruce. In contrast, least traits were recorded for 212 

less common species, such as chestnut oak (Quercus prinus [Willd.]), pin cherry (Prunus 213 

pensylvanica [L.f.]), and slippery elm (Ulmus rubra [Muhl.]).  214 

We confirmed our theoretical assumption of selected traits by testing their effects on stand growth, 215 

regeneration, and mortality. We derived annual basal area increment and tree mortality rate, as 216 

well as stand density of trees with a dbh < 10 cm as indicator for established tree regeneration for 217 

a subset of 19,039 plots for which no management intervention was recorded between the two 218 

latest inventories (note that field interpretations of past management exhibit uncertainty to some 219 

degree). Regression models indicated a positive relationship between growth trait diversity 220 

(computed as Hill numbers, see below) and stand growth (p<0.001), a positive relationship 221 

between regeneration trait diversity and regeneration success (p<0.001), as well as a negative 222 

relationship between survival trait diversity and mortality rate (p<0.001). 223 

 224 

2.4 Drivers of functional diversity 225 

2.4.1. Forest structure 226 
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Data for potential FD drivers were obtained from various sources. Drivers were related to forest 227 

structure, climate, topography, soils, and stewardship. In total, we tested the effects of 25 potential 228 

explanatory variables on FD (Table 1).  229 

We derived information on forest structure directly from PSPs. Structural attributes are 230 

characteristic for diverging successional development stages and ecological niches associated with 231 

mixes of different tree species (Frelich and Reich, 1995; Pulsford et al., 2016), and thus different 232 

trait combinations. In northeastern forests, basal area of live trees increases almost linearly with 233 

stand age during the first decades to centuries and levels off after approximately two centuries, 234 

though with considerable variation (Keeton et al., 2011; McGee et al., 1999). Further, variation 235 

(here the standard deviation) in tree diameter at breast height (SD dbh) and in tree height (SD 236 

height) is usually highest in older forests (Taylor et al., 2013; Urbano and Keeton, 2017). In 237 

contrast, stand density is frequently high in young forests, decreases over time with stand 238 

development, but again may increase through gap regeneration in older forests (Oliver, 1981; 239 

Tyrrell and Crow, 1994; Urbano and Keeton, 2017).  240 

 241 

2.4.2. Climate 242 

Climatic conditions influence species’ geographic distributions, forest community composition, 243 

and associated FD (Ordonez and Svenning, 2016; Thuiller et al., 2006). We derived baseline 244 

climate normals (1970-2000 observation period) from WorldClim with a resolution of 1 km 245 

(WorldClim, 2016). In addition to mean annual temperature (T mean) and annual precipitation (P 246 

sum), we also differentiated between meteorological seasons. For instance, summer temperature 247 

(T summer) has a strong impact on tree growth, while low temperatures during winter (T winter) 248 
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restrict seedling survival of many species. Hence, seasonal climatic effects on FD likely differ. 249 

Moreover, we computed seasonality to account for climate variation during the year, as species 250 

growing in continental regions are likely better adapted to wider temperature fluctuations than 251 

those in maritime climates. Following O’Donnell and Ignizio (2012), seasonality was defined for 252 

temperature as the standard deviation (SD), and for precipitation as the coefficient of variation 253 

(CV) across all months of a year.  254 

 255 

2.4.3. Topography 256 

Topography may influence plant performance through its modulating effect on local 257 

environmental conditions. All topographic variables were derived from a digital elevation model 258 

(DEM) with a resolution of 25 m downloaded using the ‘elevatr’ package in R (Hollister and Shah, 259 

2018). For computational efficiency, we aggregated the data to 1 km resolution. Based on the 260 

disparities of DEM grid cells we derived slope and aspect, which influence the amount of radiation 261 

reaching the forest. Moreover, we computed the Terrain Ruggedness Index (TRI), which is the 262 

mean of the absolute differences between the value of a cell and the value of its eight surrounding 263 

cells (in Meters) as well as the Topographic Position Index (TPI) which is the difference between 264 

the value of a cell and the mean value of its eight surrounding cells (in Meters) (Wilson et al., 265 

2007). TRI informs about abrupt change, whereas TPI defines more general topographic changes. 266 

Higher TRI and TPI indicate greater heterogeneity in environmental conditions, which may 267 

influence levels of FD through greater niche differentiation.  268 

 269 

2.4.4. Soils 270 
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Soil conditions can have strong effects on community structure (Nilsson et al., 2008). Forest 271 

communities in northeastern North America have been found to vary a lot where soil conditions 272 

differ locally (Arii and Lechowicz, 2002). For instance, balsam fir, and black spruce can dominate 273 

poorly drained soils where species such as sugar maple or eastern hemlock would otherwise 274 

dominate (Nichols, 1935; Whittaker, 1975). Harsh soil conditions (e.g., low soil moisture and 275 

nutrients) have been found to support specialized species communities of low functional diversity 276 

(Chapman and McEwan, 2018b). We obtained information about dominant soil types from a 1 km 277 

resolution raster spatial layer (Fischer et al., 2008). We also derived a soil moisture index from the 278 

PSP data based on physiographic classes (US plots) or field estimates of soil moisture and drainage 279 

(Canadian plots). Soil moisture can be an important determinant of species occurrence and 280 

abundance, in particular, if water limitation exacerbates regionally under climate change (Fei et 281 

al., 2017).  282 

 283 

2.4.5. Stewardship 284 

Human activities have homogenized forest species composition worldwide, often negatively 285 

affecting FD (Hooper et al., 2005; Maeshiro et al., 2013). Due to large data gaps on management 286 

interventions across our study area, we estimated anthropogenic impacts on forests (“stewardship” 287 

in the following) indirectly. First, we obtained a raster layer with a 1 km resolution on the 288 

protection status of forests in our study area. This displayed six categories of management intensity 289 

ranging from strict nature reserves to protected areas with sustainable use of natural resources, as 290 

specified by the International Union for Conservation of Nature and Natural Resources (IUCN 291 

category) (CEC, 2010). Second, we retrieved the primary road network for North America at a 10 292 

m resolution (Natural Earth, 2015), and computed the closest distance from roads (road proximity) 293 
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to each PSP. Road proximity has been previously shown to be highly correlated with the global 294 

human influence on ecosystems, with longer distances from roads indicating more natural 295 

ecosystem conditions (Ibisch et al., 2016).  296 

 297 

2.5. Data analysis 298 

2.5.1. Functional similarity of tree species 299 

First, we analyzed the functional distance of the selected eastern North American tree species. We 300 

defined non-continuous traits on an ordinal scale if they implied an order, and z-transformed 301 

continuous traits. As the trait matrix contained continuous and categorical variables, and some trait 302 

information was missing, we derived the similarity of species using a Gower distance matrix. We 303 

performed Agglomerative Hierarchical Clustering (AHC) with a Ward linkage method to quantify 304 

the overall distance among tree species in trait space and to categorize them into functionally 305 

similar groups. We tested for significant differences between clusters with a permutational 306 

multivariate analysis of variance (PERMANOVA). 307 

 308 

2.5.2. Functional diversity hotspots 309 

Next, we calculated the FD of each PSP in order to obtain the current trait diversity distribution 310 

and to identify FD cold- (low FD) and hotpots (high FD) across the study region. In particular, we 311 

used relative basal area per tree species in combination with the Gower distance matrix to obtain 312 

Hill numbers employing the hillR package (Li, 2018). Functional Hill numbers quantify the 313 

effective number of equally abundant and functionally equally distinct species (Chiu and Chao, 314 
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2014). Further, they enable the assessment of abundance effects by weighting species dominance 315 

by a q factor (Ohlmann et al., 2019). A q factor of 0 implies that no weight is given to species 316 

abundance, and thus equals functional richness. With increasing q more weight is given to 317 

abundant species, where q=1 equals the exponential Shannon entropy, and q=2 generalizes Rao’s 318 

quadratic entropy.  319 

Using the observed functional Hill numbers on the 48,426 PSPs, we derived the current trait 320 

diversity distribution across boreal and temperate forests of northeastern North America. By means 321 

of inverse distance weighting, we obtained a wall-to-wall estimate of FD for the total forest area 322 

of the study region (ca. 2.8 M Km²). We performed the analysis for three q factors ({0,1,2}) to 323 

analyze the effect of species abundance on FD hotspots. Spatial interpolation accuracy was 324 

evaluated by deriving the Root Mean Square Error (RMSE) of predictions on the PSPs. 325 

 326 

2.5.3. Drivers of spatial variation in functional diversity  327 

We applied a robust ensemble modeling approach to identify the drivers of spatial variation in FD. 328 

We divided the data into 10 training datasets using 10 % of all PSPs, and 10 test datasets using the 329 

remaining 90 % of PSPs. Fitting each model with only 10 % of the original data reduced spatial 330 

autocorrelation. Additionally, we added PSP location coordinates (longitude and latitude) to 331 

account for the remaining spatial autocorrelation signal in the data (Dormann et al., 2007). 332 

The model ensemble consisted of three non- or semi-parametric methods, including boosted 333 

regression trees (BRTs), random forests (RFs), and generalized additive models (GAMs). For each 334 

method, we used a different variable selection approach. For BRTs, we employed the dismo 335 

package (Hijmans et al., 2017) to conduct a backwards elimination based on variable importance. 336 
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Subsequently, we derived the RMSE of the test dataset for each candidate model, and selected the 337 

model with the lowest prediction error. For RFs, we used a minimal tree depth criterion to omit 338 

irrelevant variables using the randomForestSWR package (Ishwaran, 2019). For GAMs, we 339 

performed a forward selection of the eight most important predictors based on AICc using the 340 

FWDselect package (Sestelo et al., 2016). The different model selection methods account for a 341 

high variety in possible outcomes as well as computational efficiency. In comparison to GAMs, 342 

the BRT and RF model selection methods usually maintained a higher number of variables as they 343 

cope well with multicollinearity among explanatory variables (Dormann et al., 2013). Models were 344 

selected for the three Hill numbers of each training dataset, resulting in 30 models per method and 345 

90 models in total. 346 

We evaluated each model’s goodness-of-fit using a pseudo-R² based on the correlation between 347 

predicted and observed data and tested for residual spatial autocorrelation with Moran's I. 348 

