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Abstract

We introduce a new class of asymmetric random walks on the one-dimensional infinite lattice. In
this walk the direction of the jumps (positive or negative) is determined by a discrete-time renewal
process which is independent of the jumps. We call this discrete-time counting process the ‘gen-
erator process’ of the walk. We refer the so defined walk to as ‘asymmetric discrete-time random
walk’ (ADTRW). We highlight connections of the waiting-time density generating functions with Bell
polynomials. We derive the discrete-time renewal equations governing the time-evolution of the
ADTRW and analyze recurrent/transient features of simple ADTRWs (walks with unit jumps in both
directions). We explore the connections of the recurrence/transience with the bias: Transient simple
ADTRWs are biased and vice verse. Recurrent simple ADTRWs are either unbiased in the large time
limit or ‘strictly unbiased’ at all times with symmetric Bernoulli generator process. In this analysis
we highlight the connections of bias and light-tailed/fat-tailed features of the waiting time density
in the generator process. As a prototypical example with fat-tailed feature we consider the ADTRW
with Sibuya distributed waiting times.

We also introduce time-changed versions: We subordinate the ADTRW to a continuous-time re-
newal process which is independent from the generator process and the jumps to define the new
class of ‘asymmetric continuous-time random walk’ (ACTRW). This new class - apart of some special
cases - is not a Montroll–Weiss continuous-time random walk (CTRW). ADTRW and ACTRW models
may open large interdisciplinary fields in anomalous transport, birth-death models and others.

Keywords:

Asymmetric discrete- and continuous-time randomwalks, recurrence/transience, discrete-time count-
ing process, Sibuya distribution, semi-Markov and fractional chains, Bell polynomials, light-tailed/fat-
tailed waiting time distributions
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1 Introduction

Historically the interest in biased random walks on the integer line goes back to the classical ‘Gam-

bler’s Ruin Problem’ and occurred already in 1656 in a correspondence between Blaise Pascal to Pierre

Fermat [1]. A simple probabilistic version is as follows. Two gamblers A and B play against each other

a probabilistic game multiple times. Each game is independent of the previous ones. In a game one

gambler wins a certain unit of money whereas the other loses this amount where both gamblers start

with the same amount. If both gamblers win with the same probability p = 1
2 , this game is ‘fair’,

whereas for p 6= 1
2 one the gamblers has an advantage. The sequence of games stops when one of

the gamblers reaches zero money units (ruin). The time sequence of such repeated games defines a

random walk on Z with directed unit jumps where the first passage on zero of one of the gamblers

defines ‘the ruin condition’ (end of the game sequence). For an outline of the essential features we

refer to [2]. The fair case p = 1
2 is an unbiased walk (as an example of a martingale [3, 4] and consult

also [5]).

In the meantime an impressive interdisciplinary field has emerged with many variants of biased

random walks with applications in areas as varied as finance (‘risk theory’) and in physics sophisticated

models have been developed explaining anomalous transport processes [6]. Among them asymmetric

(biased) diffusion has become a major subject with a huge amount of specialized literature [7, 8, 9,

10, 11], just to quote a few examples. The anomalous transport and diffusion theory is mostly based
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on the continuous time random walk (CTRW) approach by Montroll and Weiss [12] where a random

walk is subordinated to an independent (continuous-time) renewal process [13, 14, 15, 16, 17]. For fat-

tailed interarrival time densities in the renewal process the resulting stochastic motion is governed by

time-fractional evolution equations characterized by non-markovianity and long-time memory features.

For a comprehensive overview of the wide range of models we refer to [18, 19, 20, 21, 22, 23, 24]

and the references therein. These developments have launched the upswing of the fractional calculus

[25, 26, 27] and generalizations [28, 29, 30, 31, 32, 33, 34] (and see the references therein).

