Skip to Main content Skip to Navigation
Journal articles

From transglutaminases (TGs) to arylamine N-acetyltransferases (NATs): Insight into the role of a spatially conserved aromatic amino acid position in the active site of these two families of enzymes

Abstract : Transglutaminases (TG) and arylamine N-acetyltransferases (NAT) are important family of enzymes. Although they catalyze different reactions and have distinct structures, these two families of enzymes share a spatially conserved catalytic triad (Cys, His, Asp residues). In active TGs, a conserved Trp residue located close to the triad cysteine is crucial for catalysis through stabilization of transition states. Here, we show that in addition to sharing a similar catalytic triad with TGs, functional NAT enzymes also possess in their active site an aromatic residue (Phe, Tyr or Trp) occupying a structural position similar to the Trp residue of active TGs. More importantly, as observed in active TGs, our data indicates that in functional NAT enzymes this conserved aromatic residue is also involved in stabilization of transition states. These results thus indicate that in addition to the three triad residues, these two families of enzymes also share a spatially conserved aromatic amino acid position important for catalysis. Identification of residues involved in the stabilization of transition states is important to develop potent inhibitors. Interestingly, NAT enzymes have been shown as potential targets of clinical interest. (C) 2020 Elsevier Inc. All rights reserved.
Document type :
Journal articles
Complete list of metadata

https://hal-cnrs.archives-ouvertes.fr/hal-03300412
Contributor : Colette Orange <>
Submitted on : Tuesday, July 27, 2021 - 10:15:13 AM
Last modification on : Thursday, July 29, 2021 - 3:18:44 AM

Links full text

Identifiers

Collections

Citation

Ximing Xu, Wenchao Zhang, Jeremy Berthelet, Rongxing Liu, Christina Michail, et al.. From transglutaminases (TGs) to arylamine N-acetyltransferases (NATs): Insight into the role of a spatially conserved aromatic amino acid position in the active site of these two families of enzymes. Biochemical and Biophysical Research Communications, Elsevier, 2020, 525 (2), pp.308-312. ⟨10.1016/j.bbrc.2020.02.082⟩. ⟨hal-03300412⟩

Share

Metrics

Record views

16