Moreover, models were cross-validated by comparing predictions with the observed FD of the test 349 

dataset using RMSE.  350 

Relative variable importance measures were directly obtained from the BRT and RF models, and 351 

indirectly from the GAMs. In all models, variable importance was set to 0 if a variable was 352 

excluded in the variable selection process. For BRTs, importance was based on the number of 353 

times a variable is selected for splitting decision trees. This number was weighted by the squared 354 

improvement of the model as a result of each split, which ultimately was averaged over all trees 355 

(Elith et al., 2008). To measure variable importance of RFs, we used the increase in mean square 356 

error (MSE) when the observed values of an explanatory variable are randomly permuted 357 

(Breiman, 2001). Using GAMs, we derived the change in AICc by omitting each predictor 358 
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individually from the final model. For each Hill number, we averaged the relative variable 359 

importance throughout all models (i.e., 30 models per Hill number). 360 

Further, we tested if the effect of forest structure on FD was an indirect climate effect (i.e., whether 361 

the climate effect on FD was mediated by forest structure). To that end, we used the Lavaan 362 

package (Rosseel et al., 2020) to fit a structural equation model (SEM). Based on the variable 363 

importance of the model ensemble described above we selected the four strongest climatic drivers 364 

for each Hill number. Then we used all PSPs to derive the average standardized path coefficients 365 

between climate and forests structure, climate and FD, as well as forest structure and FD.       366 

 367 

2.5.4. Sensitivity analysis 368 

A sensitivity analysis of FD to changes of its drivers was performed to derive standardized effect 369 

sizes. We assessed the sensitivity of FD to changes in continuous forest structure, climate, and 370 

stewardship variables. In particular, we increased each variable individually by one standard 371 

deviation while all other variables were kept at their original values. We then derived the change 372 

in FD by comparing predictions of the modified dataset with those of the original dataset. 373 

Ultimately, we averaged changes in FD across the 30 models for each Hill number. Topography 374 

and soils were not tested as they are only subject to change over very long time frames, and as 375 

some variables were categorical. 376 

 377 

 378 

3. Results 379 
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3.1. Functional diversity hotspots in temperate forests and the ecotone 380 

Our spatial analysis revealed several FD hotspots across the study region (Fig. 3). In particular, 381 

the temperate forests and the boreal-temperate ecotone east and northeast of the Great Lakes were 382 

high in FD. In contrast, the northeastern boreal forest and the boreal-temperate ecotone west of the 383 

Great Lakes were FD coldspots. FD was highest when different functional groups were mixed, in 384 

particular, coniferous and broadleaved tree species (Fig. S1). In contrast, a high diversity within 385 

each functional group, that is (i) early-seral northern hardwoods, (ii) mid- and late-seral northern 386 

hardwoods, (iii) central hardwoods, and (iv) conifers, could increase FD to a lesser degree. Trait 387 

diversity distributions were only marginally affected by species abundance. The correlation 388 

between all q factors was high, with values between r=0.863 (comparing q=0 and q=2) and r=0.986 389 

(comparing q=1 and q=2). Across the study area, the effective number of tree species with a unique 390 

set of traits decreased with increasing q factor from 5.1 (q=0) to 3.9 (q=1), and 3.5 (q=2). The 391 

RMSE of spatial interpolations across all PSPs was 2.1 (q=0), 1.5 (q=1), and 1.4 (q=2). 392 

 393 

3.2. High correlation between forest structure and functional diversity 394 

While many of the explanatory variables were related to variation in FD, those associated with 395 

forest structure had the strongest effect (Fig. 4). Overall, all methods applied to analyze FD drivers 396 

performed similarly (Table 2). RF models had the highest goodness-of-fit (max. R² = 0.502), 397 

followed by BRT models (max. R² = 0.487) and GAMs (max. R² = 0.392). However, the RMSE 398 

of the test data were almost identical, indicating that RF and BRT models were overly complex 399 

and thus overfitted the training data to some degree. Residual spatial autocorrelation of all models 400 

was negligible. 401 
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Differences in q factors modified the relative importance and the rank of some explanatory 402 

variables (e.g., 6.9 % difference between q=0 and q=2 for SD height) (Table 3, Fig. S2), but only 403 

slightly changed the cumulative effect of each category. Forest structure was, by far, the most 404 

important variable group explaining variation in FD (69.3 % – 71.6 %), followed by climate (18.2 405 

% – 20.4 %), topography (2.4 % – 2.8 %), soils (2.9 % – 3.3 %), and stewardship (0.3 % – 0.6 %) 406 

(Fig. 4, Table 3). The top three variables across all q factors were basal area, stand density, and 407 

SD height. Least important were IUCN category and aspect. In all cases, except P seasonality at 408 

q=2, all temperature variables were more important than precipitation variables for predicting FD. 409 

The structural equation model confirmed the positive effect of forest structure on FD. Moreover, 410 

the average standardized path coefficient between climate and forest structure were only between 411 

-0.004 and 0.008 indicating that the effect of forest structure on FD was not indirectly driven by 412 

climate (Fig. S3, Table S1). 413 

The sensitivity analysis highlighted the strong, positive effect of forest structure on FD (Fig. 5). 414 

All increases of structural variables by one standard deviation had a positive impact on FD, 415 

independent from abundance weighting. However, a higher weight on abundant species generally 416 

reduced changes in the effective number of functionally different species. On average, the effect 417 

of stand density on FD (+0.58 to +0.22) was greater than basal area (+0.47 to +0.21), but had a 418 

wider 95 % confidence interval across model predictions. While an increase in tree height 419 

variability (SD height) also had a strong, positive impact on FD, dbh variability (SD dbh) increased 420 

FD only marginally. FD responses to increases in climate variables were diverse and idiosyncratic. 421 

Overall, temperature increases tended to positively affect FD whereas elevated precipitation had a 422 

negative impact. Road proximity did not have a discernible influence on FD. 423 

  424 
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 425 

4. Discussion 426 

Our study constitutes one of the most detailed analysis of FD drivers in northeastern North 427 

America conducted to date. Temperate forests and the ecotone east of the Great Lakes were 428 

identified as FD hotspots. FD distributions were primarily driven by forest structure, not climate. 429 

Hence, our study provides only partial support for the stress-dominance hypothesis. The most 430 

abundant species explain most of the FD variation in the study region, supporting the mass-ratio 431 

hypothesis. Based on our study, management strategies can be derived requiring little to no 432 

knowledge in functional ecology to enhance the trait diversity insurance towards an uncertain 433 

future. 434 

 435 

4.1. Environmental filtering is of secondary importance for functional diversity 436 

We found distinct regional differences in the functional trait distribution, with lowest FD in the 437 

boreal-temperate ecotone west and the boreal forests northeast of the Great Lakes (Fig. 3). In 438 

contrast to our hypothesis, we identified forest structure, not climate, as the dominant regional-439 

scale driver of FD (Fig. 4, Fig. 5, Fig. S2, Table 3). A path analysis did not indicate climate effects 440 

on FD were mediated by forest structure, providing additional evidence for a strong positive direct 441 

association between forest structure and FD (Fig. S3, Table S1). This result challenges our initial 442 

expectation that environmental filtering determines functional trait distributions in the study 443 

region. The stress-dominance hypothesis assumes that species assemblages in harsh environments 444 

are constrained by abiotic factors that are limiting ecological and evolutionary variation (Swenson 445 

and Enquist, 2007). As expected, FD was highest in parts of the temperate forests (Fig. 446 
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3).However, temperate forests south of the Great Lakes currently have only moderate FD, 447 

challenging the stress-dominance hypothesis.  448 

Forest management and land-use history have strong impacts on forest structure and diversity, as 449 

well as on the resulting trajectories of long-term forest development (Duveneck et al., 2014; 450 

McLachlan et al., 2000). Forest management and land-use history differ considerably throughout 451 

the study region, which could explain the high FD of temperate and boreal-temperate regions 452 

dominated by northern hardwoods and the low FD of northeastern boreal forests (Fig. 3). Large 453 

portions of northern hardwood forests are either unmanaged or managed with low intensity, 454 

allowing them to develop (semi-)naturally since agricultural abandonment (Foster et al., 1998). In 455 

contrast, most eastern boreal forests have been intensively managed by even-aged silvicultural 456 

systems, leading to more homogenous forest structures as compared to historic baselines (Bergeron 457 

et al., 2017). The legacies of land-use on forest structure persist even after centuries (Foster et al., 458 

1998). Also the moderate FD south of the Great Lakes might be explained by an intense land-use 459 

history that homogenized forest structure on regional scale (Schulte et al., 2007).  460 

Besides forest management and land-use history, natural disturbances are an important driver of 461 

structural complexity (Halpin and Lorimer, 2016a). The spatial patterns of trait distribution 462 

identified here may, in part, be a result of different disturbance regimes. In particular, low-463 

intermediate severity disturbances foster forest development towards structural complexity 464 

(Franklin et al., 2002; Meigs et al., 2017). Fine-scale gap dynamics induced by wind and biotic 465 

disturbance agents dominate temperate and boreal-temperate forests of northeastern North 466 

America (Kosiba et al., 2018). In contrast, large-scale disturbances induced by fire or spruce 467 

budworm (Choristoneura fumiferana Clem.) outbreaks in boreal forests can lead to a more 468 

homogenous stand structure (Bouchard et al., 2005; Smirnova et al., 2008). Unfortunately, 469 
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meaningful management and disturbance indicators were not available in the heterogeneous 470 

databases we synthesized to analyze FD drivers. Future studies should investigate the effects of 471 

management and disturbance on FD in northeastern North America to test those hypothesized 472 

effects.  473 

Our study indicates that climate change may have only modest impacts on FD for forests within 474 

the scope of this study (Fig. 4, Fig. 5). However, it is also likely that climate change will modify 475 

the structural development of forests (Silva Pedro et al., 2017) which may induce an indirect effect 476 

on FD. Yet we are not aware of any studies in northeastern North America addressing such an 477 

indirect climate change effect on FD. In addition, climate change increases disturbance activity 478 