Most of the mentioned models consider continuous-time renewal processes and have profound con-

nections with semi-Markov chains [35, 36, 37, 38, 39]. In contrast, the discrete-time counterparts of

semi-Markov processes, renewal processes with integer valued interarrival times and corresponding

random walk models are relatively little touched in the literature. Essential elements of this theory

have been developed only recently by Pachon, Polito and Ricciuti [40]. For recent pertinent physical

applications in discrete-time random walks and related stochastic motions on undirected graphs we

refer to our recent article [41].

The goal of the present paper is to introduce a new class of biased random walks where the direction

of the jumps is selected by the trials of a discrete-time counting process. We call this discrete-time

counting process the ‘generator process’ of the walk. The approach can be extended to different direc-

tions, for instance to multidimensional biased walks. In our model we focus on walks on Z and consider

cases where the asymmetry of the walk solely originates from the generator process.

The structure of our paper is as follows. In Section 2 we recall some basic mathematical features of

biased walks on the integer-line to define the new class of ‘asymmetric discrete-time random walk’

(ADTRW). We derive general expressions for the transition matrix of the ‘simple ADTRW’ which is the

ADTRW with unit jumps in both directions.

Section 3 is devoted to introduce the ’generator process’ of the ADTRW. We define the generator

process as a discrete-time counting process (renewal process with IID integer interarrival times) com-

ing along as trial process. To generate the ADTRW two possible outcomes of the trials “success” or

“fail” determine the direction of the jumps (positive or negative). We consider especially the long-time

memory and non-markovian effects on the bias of the walk. We introduce a scalar counterpart of the

transition matrix, the ‘state polynomial’ of the generator process which contains the complete stochas-

tic information of the simple ADTRW (i.e. of the walk with directed unit jumps).

In Section 4 we highlight general connections of the waiting-time generating functions of the generator

process with Bell polynomials.

Section 5 is devoted to the recurrence and transience features of the ADTRW. We analyze the connec-

tion of the memory of the waiting-time densities in the generator process with the recurrence/transience

behavior and derive general expressions for the expected sojourn on sites in infinitely long simple

ADTRWs. We show for simple ADTRWs that recurrence requires light-tailed (LT) waiting time densi-

ties (short-time memory) where the recurrent cases are unbiased in the long-time limit. Among the

recurrent simple ADTRWs it turns out that only the one with symmetric Bernoulli generator process

is unbiased in a strict sense. We prove that fat-tailed (FT) waiting time densities (long-time memory)

generate transient and biased simple ADTRWs. The general approach for simple ADTRWs boils down

to well known classical results in the case of the Bernoulli generator process.

As a proto-typical example with non-markovian long-memory features and FT Sibuya distributed wait-

ing time, we introduce in Section 6 the ‘Sibuya ADTRW’. We derive the transition matrix and for the

simple Sibuya ADTRW the expected position of the walker and reconfirm the transience and bias of

this walk as a consequence of the non-markovianity of the Sibuya generator process.

In Section 7 we introduce a time-changed version of the ADTRW: We subordinate the ADTRW to an in-
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dependent continuous-time point process such as Poisson or fractional Poisson. In this way we define

a new class of asymmetric continuous-time random walks (ACTRW) which in general (apart of some

special cases considered at the end of this section) are not Montroll–Weiss CTRWs. We also derive the

time-evolution equations for the ACTRW which are of general fractional type.

2 Statement of the problem and preliminary remarks

In this section we recall the basic mathematical background we repeatedly use in the conception of

our random walk model. We consider a class of random walks Yt∈N0 ∈ Z a.s. on the integer line

characterized by

Yt =
t∑

j=1

Xj , Y0 = 0, Xj ∈ Z \ {0}, t ∈ N0 (1)

where we allow positive and negative integer jumps (Xj 6= 0) taking place at integer times t. We

consider the initial condition that the walk starts in the origin at time t = 0. We identify Yt ∈ Z with the

position node of a random walker at time t on the infinite one-dimensional lattice. We focus on a wider

class of random walks (1) which are governed by a transition matrix of the following general type