(Seidl et al., 2017). Depending on disturbance size, frequency, and severity, future disturbances 479 

will have diverging impacts on forest development pathways and consequently on structural 480 

diversity (Donato et al., 2012; Meigs et al., 2017). For instance, an increase in small-scale 481 

disturbances may improve structural diversity, while large-scale disturbances reset forest 482 

succession starting with low structural complexity (Senf et al., 2020; Thom et al., 2017). In 483 

contrast, structural complexity is usually high in old-growth forests due to gap dynamics and other 484 

processes of stand development, leading to high niche complementarity (Franklin and Pelt, 2004; 485 

Halpin and Lorimer, 2016b). Old-growth characteristics include high basal area, spatial 486 

complexity in stand density and light environment, and high variation in tree sizes and ages (Tyrrell 487 

and Crow, 1994; Urbano and Keeton, 2017). Our analysis indicates that old-growth structures 488 

likely correlate positively with FD (Fig. 5). Thus, older forests may have a particularly high 489 

functional trait insurance towards future environmental changes. 490 

Although our study constitutes one of the most detailed analysis of FD in northeastern North 491 

American forests conducted to date (Chapman and McEwan, 2018a; Duveneck and Scheller, 2015; 492 
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Ordonez and Svenning, 2016), it has limitations. The positive correlation between FD and stand 493 

structural complexity indicates that environmental filtering has only a weak effect on FD of adult 494 

tree communities. However, environmental filtering could constitute an important factor for the 495 

FD of tree regeneration, which is more sensitive to environmental conditions and changes (Stevens 496 

et al., 2015). Our analysis is based on historical records (inventory and trait collections) at a 497 

specific point in time. Time-series data is needed to analyze the relationship between FD and forest 498 

structure across stand development. Alternatively, this could be analyzed by means of process-499 

based simulation modeling. Our trait data collection could be harnessed by simulation models to 500 

parameterize species responses to environmental conditions and to dynamically project future 501 

changes of FD or other ecosystem properties. Furthermore, we did not account for intraspecific 502 

trait variation in our analysis as data availability is currently limited to traits and species most 503 

commonly investigated (Kattge et al., 2020). Intraspecific trait variation can be considerable 504 

(Kumordzi et al., 2019). A global meta-analysis found that about 25% of the total trait variation 505 

within communities is explained by intraspecific trait variation (Siefert et al., 2015). For instance, 506 

leaf traits are highly variable within some species (Kleinschmit, 1993). Forest structure and stand 507 

development can alter traits, such as biomass allocation to different tree compartments (Van de 508 

Peer et al., 2017), and might, therefore, affect FD beyond the relationships we found between forest 509 

structure and FD. Moreover, the large geographic distribution of tree species considered in our 510 

analysis may imply high within-species variability driven by environmental gradients, whereas a 511 

recent study suggests that a large portion of intraspecific variation can be captured at local scales 512 

(Kumordzi et al., 2019). With increasing data availability, intraspecific variation should be more 513 

prominently included in future FD studies. 514 

 515 
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4.2. Functional diversity depends more on abundant than rare species 516 

Our results remained robust across species abundance weightings (Hill numbers). We identified a 517 

decrease in the effective number of functionally diverging species with increasing q factor by up 518 

to 31% (Fig. 3). In addition, comparing different q factors, we found only minor divergences in 519 

FD drivers (Fig. 4, Fig. 5, Fig. S2) and distributions (Fig. 3). Independent from species abundance 520 

weightings the three most important variables were basal area, stand density, and SD height. Based 521 

on these results, we conclude that rare species only have a moderate impact on FD (Chiang et al., 522 

2016). Instead, supporting the mass-ratio hypothesis (Grime, 1998), the most abundant species 523 

determine the bulk of FD in northeastern North America (see also Winfree et al. 2015). Based on 524 

this result we conclude that functional traits of northeastern species communities are redundant to 525 

some degree. While we derived a considerable functional trait database of 44 traits for 43 tree 526 

species, we acknowledge that this conclusion depends on the traits analyzed, and may differ for 527 

other trait subsets. Further, the choice of tree species is crucial to compare between Hill numbers. 528 

However, we assume little divergence from our results by including other tree species not 529 

considered here as other species were abundant on a small portion of the plots (20.1%) 530 

investigated, only. 531 

 532 

4.3. Management strategies to enhance the insurance of functional trait diversity  533 

The development of FD-based management strategies to enhance the diversity insurance of forests 534 

to global change is hindered by difficulty in conceptualizing such approaches. Our study suggests 535 

three broad strategies to increase FD, each requiring varying knowledge about functional ecology. 536 
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In decreasing order of complexity these are based on (i) individual species traits; (ii) functional 537 

groups; and (iii) forest structure as a surrogate for FD. 538 

FD is fundamentally linked to processes ensuring  future ecosystem functioning and services 539 

provisioning (de Bello et al., 2010; Faucon et al., 2017; Zhang et al., 2012). Our study has shown 540 

that northeastern boreal forest and the boreal-temperate ecotone west of the Great Lakes currently 541 

have the lowest trait diversity insurance (Fig. 3), and could thus be particularly susceptible to 542 

ecological surprises, including novel disturbance regimes (Elmqvist et al., 2003; Zurlini et al., 543 

2013).  544 

Management strategies to maintain or enhance FD are thus highly relevant for those ecosystems. 545 

Ideally, forest management strategies should consider three options for adapting forest ecosystems 546 

to future uncertainties: (i) improving resistance, (ii) increasing resilience, and (iii) fostering 547 

transition (Millar et al., 2007). Managing for FD can integrate elements of all three options.  548 

Resistant ecosystems are able to withstand stress and disturbances with little change in functioning. 549 

Resistance can be improved by mixing species with traits that are expected to increase tree survival 550 

after perturbations (Griess et al., 2012). Our study indicates that species mixtures in northeastern 551 

North America lending resistance capacity include species with a high tolerance to drought (e.g., 552 

Pinus banksiana, Carya and Quercus sp.), fire (e.g., Carya ovata, Populus balsamifera, and 553 

Populus tremuloides), wind (e.g., Fraxinus americana, Quercus coccinea, and Carya sp.), and 554 

biotic disturbance (e.g., Larix laricina, Pinus strobus, and Quercus alba) (Appendix S1).  555 

Resilience ensures a quick recovery of ecosystems and functional processes after disturbance or 556 

the removal of a stressor, and facilitates the autonomous adaptation of ecosystems to novel 557 

environmental conditions (Mori et al., 2013). A number of traits related to growth, recruitment, 558 



27 
 

and survival can improve resilience. For instance, resilient ecosystems can include species with 559 

high resprouting ability after disturbance (e.g. Populus and Prunus sp.), fast juvenile growth (e.g., 560 

Acer saccharum and Populus grandidenta), serotiny (e.g., Pinus banksiana), and species that 561 

maximize photosynthetic rates under different environmental conditions within a particular region 562 

(Appendix S1).  563 

Transition can be fostered through assisted migration (Williams and Dumroese, 2013). Assisted 564 

migration of temperate species into boreal biomes would increase FD and accelerate species 565 

turnover rates towards communities adapted to future climate conditions. However, decisions 566 

about assisted migration must be case-specific, and there is considerable uncertainty which novel 567 

species assemblages will improve ecosystem functioning and are desirable (Aerts and Honnay, 568 

2011). For instance, it would be counterproductive to introduce temperate species in boreal forests, 569 

if the management goal is to conserve boreal-obligate species (Murray et al., 2017).  570 

These very detailed and case-specific recommendations to adapt forest ecosystems based on 571 

individual species traits are challenging to apply in a local context, and require detailed knowledge 572 

about functional traits. Based on our study, a more general approach to increase FD is to mix 573 

species of different functional groups (Fig. S1). This includes mixing species associated with 574 

different seral stages as well as northern and central hardwoods. A particularly strong positive 575 

effect on FD can be expected when coniferous and broadleaved species are mixed. For instance, a 576 

variety of intermediate treatments (i.e. thinnings) and regeneration harvesting systems (e.g. multi-577 

aged and uneven-aged) can be adapted  to improve the composition of species categorized into 578 

these different functional groups (Keeton et al. 2018). Enrichment planting (including assisted 579 

migration) could further enhance FD where necessary. 580 
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An approach to enhance FD without requiring knowledge of functional ecology is to manage for 581 

structural diversity. Our study indicates that forest structure drives FD through the creation of 582 

various niches for species co-existence. Adaptive management could thus focus on structural 583 

complexity as a surrogate, to some extent, for FD. This might employ a range of silvicultural 584 

approaches, such as irregular (multi-aged) shelterwood systems, variable density thinning, variable 585 

retention harvesting, and modified group selection or gap-based approaches with permanent 586 

retention of legacy trees, designed to emulate aspects of stand structural complexity associated 587 

with natural disturbances (Franklin et al., 2007; Kern et al., 2017; North and Keeton, 2008). As a 588 

number of silvicultural approaches are suitable to promote FD, conflicts with other management 589 

objectives can be minimized. Thus, fostering FD could constitute a key strategy to safeguard 590 

desired forest ecosystem services in an uncertain future.  591 

 592 

 593 

Acknowledgements 594 

DT was funded by the USDA McIntire-Stennis Forest Research Program (grant no. 1002440; P.I. 595 

WSK), and Natural Resources Canada (grant no. 3000; P.I. DT). Further, DT and RS acknowledge 596 

support from the Austrian Science Fund FWF (grant no. Y895-B25; P.I. RS). WT was supported 597 

by the French Agence Nationale de la Recherche (ANR) through the GlobNets project (ANR-16-598 

CE02-0009; P.I. WT). We are grateful for the free access to the TRY Plant Trait Database, and the 599 

inventory data provided by the U.S. Forest Inventory and Analysis (FIA) Program, the Canadian 600 

National Forest Inventory (NFI), as well as the Canadian provinces of Saskatchewan, Manitoba, 601 



29 
 

Ontario, Québec, New Brunswick, and Nova Scotia. Finally, we thank two anonymous reviewers 602 

for their helpful suggestions to improve our manuscript. 603 

 604 

 605 

Data availability 606 

Functional trait data gathered for this study can be retrieved from the Excel spreadsheet in the 607 

supplement, and will be accessible via the TRY Plant Trait Database (https://try-db.org).  608 

 609 

 610 

References 611 

Adler, P.B., Salguero-Gomez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, 612 

C., Franco, M., 2014. Functional traits explain variation in plant life history strategies. Proc. 613 

Natl. Acad. Sci. 111, 740–745. https://doi.org/10.1073/pnas.1315179111 614 

Aerts, R., Honnay, O., 2011. Forest restoration, biodiversity and ecosystem functioning. BMC 615 

Ecol. 11. https://doi.org/10.1186/1472-6785-11-29 616 

Arii, K., Lechowicz, M.J., 2002. The influence of overstory trees and abiotic factors on the 617 

sapling community in an old-growth Fagus-Acer forest. Ecoscience 9, 386–396. 618 

https://doi.org/10.1080/11956860.2002.11682726 619 

Aubin, I., Munson, A.D., Cardou, F., Burton, P.J., Isabel, N., Pedlar, J.H., Paquette, A., Taylor, 620 

A.R., Delagrange, S., Kebli, H., Messier, C., Shipley, B., Valladares, F., Kattge, J., 621 



30 
 

Boisvert-Marsh, L., McKenney, D., 2016. Traits to stay, traits to move: A review of 622 

functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to 623 

climate change. Environ. Rev. 24, 164–186. https://doi.org/10.1139/er-2015-0072 624 

Barros, C., Thuiller, W., Georges, D., Boulangeat, I., Münkemüller, T., 2016. N-dimensional 625 

hypervolumes to study stability of complex ecosystems. Ecol. Lett. 19, 729–742. 626 

https://doi.org/10.1111/ele.12617 627 

Bauhus, J., 2009. Rooting Patterns of Old-Growth Forests: is Aboveground Structural and 628 

Functional Diversity Mirrored Belowground?, in: Wirth, C., Gleixner, G., Martin, H. (Eds.), 629 

Old‐Growth Forests. Springer‐Verlag, Berlin Heidelberg, pp. 211–229. 630 

https://doi.org/10.1007/978-3-540-92706-8_10 631 

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F., 2012. Impacts of climate 632 

change on the future of biodiversity. Ecol. Lett. 15, 365–377. 633 

https://doi.org/10.1111/j.1461-0248.2011.01736.x 634 

Bergeron, Y., Vijayakumar, D.B.I.P., Ouzennou, H., Raulier, F., Leduc, A., Gauthier, S., 2017. 635 

Projections of future forest age class structure under the influence of fire and harvesting: 636 

Implications for forest management in the boreal forest of eastern Canada. Forestry 90, 637 

485–495. https://doi.org/10.1093/forestry/cpx022 638 

Bormann, F.H., Likens, G.E., 1979. Catastrophic disturbance and the steady-state in northern 639 

hardwood forests. Am. Sci. 67, 660–669. 640 

Bouchard, M., Kneeshaw, D., Bergeron, Y., 2005. Mortality and stand renewal patterns 641 

following the last spruce budworm outbreak in mixed forests of western Quebec. For. Ecol. 642 

Manage. 204, 297–313. https://doi.org/10.1016/j.foreco.2004.09.017 643 



31 
 

Boulanger, Y., Taylor, A.R., Price, D.T., Cyr, D., McGarrigle, E., Rammer, W., Sainte-Marie, 644 

G., Beaudoin, A., Guindon, L., Mansuy, N., 2017. Climate change impacts on forest 645 

landscapes along the Canadian southern boreal forest transition zone. Landsc. Ecol. 32, 646 

1415–1431. https://doi.org/10.1007/s10980-016-0421-7 647 

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. 648 

https://doi.org/10.1023/A:1010933404324 649 

Brooks, T.M., Mittermeier, R.A., Da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, 650 

J.F., Mittermeier, C.G., Pilgrim, J.D., Rodrigues, A.S.L., 2006. Global biodiversity 651 

conservation priorities. Science. 313, 58–61. https://doi.org/10.1126/science.1127609 652 

Butler, E.E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K.R., Fazayeli, F., …, 653 

Schlesinger, W.H., 2017. Mapping local and global variability in plant trait distributions. 654 

Proc. Natl. Acad. Sci. U. S. A. 114, E10937–E10946. 655 

https://doi.org/10.1073/pnas.1708984114 656 

Cadotte, M.W., Carscadden, K., Mirotchnick, N., 2011. Beyond species: Functional diversity and 657 

the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087. 658 

https://doi.org/10.1111/j.1365-2664.2011.02048.x 659 

CEC, 2010. Terrestrial Protected Areas of North America, 2010 [WWW Document]. Comm. 660 

Environ. Coop. URL 661 

https://www.sciencebase.gov/catalog/item/4fb68c04e4b03ad19d64b3dc, accessed: 662 

10/30/2018 (accessed 11.20.18). 663 

Chalmandrier, L., Münkemüller, T., Lavergne, S., Thuiller, W., 2015. Effects of species’ 664 

similarity and dominance on the functional and phylogenetic structure of a plant meta-665 



32 
 

community. Ecology 96, 143–153. https://doi.org/10.1890/13-2153.1 666 

Chapman, J.I., McEwan, R.W., 2018a. The Role of Environmental Filtering in Structuring 667 

Appalachian Tree Communities: Topographic Influences on Functional Diversity Are 668 

Mediated through Soil Characteristics. Forests 9, 19. https://doi.org/10.3390/f9010019 669 

Chapman, J.I., McEwan, R.W., 2018b. Topography and vegetation patterns in an old-growth 670 

Appalachian forest: Lucy Braun, you were right!, in: Barton, A.M., Keeton, W.S. (Eds.), 671 

Ecology and Recovery of Eastern Old-Growth Forests. Island Press, Washington, pp. 83–672 

98. 673 

Chen, H.Y.H., Brant, A.N., Seedre, M., Brassard, B.W., Taylor, A.R., 2017. The Contribution of 674 

Litterfall to Net Primary Production During Secondary Succession in the Boreal Forest. 675 

Ecosystems 20, 830–844. https://doi.org/10.1007/s10021-016-0063-2 676 

Chiang, J.M., Spasojevic, M.J., Muller-Landau, H.C., Sun, I.F., Lin, Y., Su, S.H., Chen, Z.S., 677 

Chen, C.T., Swenson, N.G., McEwan, R.W., 2016. Functional composition drives 678 

ecosystem function through multiple mechanisms in a broadleaved subtropical forest. 679 

Oecologia 182, 829–840. https://doi.org/10.1007/s00442-016-3717-z 680 

Chiu, C.H., Chao, A., 2014. Distance-based functional diversity measures and their 681 

decomposition: A framework based on hill numbers. PLoS One 9. 682 

https://doi.org/10.1371/journal.pone.0100014 683 

Clark, J.S., 1998. Why trees migrate so fast: Confronting theory with dispersal biology and the 684 

paleorecord. Am. Nat. 152, 204–224. https://doi.org/10.1086/286162 685 

Davis, K.T., Dobrowski, S.Z., Holden, Z.A., Higuera, P.E., Abatzoglou, J.T., 2019. 686 



33 
 

Microclimatic buffering in forests of the future: the role of local water balance. Ecography 687 

(Cop.). 42, 1–11. https://doi.org/10.1111/ecog.03836 688 

de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J.H.C., Bardgett, R.D., Berg, 689 

M.P., Cipriotti, P., Feld, C.K., Hering, D., da Silva, P.M., Potts, S.G., Sandin, L., Sousa, 690 

J.P., Storkey, J., Wardle, D.A., Harrison, P.A., 2010. Towards an assessment of multiple 691 

ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893. 692 

https://doi.org/10.1007/s10531-010-9850-9 693 

Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., 694 

Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, 695 

P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Joseph Wright, S., 696 

Sheremet Ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, 697 

D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M.D., 698 

Gorné, L.D., 2016. The global spectrum of plant form and function. Nature 529, 167–171. 699 

https://doi.org/10.1038/nature16489 700 

Donato, D.C., Campbell, J.L., Franklin, J.F., 2012. Multiple successional pathways and precocity 701 

in forest development: Can some forests be born complex? J. Veg. Sci. 23, 576–584. 702 

https://doi.org/10.1111/j.1654-1103.2011.01362.x 703 

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., 704 

Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., 705 

Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., Lautenbach, S., 2013. Collinearity: 706 

a review of methods to deal with it and a simulation study evaluating their performance. 707 

Ecography. 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x 708 



34 
 

Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., 709 

Hirzel, A., Jetz, W., Kissling, D.W., Kühn, I., Ohlemüller, R., Peres-Neto, P.R., Reineking, 710 

B., Schröder, B., Schurr, F.M., Wilson, R., 2007. Methods to account for spatial 711 

autocorrelation in the analysis of species distributional data: A review. Ecography. 30, 609–712 

628. https://doi.org/10.1111/j.2007.0906-7590.05171.x 713 

Duveneck, M.J., Scheller, R.M., 2015. Climate-suitable planting as a strategy for maintaining 714 

forest productivity and functional diversity. Ecol. Appl. 25, 1653–1668. 715 

https://doi.org/10.1890/14-0738.1 716 

Duveneck, M.J., Scheller, R.M., White, M.A., 2014. Effects of alternative forest management on 717 

biomass and species diversity in the face of climate change in the northern Great Lakes 718 

region (USA). Can. J. For. Res. 44, 700–710. https://doi.org/10.1139/cjfr-2013-0391 719 

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. J. Anim. 720 

Ecol. 77, 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x 721 

Elmqvist, T., Folke, C., Nystrom, M., Peterson, G., Bengtsson, J., Walker, B., Norberg, J., 2003. 722 

Response Diversity, Ecosystem Change, and Resilience. Front. Ecol. Environ. 1, 488. 723 

https://doi.org/10.2307/3868116 724 

Enright, N.J., Fontaine, J.B., Lamont, B.B., Miller, B.P., Westcott, V.C., 2014. Resistance and 725 

resilience to changing climate and fire regime depend on plant functional traits. J. Ecol. 102, 726 

1572–1581. https://doi.org/10.1111/1365-2745.12306 727 

EPA, 2016. Ecoregions of North America [WWW Document]. United States Environ. Prot. 728 

Agency. URL https://www.epa.gov/eco-research/ecoregions-north-america (accessed 729 