P(t) =
t∑

n=0

P(N(t) = n)(W+)n(W−)t−n, Pi,j(t)|t=0 = δi,j , t ∈ N0 (2)

with the elements Pi,j(t) = P0,j−i(t) = P(Yt = j − i) (i, j ∈ Z) indicating the probability that the walker

is present on node j at time t when having started the walk on node i at t = 0 and δi,j stands for

the Kronecker symbol. W+ and W− indicate the transition matrices for positive and negative jumps,

respectively. The transition matrix (2) as well as W+ and W− are ‘Töplitz’ with the circulant property

(defined in Eq. (6)). In Eq. (2) the integer random variable N(t) ∈ N0 (with 0 ≤ N(t) ≤ t ∈ N0) is a

discrete-time counting process to be specified later (which we call the ‘generator process’ of the walk)

for the choice of the direction of the jumps. P(N(t) = n) indicates the probability of occurrence of n

positive and t − n negative jumps within time interval [0, t]. Hence the generator process introduces

(apart of some special cases) asymmetry (bias) to the walk. We call the class of walks (1), with transition

matrix (2) ‘asymmetric discrete-time random walk’ (ADTRW). We assume that if a jump Xj is positive,

it is governed by the single–jump transition matrix W+ and a negative jump Xj is following the single–

jump transition matrix W−. The matrix W+ has the elements

W+
p,q = Θ(q − p)W+(|q − p|) (3)

indicating the probability to move from p → q in one single jump. The condition W+
0,0 = W+(0) = 0

ensures that only non-zero jumps occur. Eq. (3) has non-vanishing elements only in side diagonals

above the main diagonal and can be seen as a right–sided discrete jump density supported on ℓ =

{1, 2, . . .} ∈ N allowing solely strictly positive integer jumps. In Eq. (3) further is introduced the

‘discrete Heaviside function’ defined by

Θ(r − k) =
r∑

j=−∞

δj,k =







1, r − k ≥ 0

0, r − k < 0

(4)

where we emphasize that in our definition Θ(0) = 1. Correspondingly we introduce the transition

matrix for negative jumps by

W−
p,q = Θ(p− q)W−(|q − p|) (5)
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withW−
0,0 = W−(0) = 0 and is a left–sided discrete jump density. Transition matrices (in our convention)

fulfill row-stochasticity, i.e.
∑∞
r=−∞W±

r,p = 1 with 0 ≤ W±
r,p ≤ 1. We mainly consider cases where the

transition matrices of Eqs. (3) and (5) have mirror symmetry W−
0,−(q−p) = W+

0,q−p, i.e. the jump length

for positive and negative jumps follow the same one–sided distribution (3). However, bear in mind

the model to be developed includes arbitrary single-jump one-sided transition matrices W+ and W−

without further symmetries.

Circulant matrices

The transition matrices and all matrices we are dealing with (including the unit matrix represented

with elements δp,q, p, q ∈ Z) are Töplitz or synonymously circulant. We call a matrix A Töplitz if it fulfills

Ap,q = Ap+r,q+r, p, q, r ∈ Z (6)

i.e. the main diagonal and all side diagonals have identical elements, respectively. Any circulant matrix

(6) can be represented by shift operators such that

Â =
∞∑

k=−∞

A0,kT̂−k, A = Â1 (7)

where 1 = (δp,q) denotes the unit matrix and we introduced the spatial shift-operator T̂r (r ∈ Z) which

is such that T̂rf(p) = f(p+r) (p, r ∈ Z) with T̂r = T̂ r1 and we denote with 1 = T̂0 the zero shift. We agree

that in the notation T̂rδp,q = δp,q+r = δ−r,q−p the shift operator acts on the right index of the Kronecker

symbol and by this convention the expression Â1 = A in Eq. (7) gives a well-defined circulant matrix

representation. For instance consider a single jump transition matrix generating right–sided jumps of

size +1, namely W+
q,p = T̂−1δq,p = δq,p−1 and f(p) = δi,p (where the walker sits on i before the jump) to

give
∑∞
r=−∞ f(r)δr,p−1 = f(p − 1) = T̂−1f(p) = δi,p−1 = δi+1,p, i.e. the walker jumps from position i to

i+1. The shift operator T̂m (m ∈ Z) is unitary and has eigenvalues eimϕ on the unit circle. Any circulant

matrix (7) has canonical representation, e.g. [42, 43]