11.20.18). 730 



35 
 

Evans, P., Brown, C.D., 2017. The boreal–temperate forest ecotone response to climate change. 731 

Environ. Rev. 25, 423–431. https://doi.org/10.1139/er-2017-0009 732 

Fahey, R.T., Alveshere, B.C., Burton, J.I., D’Amato, A.W., Dickinson, Y.L., Keeton, W.S., 733 

Kern, C.C., Larson, A.J., Palik, B.J., Puettmann, K.J., Saunders, M.R., Webster, C.R., 734 

Atkins, J.W., Gough, C.M., Hardiman, B.S., 2018. Shifting conceptions of complexity in 735 

forest management and silviculture. For. Ecol. Manage. 421, 59–71. 736 

https://doi.org/10.1016/j.foreco.2018.01.011 737 

Faucon, M.P., Houben, D., Lambers, H., 2017. Plant Functional Traits: Soil and Ecosystem 738 

Services. Trends Plant Sci. 22, 385–394. https://doi.org/10.1016/j.tplants.2017.01.005 739 

Fei, S., Desprez, J.M., Potter, K.M., Jo, I., Knott, J.A., Oswalt, C.M., 2017. Divergence of 740 

species responses to climate change. Sci. Adv. 3. https://doi.org/10.1126/sciadv.1603055 741 

Fischer, G., Nachtergaele, F.O., Prieler, S., van Velthuizen, H., Verelst, L., Wiberg, D., 2008. 742 

Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008) [WWW 743 

Document]. URL http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-744 

database/ (accessed 11.20.18). 745 

Foster, D.R., Motzkin, G., Slater, B., 1998. Land-Use History as Long-Term Broad-Scale 746 

Disturbance: Regional Forest Dynamics in Central New England. Ecosystems 1, 96–119. 747 

https://doi.org/10.1007/s100219900008 748 

Franklin, J.F., Mitchell, R.J., Palik, B.J., 2007. Natural disturbance and stand development 749 

principles for ecological forestry. https://doi.org/10.2737/NRS-GTR-19 750 

Franklin, J.F., Pelt, R. Van, 2004. Spatial aspects of structural complexity in old-growth forests. 751 



36 
 

J. For. 102, 22–29. 752 

Franklin, J.F., Spies, T.A., Pelt, R. Van, Carey, A.B., Thornburgh, D.A., Berg, D.R., 753 

Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., Chen, J., 2002. 754 

Disturbances and structural development of natural forest ecosystems with silvicultural 755 

implications, using Douglas-fir forests as an example. For. Ecol. Manage. 155, 399–423. 756 

https://doi.org/10.1016/S0378-1127(01)00575-8 757 

Frelich, L.E., Reich, P.B., 1995. Spatial Patterns and Succession in a Minnesota Southern-Boreal 758 

Forest. Ecol. Monogr. 65, 325–346. https://doi.org/10.2307/2937063 759 

Goswami, M., Bhattacharyya, P., Mukherjee, I., Tribedi, P., 2017. Functional Diversity: An 760 

Important Measure of Ecosystem Functioning. Adv. Microbiol. 07, 82–93. 761 

https://doi.org/10.4236/aim.2017.71007 762 

Griess, V.C., Acevedo, R., Härtl, F., Staupendahl, K., Knoke, T., 2012. Does mixing tree species 763 

enhance stand resistance against natural hazards? A case study for spruce. For. Ecol. 764 

Manage. 267, 284–296. https://doi.org/10.1016/j.foreco.2011.11.035 765 

Grime, J.P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder 766 

effects. J. Ecol. 86, 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x 767 

Halpin, C.R., Lorimer, C.G., 2016a. Trajectories and resilience of stand structure in response to 768 

variable disturbance severities in northern hardwoods. For. Ecol. Manage. 365, 69–82. 769 

https://doi.org/10.1016/j.foreco.2016.01.016 770 

Halpin, C.R., Lorimer, C.G., 2016b. Long-term trends in biomass and tree demography in 771 

northern hardwoods: An integrated field and simulation study. Ecol. Monogr. 86, 78–93. 772 



37 
 

https://doi.org/10.1890/15-0392.1 773 

Hayhoe, K., Edmonds, J., Kopp, R.E., LeGrande, A.N., Sanderson, B.M., Wehner, M.F., 774 

Wuebbles, D.J., 2017. Ch. 4: Climate Models, Scenarios, and Projections. Climate Science 775 

Special Report: Fourth National Climate Assessment, Volume I. Washington, DC. 776 

https://doi.org/10.7930/J0WH2N54 777 

He, N., Liu, C., Piao, S., Sack, L., Xu, L., Luo, Y., He, J., Han, X., Zhou, G., Zhou, X., Lin, Y., 778 

Yu, Q., Liu, S., Sun, W., Niu, S., Li, S., Zhang, J., Yu, G., 2019. Ecosystem Traits Linking 779 

Functional Traits to Macroecology. Trends Ecol. Evol. 34, 200–210. 780 

https://doi.org/10.1016/j.tree.2018.11.004 781 

Hijmans, A.R.J., Phillips, S., Leathwick, J., Elith, J., 2017. Package ‘ dismo .’ 782 

Hisano, M., Searle, E.B., Chen, H.Y.H., 2018. Biodiversity as a solution to mitigate climate 783 

change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456. 784 

https://doi.org/10.1111/brv.12351 785 

Hollister, J., Shah, T., 2018. Package “elevatr.” 786 

Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., 787 

Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, 788 

J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: A consensus of 789 

current knowledge. Ecol. Monogr. 75, 3–35. https://doi.org/10.1890/04-0922 790 

Ibisch, P.L., Hoffmann, M.T., Kreft, S., Pe’er, G., Kati, V., Biber-Freudenberger, L., DellaSala, 791 

D.A., Vale, M.M., Hobson, P.R., Selva, N., 2016. A global map of roadless areas and their 792 

conservation status. Science. 354, 1423–1427. https://doi.org/10.1126/science.aaf7166 793 



38 
 

Ishwaran, H., 2019. Package “randomForestSRC.” 794 

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., ..., Wirth, C., 2020. TRY 795 

plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188. 796 

https://doi.org/10.1111/gcb.14904 797 

Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., …, Wirth, C., 2011. 798 

TRY - a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935. 799 

https://doi.org/10.1111/j.1365-2486.2011.02451.x 800 

Keeton, W.S., C. Lorimer, B. Palik, Doyon, F., 2018. Silviculture for old-growth in the context 801 

of global change.  Pages 237-265 in: Barton, A., Keeton, W.S. (eds.).  Ecology and 802 

Recovery of Eastern Old-Growth Forests. Island Press, Washington, D.C.  340 pp. 803 

Keeton, W.S., Whitman, A.A., Mcgee, G.C., Goodale, C.L., 2011. Late-Successional Biomass 804 

Development in Northern Hardwood-Conifer Forests of the Northeastern United States. For. 805 

Sci. 57, 489–505. 806 

Kéfi, S., Miele, V., Wieters, E.A., Navarrete, S.A., Berlow, E.L., 2016. How Structured Is the 807 

Entangled Bank? The Surprisingly Simple Organization of Multiplex Ecological Networks 808 

Leads to Increased Persistence and Resilience. PLoS Biol. 14, 1–21. 809 

https://doi.org/10.1371/journal.pbio.1002527 810 

Kern, C.C., Burton, J.I., Raymond, P., D’Amato, A.W., Keeton, W.S., Royo, A.A., Walters, 811 

M.B., Webster, C.R., Willis, J.L., 2017. Challenges facing gap-based silviculture and 812 

possible solutions for mesic northern forests in North America. Forestry 90, 4–17. 813 

https://doi.org/10.1093/forestry/cpw024 814 



39 
 

Kleinschmit, J., 1993. Intraspecific variation of growth and adaptive traits in European oak 815 

species. Ann. For. Sci. 50, 166s-185s. https://doi.org/10.1051/forest:19930716 816 

Kosiba, A.M., Meigs, G.W., Duncan, J.A., Pontius, J.A., Keeton, W.S., Tait, E.R., 2018. 817 

Spatiotemporal patterns of forest damage and disturbance in the northeastern United States: 818 

2000–2016. For. Ecol. Manage. 430, 94–104. https://doi.org/10.1016/j.foreco.2018.07.047 819 

Kumordzi, B.B., Aubin, I., Cardou, F., Shipley, B., Violle, C., Johnstone, J., ..., Munson, A.D., 820 

2019. Geographic scale and disturbance influence intraspecific trait variability in leaves and 821 

roots of North American understorey plants. Funct. Ecol. 33, 1771–1784. 822 

https://doi.org/10.1111/1365-2435.13402 823 

Lavorel, S., Garnier, E., 2002. Predicting changes in community composition and ecosystem 824 

functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556. 825 

https://doi.org/10.1046/j.1365-2435.2002.00664.x 826 

Li, D., 2018. Package “hillR.” 827 

Liang, J., Crowther, T.W., Picard, N., Wiser, S., Zhou, M., Alberti, G., ..., Reich, P.B., 2016. 828 

Positive biodiversity-productivity relationship predominant in global forests. Science. 354, 829 

aaf8957–aaf8957. https://doi.org/10.1126/science.aaf8957 830 

Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., 831 

Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., Wardle, D.A., 2001. Ecology: 832 

Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science. 833 

294, 804–808. https://doi.org/10.1126/science.1064088 834 

Lorimer, C.G., White, A.S., 2003. Scale and frequency of natural disturbances in the 835 



40 
 

northeastern US: Implications for early successional forest habitats and regional age 836 

distributions. For. Ecol. Manage. 185, 41–64. https://doi.org/10.1016/S0378-837 

1127(03)00245-7 838 

Maeshiro, R., Kusumoto, B., Fujii, S., Shiono, T., Kubota, Y., 2013. Using tree functional 839 

diversity to evaluate management impacts in a subtropical forest. Ecosphere 4, 1–17. 840 

https://doi.org/10.1890/ES13-00125.1 841 

Mason, N.W.H., Mouillot, D., Lee, W.G., Wilson, J.B., 2005. Functional richness, functional 842 

evenness and functional divergence: The primary components of functional diversity. Oikos 843 

111, 112–118. https://doi.org/10.1111/j.0030-1299.2005.13886.x 844 

McGee, G.G., Leopold, D.J., Nyland, R.D., 1999. Structural characteristics of old-growth, 845 

maturing, and partially cut northern hardwood forests. Ecol. Appl. 9, 1316–1329. 846 

https://doi.org/10.1890/1051-0761(1999)009[1316:SCOOGM]2.0.CO;2 847 

McKenney, D.W., Pedlar, J.H., Lawrence, K., Campbell, K., Hutchinson, M.F., 2007. Potential 848 

impacts of climate change on the distribution of North American trees. Bioscience 57, 939–849 

948. https://doi.org/10.1641/B571106 850 

McLachlan, J.S., Foster, D.R., Menalled, F., 2000. Anthropogenic ties to late-successional 851 

structure and composition in four New England hemlock stands. Ecology 81, 717–733. 852 

https://doi.org/10.1890/0012-9658(2000)081[0717:ATTLSS]2.0.CO;2 853 

Meigs, G.W., Morrissey, R.C., Bače, R., Chaskovskyy, O., Čada, V., Després, T., Donato, D.C., 854 

Janda, P., Lábusová, J., Seedre, M., Mikoláš, M., Nagel, T.A., Schurman, J.S., Synek, M., 855 

Teodosiu, M., Trotsiuk, V., Vítková, L., Svoboda, M., 2017. More ways than one: Mixed-856 

severity disturbance regimes foster structural complexity via multiple developmental 857 



41 
 

pathways. For. Ecol. Manage. 406, 410–426. https://doi.org/10.1016/j.foreco.2017.07.051 858 

Messier, C., Puettmann, K., Chazdon, R., Andersson, K.P., Angers, V.A., Brotons, L., Filotas, 859 

E., Tittler, R., Parrott, L., Levin, S.A., 2015. From Management to Stewardship: Viewing 860 

Forests As Complex Adaptive Systems in an Uncertain World. Conserv. Lett. 8, 368–377. 861 

https://doi.org/10.1111/conl.12156 862 

Messier, C., Puettmann, K.J., Coates, K.D., 2013. Managing forests as complex adaptive 863 

systems. Routledge, New York. 864 

Millar, C.I., Stephenson, N.L., Stephens, S.L., 2007. Climate change and forests of the future: 865 

managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151. https://doi.org/10.1890/06-866 

1715.1 867 

Mori, A.S., Furukawa, T., Sasaki, T., 2013. Response diversity determines the resilience of 868 

ecosystems to environmental change. Biol. Rev. 88, 349–364. 869 

https://doi.org/10.1111/brv.12004 870 

Murray, D.L., Peers, M.J.L., Majchrzak, Y.N., Wehtje, M., Ferreira, C., Pickles, R.S.A., Row, 871 

J.R., Thornton, D.H., 2017. Continental divide: Predicting climatemediated fragmentation 872 

and biodiversity loss in the boreal forest. PLoS One 12, 1–20. 873 

https://doi.org/10.1371/journal.pone.0176706 874 

Nakagawa, S., Noble, D.W.A., Senior, A.M., Lagisz, M., 2017. Meta-evaluation of meta-875 

analysis: Ten appraisal questions for biologists. BMC Biol. 15, 1–14. 876 

https://doi.org/10.1186/s12915-017-0357-7 877 

Natural Earth, 2015. Main roads of North America [WWW Document]. URL 878 



42 
 

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/roads/ (accessed 879 

6.14.19). 880 

Nichols, G.E., 1935. The Hemlock--White Pine--Northern Hardwood Region of Eastern North 881 

America. Ecology 16, 403–422. 882 

Nilsson, M.C., Wardle, D.A., DeLuca, T.H., 2008. Belowground and aboveground consequences 883 

of interactions between live plant species mixtures and dead organic substrate mixtures. 884 

Oikos 117, 439–449. https://doi.org/10.1111/j.2007.0030-1299.16265.x 885 

North, M.P., Keeton, W.S., 2008. Emulating Natural Disturbance Regimes: an Emerging 886 

Approach for Sustainable Forest Management, in: Lafortezza, R., Chen, J., Sanesi, G., 887 

Crow, T. (Eds.), Patterns and Processes in Forest Landscapes—Multiple Use and 888 

Sustainable Management. Springer Netherlands, Amsterdam, pp. 341–372. 889 

https://doi.org/10.1186/s40663-015-0031-x 890 

O’Donnell, M.S., Ignizio, D.A., 2012. Bioclimatic Predictors for Supporting Ecological 891 

Applications in the Conterminous United States. U.S Geol. Surv. Data Ser. 691 10. 892 

O’Keefe, T.C., Naiman, R.J., 2006. The influence of forest structure on riparian litterfall in a 893 

Pacific Coastal rain forest. Can. J. For. Res. 36, 2852–2863. https://doi.org/10.1139/X06-894 

180 895 

Ohlmann, M., Miele, V., Dray, S., Chalmandrier, L., O’Connor, L., Thuiller, W., 2019. Diversity 896 

indices for ecological networks: a unifying framework using Hill numbers. Ecol. Lett. 22, 897 

737–747. https://doi.org/10.1111/ele.13221 898 

Oliver, C.D., 1981. Forest development in North America following major disturbances. For. 899 



43 
 

Ecol. Manage. 3, 153–168. https://doi.org/10.1016/0378-1127(80)90013-4 900 

Ordonez, A., Svenning, J.C., 2016. Functional diversity of North American broad-leaved trees is 901 

codetermined by past and current environmental factors. Ecosphere 7, 1–14. 902 

https://doi.org/10.1002/ecs2.1237 903 

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., 904 

Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, 905 

A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D., 2011. A Large and Persistent Carbon 906 

Sink in the World’s Forests. Science. 333, 988–993. 907 

https://doi.org/10.1126/science.1201609 908 

Paquette, A., Messier, C., 2011. The effect of biodiversity on tree productivity: From temperate 909 

to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180. https://doi.org/10.1111/j.1466-910 

8238.2010.00592.x 911 

Pulsford, S.A., Lindenmayer, D.B., Driscoll, D.A., 2016. A succession of theories: purging 912 

redundancy from disturbance theory. Biol. Rev. 91, 148–167. 913 

https://doi.org/10.1111/brv.12163 914 

Romero-Lankao, P., Smith, J.B., Davidson, D.J., Diffenbaugh, N.S., Kinney, P.L., Kirshen, P., 915 

Kovacs, P., Villers Ruiz, L., 2014. North America, in: Barros, V.R., Field, C.B., Dokken, 916 

D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., 917 

Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., 918 

White, L.L. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: 919 

Regional Aspects.Contribution of Working Group II to the Fifth Assessment Report of the 920 

Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and 921 



44 
 

New York, pp. 1439–1498. 922 

Rosseel, Y., Jorgensen, T.D., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei, V., Merkle, E., 923 

Hallquist, M., Rhemtulla, M., Katsikatsou, M., Barendse, M., Scharf, F., 2020. Package 924 

“lavaan.” 925 

Schleuter, D., Daufresne, M., Massol, F., Argillier, C., 2010. A user’s guide to functional 926 

diversity indices. Ecol. Monogr. 80, 469–484. https://doi.org/10.1890/08-2225.1 927 

Schröter, D., Cramer, W., Leemans, R., Prentice, I.C., Araújo, M.B., Arnell, N.W., ..., Zierl, B., 928 

2005. Ecosystem service supply and vulnerability to global change in Europe. Science. 310, 929 

1333–1337. https://doi.org/10.1126/science.1115233 930 

Schulte, L.A., Mladenoff, D.J., Crow, T.R., Merrick, L.C., Cleland, D.T., 2007. Homogenization 931 

of northern U.S. Great Lakes forests due to land use. Landsc. Ecol. 22, 1089–1103. 932 

https://doi.org/10.1007/s10980-007-9095-5 933 

Senf, C., Mori, A.S., Müller, J., Seidl, R., 2020. The response of canopy height diversity to 934 

natural disturbances in two temperate forest landscapes. Landsc. Ecol. 35, 2101–2112. 935 

https://doi.org/10.1007/s10980-020-01085-7 936 

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., 937 

Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M.J., Trotsiuk, V., Mairota, P., Svoboda, M., 938 

Fabrika, M., Nagel, T.A., Reyer, C.P.O., 2017. Forest disturbances under climate change. 939 

Nat. Clim. Chang. 7, 395–402. https://doi.org/10.1038/nclimate3303 940 

Sestelo, M., Villanueva, N.M., Meira-Machado, L., Roca-Pardiñas, J., 2016. FWDselect: An R 941 

package for variable selection in regression models. R J. 8, 132–148. 942 



45 
 

Siefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., ..., Wardle, 943 

D.A., 2015. A global meta-analysis of the relative extent of intraspecific trait variation in 944 

plant communities. Ecol. Lett. 18, 1406–1419. https://doi.org/10.1111/ele.12508 945 

Silva Pedro, M., Rammer, W., Seidl, R., 2017. Disentangling the effects of compositional and 946 

structural diversity on forest productivity. J. Veg. Sci. 28, 649–658. 947 

https://doi.org/10.1111/jvs.12505 948 

Smirnova, E., Bergeron, Y., Brais, S., 2008. Influence of fire intensity on structure and 949 

composition of jack pine stands in the boreal forest of Quebec: Live trees, understory 950 

vegetation and dead wood dynamics. For. Ecol. Manage. 255, 2916–2927. 951 

https://doi.org/10.1016/j.foreco.2008.01.071 952 

Stahl, U., Kattge, J., Reu, B., Voigt, W., Ogle, K., Dickie, J., Wirth, C., 2013. Whole-plant trait 953 

spectra of North American woody plant species reflect fundamental ecological strategies. 954 

Ecosphere 4. https://doi.org/10.1890/ES13-00143.1 955 

Stevens, J.T., Safford, H.D., Harrison, S., Latimer, A.M., 2015. Forest disturbance accelerates 956 

thermophilization of understory plant communities. J. Ecol. 103, 1253–1263. 957 

https://doi.org/10.1111/1365-2745.12426 958 

Swenson, N.G., Enquist, B.J., 2007. Ecological and evolutionary determinants of a key plant 959 

functional trait: Wood density and its community-wide variation across latitude and 960 

elevation. Am. J. Bot. 94, 451–459. https://doi.org/10.3732/ajb.94.3.451 961 

Taylor, A.R., Boulanger, Y., Price, D.T., Cyr, D., McGarrigle, E., Rammer, W., Kershaw, J.A., 962 