Am,n = A0,n−m =
1

2π

∫ π

−π
A(ϕ)eiϕ(n−m)dϕ (8)

with eigenvalues A(ϕ) =
∑∞
q=−∞A0,qe

−iqϕ to the (right) eigenvectors with components e−iϕq√
(2π)

where

ϕ ∈ (−π, π]. Matrix multiplications among circulant matrices commute and are equivalent to discrete

convolutions [42] (and see Appendix in [41] for some properties) as a consequence of commutation of

shifts. The above single–jump transition matrices can be represented by shift operators as follows

W+ =
∞∑

r=1

W+(r)T̂−r1,

W− =
∞∑

r=1

W−(r)T̂r1.

(9)

Despite we focus on walks with discrete jumps, it is rather straight-forward to extend the random walk

models developed here to their continuous-space counterparts. The single–jump transition matrices

W+ and W− are then replaced by right– and left– sided continuous-space transition density kernels.

2.1 Simple ADTRWs

In random walk theory an important class consists in walks where only positive and negative jumps

of unit size occur. We call this class of walks here ‘simple walks’ or ‘simple ADTRWs’. Simple walks
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are governed by the transition matrices W+
1 = T̂−11 for jumps “+1” and W−

1 = T̂+11 for jumps “−1”.

Simple random walks were extensively studied in the literature [2, 4, 44, 45, 46, 47], and see the

references therein. Simple walks include models for birth–death processes [48] with a vast field of

applications in epidemiology, demography, queueing theory, finance strategies, the Gambler’s Ruin

Problem, and others. In a simple ADTRW the position (1) of the walker at time t is given by the integer

random variable

[Yt]simple = 2N(t) − t, Y0 = 0, t ∈ N0 (10)

where N(t) jumps of +1 and t−N(t) jumps of −1 are made within the time interval [0, t] and N(t) ∈ N0

is the above-mentioned discrete-time counting process to be specified subsequently. As 0 ≤ N(t) ≤ t

we have that −t ≤ [Yt]simple ≤ t.

The simple ADTRW has the drift term −t. It is therefore convenient to introduce a coordinate system

having its origin on a moving particle navigating with constant speed −1 and starting in the same

position as the walker at t = 0. The position q(t) of the random walker seen by this moving particle has

no drift anymore and is given by the random variable

q(t) = [Yt]simple − (−t) = 2N(t) (11)

corresponding to a strictly increasing walk with positive jumps of size 2 (almost surely). For our

convenience we introduce the transition matrix Q(t) = (W−)−tP(t) (see also Eq. (2)) which is ‘seeing’

the moving particle, namely

Q(t) =
t∑

n=0

P(N(t) = n)(W+)n(W−)−n =
t∑

n=0

P(N(t) = n)T̂−2n1

Q0,r(t) =
t∑

n=0

P(N(t) = n)δ0,r−2n = P(q(t) = r)

(12)

with initial condition P0,r(t)
∣
∣
t=0

= Q0,r(t)
∣
∣
t=0

= δ0,r. The matrix (12) indicates the probability that the

walker at time t has distance r ∈ N0 from the moving particle. Correspondingly, the transition matrix

(12) reduces to

Q0,r(t) = Θ(r)δr,2⌈ r−1
2

⌉P

(

N(t) =
r

2

)

, r ∈ Z, t ∈ N0

P0,r(t) = Q0,r+t(t).

(13)

Q0,r(t) has non-zero entries only on the sites r ∈ {0, 2, . . . 2t− 2, 2t} (and P0,r(t) on r ∈ {−t,−t+ 2, . . . t−
2, t}). We introduced above the ceiling function ⌈a⌉ indicating the smallest integer greater or equal to

a ∈ R and the Kronecker symbol picks up the terms for which r is even. Of interest is especially the

probability of return to the departure site

P0,0(t) = δt,2⌈ t−1
2

⌉P

(

N(t) =
t

2

)

=







P

(

N(t) =
t

2

)

, t even

0, t odd.