2017. Rapid 21st century climate change projected to shift composition and growth of 963 

Canada’s Acadian Forest Region. For. Ecol. Manage. 405, 284–294. 964 



46 
 

https://doi.org/10.1016/j.foreco.2017.07.033 965 

Taylor, A.R., Gao, B., Chen, H.Y.H., 2020. The effect of species diversity on tree growth varies 966 

during forest succession in the boreal forest of central Canada. For. Ecol. Manage. 455, 967 

117641. https://doi.org/10.1016/j.foreco.2019.117641 968 

Taylor, A.R., Hart, T., Chen, H.Y.H., 2013. Tree community structural development in young 969 

boreal forests: A comparison of fire and harvesting disturbance. For. Ecol. Manage. 310, 970 

19–26. https://doi.org/10.1016/j.foreco.2013.08.017 971 

Thom, D., Golivets, M., Edling, L., Meigs, G.W., Gourevitch, J.D., Sonter, L.J., Galford, G.L., 972 

Keeton, W.S., 2019. The climate sensitivity of carbon, timber, and species richness covaries 973 

with forest age in boreal–temperate North America. Glob. Chang. Biol. 25, 2446–2458. 974 

https://doi.org/10.1111/gcb.14656 975 

Thom, D., Keeton, W.S., 2020. Disturbance-based silviculture for habitat diversification: Effects 976 

on forest structure, dynamics, and carbon storage. For. Ecol. Manage. 469, 118132. 977 

https://doi.org/10.1016/j.foreco.2020.118132 978 

Thom, D., Rammer, W., Dirnböck, T., Müller, J., Kobler, J., Katzensteiner, K., Helm, N., Seidl, 979 

R., 2017. The impacts of climate change and disturbance on spatio-temporal trajectories of 980 

biodiversity in a temperate forest landscape. J. Appl. Ecol. 54, 28–38. 981 

https://doi.org/10.1111/1365-2664.12644 982 

Thompson, J.R., Carpenter, D.N., Cogbill, C. V., Foster, D.R., 2013. Four Centuries of Change 983 

in Northeastern United States Forests. PLoS One 8. 984 

https://doi.org/10.1371/journal.pone.0072540 985 



47 
 

Thorn, S., Bässler, C., Brandl, R., Burton, P.J., Cahall, R., Campbell, J.L., .., Wermelinger, B., 986 

Winter, M.-B., Zmihorski, M., Müller, J., 2018. Impacts of salvage logging on biodiversity: 987 

A meta-analysis. J. Appl. Ecol. 55, 279–289. https://doi.org/10.1111/1365-2664.12945 988 

Thuiller, W., Lavorel, S., Sykes, M.T., Araújo, M.B., 2006. Using niche-based modelling to 989 

assess the impact of climate change on tree functional diversity in Europe. Divers. Distrib. 990 

12, 49–60. https://doi.org/10.1111/j.1366-9516.2006.00216.x 991 

Tyrrell, L.E., Crow, T.R., 1994. Structural Characteristics of Old-Growth Hemlock-Hardwood 992 

Forests in Relation to Age. Ecology 75, 370–386. https://doi.org/10.2307/1939541 993 

Urbano, A.R., Keeton, W.S., 2017. Carbon dynamics and structural development in recovering 994 

secondary forests of the northeastern U.S. For. Ecol. Manage. 392, 21–35. 995 

https://doi.org/10.1016/j.foreco.2017.02.037 996 

Van de Peer, T., Verheyen, K., Kint, V., Van Cleemput, E., Muys, B., 2017. Plasticity of tree 997 

architecture through interspecific and intraspecific competition in a young experimental 998 

plantation. For. Ecol. Manage. 385, 1–9. https://doi.org/10.1016/j.foreco.2016.11.015 999 

Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let 1000 

the concept of trait be functional! Oikos 116, 882–892. https://doi.org/10.1111/j.2007.0030-1001 

1299.15559.x 1002 

Webb, T., 1981. The Past 11,000 Years of Vegetational Change in Eastern North America. 1003 

Bioscience 31, 501–506. https://doi.org/10.2307/1308492 1004 

Whitfeld, T.J.S., Lasky, J.R., Damas, K., Sosanika, G., Molem, K., Montgomery, R.A., 2014. 1005 

Species richness, forest structure, and functional diversity during succession in the New 1006 



48 
 

Guinea Lowlands. Biotropica 46, 538–548. https://doi.org/10.1111/btp.12136 1007 

Whittaker, R.H., 1975. Communities and Ecosystems, 2nd ed. MacMillan Publishing. 1008 

Williams, M.I., Dumroese, R.K., 2013. Preparing for Climate Change: Forestry and Assisted 1009 

Migration. J. For. 111, 287–297. https://doi.org/10.5849/jof.13-016 1010 

Wilson, M.F.J., O’Connell, B., Brown, C., Guinan, J.C., Grehan, A.J., 2007. Multiscale terrain 1011 

analysis of multibeam bathymetry data for habitat mapping on the continental slope, Marine 1012 

Geodesy. https://doi.org/10.1080/01490410701295962 1013 

Winfree, R., Fox, J.W., Williams, N.M., Reilly, J.R., Cariveau, D.P., 2015. Abundance of 1014 

common species, not species richness, drives delivery of a real-world ecosystem service. 1015 

Ecol. Lett. 18, 626–635. https://doi.org/10.1111/ele.12424 1016 

WorldClim, 2016. WorldClim 2.0 Beta version 1 [WWW Document]. URL http://worldclim.org 1017 

(accessed 11.20.18). 1018 

Wüest, R.O., Münkemüller, T., Lavergne, S., Pollock, L.J., Thuiller, W., 2018. Integrating 1019 

correlation between traits improves spatial predictions of plant functional composition. 1020 

Oikos 127, 472–481. https://doi.org/10.1111/oik.04420 1021 

Zhang, Y., Chen, H.Y.H., Reich, P.B., 2012. Forest productivity increases with evenness, species 1022 

richness and trait variation: A global meta-analysis. J. Ecol. 100, 742–749. 1023 

https://doi.org/10.1111/j.1365-2745.2011.01944.x 1024 

Zurlini, G., Petrosillo, I., Jones, K.B., Zaccarelli, N., 2013. Highlighting order and disorder in 1025 

social-ecological landscapes to foster adaptive capacity and sustainability. Landsc. Ecol. 28, 1026 

1161–1173. https://doi.org/10.1007/s10980-012-9763-y   1027 



49 
 

Tables 1028 

Table 1: Summary statistics of explanatory variables. Presented are means and ranges (in parentheses) of 21 1029 
continuous variables on 48,426 PSPs used for the analysis of functional trait diversity. For completeness, the table 1030 
also includes the four explanatory variables that were defined as categorical variables, with two of them being on an 1031 
ordinal scale. cat.: categorical; dim: dimensionless; NA: not applicable. 1032 

Category Attribute Description Unit Value 

Forest 

structure 

Basal area Basal area of live trees m2 ha−1 19.7 (0; 100) 

 SD dbh Standard deviation of diameter at breast height cm 6.9 (0; 51.2) 

 SD height Standard deviation of tree height m 3.0 (0; 12.1) 

 Stand density Stand density of live trees n ha−1 698 (15; 17125) 

Climate T mean Annual mean temperature °C 4.3 (-4.3; 12.7) 

 T winter Winter temperature (DJF) °C -10.7 (-24.0; 

0.6) 

 T spring Spring temperature (MAM) °C 3.4 (-6.3; 12.4) 

 T summer Summer temperature (JJA) °C 17.3 (10.6; 23.7) 

 T autumn Autumn temperature (SON) °C 6.4 (-2.1; 13.7) 

 T seasonality Standard deviation of annual temperature °C 11.0 (7.2; 15.5) 

 P sum Annual precipitation sum mm 958 (453; 1814) 

 P winter Winter precipitation (DJF) mm 111 (24; 346) 

 P spring Spring precipitation (MAM) mm 220 (78; 455) 

 P summer Summer precipitation (JJA) mm 295 (200; 461) 

 P autumn Autumn precipitation (SON) mm 262 (116; 531) 

 P seasonality Coefficient of variation of annual precipitation mm 29 (5; 70) 

Topography Aspect Orientation of the slope in N, E, S or W 

direction 

cat. NA 

 Elevation Height above sea level m 336 (1; 1283) 

 Slope Inclination of the ground surface degrees 0.9 (0.0; 13.6) 

 TPI Topographic Position Index, expresses the 

difference between the value of a cell and the 

mean value of its eight surrounding cells 

dim. 0.8 (-188.0; 

197.5) 

 TRI Terrain Ruggedness Index, expresses the mean 

of the absolute difference between the value of 

a cell and the value of its eight surrounding 

cells 

dim. 17.0 (0.0; 209.3) 
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Soils Moisture Soil moisture in three classes: xeric, mesic, 

hydric 

ordinal NA 

 Soil type Dominant soil types differentiated into 28 

classes 

cat. NA 

Stewardship IUCN 

category 

Protection status according to the IUCN 

definition in nine classes 

ordinal NA 

 Road 

proximity 

Forest plot distance from the closest main road km 10.6 (0.0; 177.1) 

 1033 

  1034 
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Table 2: Model evaluation. Presented are Moran’s I statistic and the pseudo-R2 of the training datasets as well as the 1035 
RMSE of the test data prediction. Means and standard deviations (in parentheses) of each model family and Hill 1036 
numbers (q factor) are shown. BRT=Boosted Regression Trees; RF=Random Forests; GAM=Generalized Additive 1037 
Models. 1038 

Model Moran’s I statistic Pseudo-R2 RMSE 
BRT q=0 0.010 (0.013) 0.487 (0.024) 2.2 (0.0) 

BRT q=1 0.005 (0.014) 0.394 (0.024) 1.7 (0.0) 

BRT q=2 0.002 (0.015) 0.340 (0.017) 1.6 (0.0) 

RF q=0 0.021 (0.012) 0.506 (0.015) 2.2 (0.0) 

RF q=1 0.005 (0.015) 0.439 (0.020) 1.7 (0.0) 

RF q=2 -0.002 (0.016) 0.399 (0.010) 1.6 (0.0) 

GAM q=0 0.022 (0.014) 0.392 (0.018) 2.2 (0.0) 

GAM q=1 0.011 (0.017) 0.301 (0.021) 1.7 (0.0) 

GAM q=2 0.003 (0.018) 0.252 (0.019) 1.6 (0.0) 

 1039 

 1040 

  1041 
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Table 3: Relative variable importance for explaining variation in functional diversity. Relative importance indicates 1042 
the relative contribution of each variable explaining FD (adding up to 100%). Values were averaged across 30 models 1043 
for each Hill number (q factor), i.e., ten BRT, RF, and GAMs, respectively. Standard deviations are shown in 1044 
parentheses. 1045 

Category Attribute Relative importance (%) 

  q=0 q=1 q=2 

Forest structure Basal area 31.8 (17.8) 27.1 (12.4) 27.4 (10.3) 

 SD dbh 2.8 (2.3) 3.4 (2.9) 4.0 (3.0) 

 SD height 13.8 (8.8) 19.2 (11.8) 20.7 (12.9) 

 Stand density 23.2 (15.7) 19.6 (5.6) 19.4 (6.5) 

Climate T mean 2.7 (3.9) 1.6 (1.9) 1.3 (1.7) 

 T winter 2.1 (4.5) 2.6 (5.4) 2.1 (2.6) 

 T spring 2.4 (2.1) 3.4 (3.9) 2.5 (2.4) 

 T summer 5.7 (5.3) 3.8 (3.7) 3.4 (2.7) 

 T autumn 1.7 (1.7) 3.4 (4.8) 1.9 (2.5) 

 T seasonality 1.7 (1.7) 1.7 (1.8) 1.5 (1.4) 

 P sum 0.3 (0.5) 0.3 (0.6) 0.6 (0.9) 

 P winter 0.2 (0.6) 0.5 (0.9) 1.0 (2.0) 

 P spring 0.2 (0.4) 0.4 (0.7) 0.6 (0.7) 

 P summer 1.1 (1.5) 1.2 (1.3) 0.9 (1.1) 

 P autumn 0.6 (0.8) 0.8 (0.9) 0.9 (1.1) 

 P seasonality 0.5 (0.7) 0.7 (1.2) 1.6 (2.7) 

Topography Aspect 0 (0.1) 0.1 (0.2) 0.1 (0.3) 

 Elevation 0.2 (0.5) 0.2 (0.5) 0.3 (0.5) 

 Slope 0.4 (0.5) 0.9 (1.2) 0.8 (1.1) 

 TPI 0.2 (0.5) 0.1 (0.3) 0.3 (0.4) 

 TRI 2 (2.2) 1.3 (1.4) 1.1 (1.3) 

Soils Moisture 0.1 (0.3) 0.2 (0.4) 0.3 (0.7) 

 Soil type 2.8 (2.5) 2.7 (3.2) 2.9 (4.3) 

Stewardship IUCN category 0.0 (0.0) 0.0 (0.1) 0.0 (0.0) 

 Road proximity 0.3 (0.5) 0.3 (0.5) 0.6 (0.7) 

Coordinates Latitude 1.9 (3.3) 2.8 (3.1) 2.2 (2.6) 

 Longitude 1.2 (1) 1.8 (2.1) 1.7 (1.8) 

 1046 

  1047 
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Figures and figure legends 1048 

 1049 

 1050 

Fig. 1: Map of the study region and locations of the 48,426 permanent sample plots (PSPs) gathered 1051 

for this study. The green background denotes the forest cover (ca. 2.8 M km²). The study region 1052 

encompasses the ecoregions 5.1 (Softwood Shield), 5.2 (Mixed Wood Shield), 5.3 (Atlantic 1053 

Highlands), 8.1 (Mixed Wood Plains), and 8.2 (Central USA Plains). Ecoregion 5.1 represents 1054 

boreal forests, 5.2 and 5.3 constitute the boreal-temperate ecotone, and 8.1 and 8.2 are temperate 1055 

forests. Ecoregions are based on EPA (2016). 1056 
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 1058 

Fig. 2: Number of traits found per species. Traits relevant for growth, regeneration and survival 1059 

are distinguished by color. The maximum number of traits is 44 for each of the 43 tree species 1060 

(i.e., 1892 traits in total). The total number of traits found was 1570, i.e., 83.0% (see Appendix S1 1061 

for details). 1062 
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 1064 

 1065 

Fig. 3: Observed functional diversity distribution across northeastern North America. Scales 1066 

denote the effective number of tree species with different functional traits weighted by different q 1067 

factors. Distributions are based on 44 traits of 43 species on 48,426 PSPs. We used inverse distance 1068 

weighting to derive wall-to-wall estimates of the trait distribution. Three different q factors were 1069 
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considered to derive Hill numbers to illustrate the effect of species abundance on FD. (a) 1070 

Functional richness, (b) exponential Shannon entropy, and (c) Rao’s quadratic entropy.  1071 
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 1073 
Fig. 4: Relative importance of forest structure, climate, soils, topography, and stewardship for 1074 

functional diversity. Violins show the density distribution of variable importance summarized for 1075 

each category (see Table 3 for individual variable importance). A boxplot presenting the median 1076 

(vertical line), interquartile ranges (grey box), and ranges (i.e., whiskers showing the 1.5 × 1077 

interquartile range) are displayed in the center of each violin. The three panels weight the species 1078 

abundance effect on the drivers of functional diversity differently: (a) Functional richness (q=0), 1079 

(b) exponential Shannon entropy (q=1), and (c) Rao’s quadratic entropy (q=2).   1080 



58 
 

 1081 



59 
 

Fig. 5: Sensitivity analysis of functional diversity driver effects. Presented are mean effects and 1082 

95% confidence intervals. The three panels weight the species abundance effect on the drivers of 1083 

functional diversity differently: (a) functional richness, (b) exponential Shannon entropy, and (c) 1084 

Rao’s quadratic entropy. Changes in functional diversity were predicted by increasing each 1085 

continuous variable by one standard deviation individually while retaining the original values of 1086 

the PSPs for all other variables. Predictions for each panel were aggregated from 30 models (i.e., 1087 

ten BRT, RF, and GAMs) respectively. Effects of explanatory variables are ordered according to 1088 

their relative importance (see Table 3 and Fig. S2). 1089 

 1090 
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Supplementary material 1092 

Appendix S1: Individual traits for each species and references (see additional Excel spreadsheet 1093 

provided). 1094 

  1095 
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Table S1: Standardized path coefficients among FD, forest structure and the four most important 1096 

climatic drivers of FD (see Fig 5 and Fig. S1). Coefficients are based on structural equation 1097 

modeling (SEM) of 48,426 inventory plots. q=0: Functional richness; q=1: exponential Shannon 1098 

entropy; q=2 Rao’s quadratic entropy. 1099 

Response variable Covariate q=0 q=1 q=2 

FD Basal area 0.668 0.223 0.129 

 Stand density 0.499 0.441 0.434 

 SD height 0.502 0.345 0.280 

 SD dbh 0.183 0.164 0.157 

 T mean -0.757 NA NA 

 T winter 0.490 0.257 0.207 

 T spring 0.475 0.276 0.240 

 T summer 0.224 0.049 0.035 

 T autumn NA -0.351 -0.326 

Basal area T mean 0.846 NA NA 

 T winter -0.221 0.134 0.134 

 T spring -0.706 -0.544 -0.544 

 T summer -0.029 0.140 0.140 

 T autumn NA 0.204 0.204 

Stand density T mean 0.877 NA NA 

 T winter -0.283 -0.045 -0.045 

 T spring -1.097 -0.881 -0.881 

 T summer 0.046 0.144 0.144 

 T autumn NA 0.360 0.360 

SD height T mean 1.065 NA NA 

 T winter -0.517 -0.009 -0.009 

 T spring -0.076 0.106 0.106 

 T summer -0.251 -0.001 -0.001 

 T autumn NA 0.186 0.186 

SD dbh T mean 0.977 NA NA 

 T winter -0.468 0.004 0.004 
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 T spring 0.054 0.219 0.219 

 T summer -0.286 -0.054 -0.054 

 T autumn NA 0.165 0.164 

 1100 

 1101 
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Fig. S1: Agglomerative Hierarchical Clustering (AHC) with a Ward linkage method of the 1102 

functional trait similarity of 43 northeastern North American tree species. We identified four 1103 

distinct functional groups for the 43 species investigated. We categorized these groups into: (i) 1104 

early-seral northern hardwoods; (ii) mid- and late-seral northern hardwoods; (iii) central 1105 

hardwoods; and (iv) conifers. This categorization applied to all species of each cluster, except 1106 

Betula alleghaniensis which has many traits in common with early-seral northern hardwoods, but 1107 

is considered a mid-late seral species. While both northern hardwood clusters were functionally 1108 

most similar, the functional distance increased markedly to central hardwoods, and conifers were 1109 

furthest apart from all of the other clusters. A subsequent PERMANOVA supported the AHC 1110 

results. The test revealed that differences in the average trait composition of the groups were highly 1111 

significant (p < 0.001). 1112 

 1113 

  1114 



64 
 

 1115 



65 
 

Fig. S2: Relative variable importance for functional diversity. The three panels weight the species 1116 

abundance effect on the drivers of functional diversity differently: (a) Functional richness (q=0), 1117 

(b) exponential Shannon entropy (q=1), and (c) Rao’s quadratic entropy (q=2). Each panel presents 1118 

the average relative variable importance across 30 models, i.e., ten BRT, RF, and GAMs, 1119 

respectively. 1120 
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 1122 

Fig. S3: Structural equation model (SEM) analyzing the indirect effect of climate on FD mediated 1123 

via forest structure. Presented are the average standardized path coefficients among the four most 1124 

important climatic drivers of FD (see Fig. S1), forest structure, and FD based on 48,426 inventory 1125 

plots. q=0: Functional richness; q=1: exponential Shannon entropy; q=2 Rao’s quadratic entropy 1126 

 1127 