(14)

In the subsequent section we specify the trial process selecting the direction of the jumps in Eq. (2)

and recall the notion of ‘discrete-time counting process’ which comes along as ‘renewal trial process’

with connections to discrete-time semi-Markov chains. For essential elements of the theory consult

[40].
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3 Discrete-time renewal processes and trial schemes

Here we introduce a trial process which defines the directions of the jumps in the ADTRW. Consider a

sequence of trials where each trial has two possible outcomes, “success” or “fail”. For our convenience

we introduce random variables Zr ∈ {0, 1}, a.s., representing these possible outcomes, namely {Zr = 0}
for a fail and {Zr = 1} for a success at trial r ∈ N. Furthermore, let P(Zr = 1|Zr−1 = 0) = αr ∈ [0, 1],

r ∈ N, P(Zr = 1|Zr−1 = 1) = α1, be the conditional probability of success in the r-th trial conditional to

the filtration Fr−1 (up to trial r − 1) to which the trial process is adapted. Performing a sequence of k

trials gives 2k possible outcomes. Each outcome (z1, z2, . . . , zk) occurs with probability Pk(z1, z2, . . . , zk).

The probability of a certain outcome in a sequence of k trials has the structure

Pk(z1, z2, . . . , zk) = p1(z1)p2(z2) . . . pk(zk), (15)

where the pr(zr), r ∈ {1, . . . , k} are in general conditional probabilities. As an example, the probability

that a trial sequence “(fail, fail, fail, success, fail, success)” occurs in a sequence of 6 trials then is with

above adaption rule P6(0, 0, 0, 1, 0, 1) = (1 − α1)(1 − α2)(1 − α3)α4(1 − α1)α2. If the αk is non constant

the process has a memory (i.e. it has non geometric waiting times). A sequence of k trials where the

first success occurs at trial k has then the probability

ψk = Pk(0, . . . 0, 1) = αk(1 − αk−1) . . . (1 − α1), αj ∈ [0, 1], k ∈ N (16)

with the ‘survival probability’ (probability that in k − 1 trials all outcomes are fails) Pk−1(0, . . . , 0) =

Sk−1 =
∏k−1
j=1(1 − αj). On the other hand we observe that any discrete density ψk (k ∈ N) can be

represented as in Eq. (16) within such a trial scheme with Sk−1 =
∑∞
r=k ψr and Sk = Sk−1 − ψk =

Sk−1(1 − αk). Notice that the survival probability1 Sk → S∞ = 0 as k → ∞. With the initial condition

S0 = 1 it follows then
∑∞
k=1 ψk = 1.

A pertinent example of the form (16) with memory is the Sibuya distribution (also referred to as

Sibuya(α) which has αk = β/k, β ∈ (0, 1), thus the probability of the first success at trial k is

ψβ(k) =
β

k

(

1 − β

k − 1

)

. . . (1 − β) = (−1)k−1

(

β

k

)

, β ∈ (0, 1), k ∈ N (17)

which is fat-tailed, i.e. for k → ∞ we have a heavy power-law tail ψβ(k) = β
k
Sβ,k−1 ∼ β

Γ(1−β)k
−1−β .

Hence, the Sibuya survival probability tends to zero as a power-law Sβ(k) = (−1)k
(β−1
k

)
∼ k−β

Γ(1−β)

reflecting the long-memory and non-markovian feature of the Sibuya trial process. We will come back

to the Sibuya distribution later on.

3.1 Discrete-time renewal process - generator process of the ADTRW

In order to establish the connection with discrete-time renewal processes with above mentioned adap-

tion rule we consider the conditional probabilities

P(Zk = 1|Zk−1 = 0) = αk, αk ∈ [0, 1]

P(Zk = 1|Zk−1 = 1) = α1, k ≥ 2

(18)

and probability of success P(Z1 = 1) = α1 in the first trial. Once in a trial sequence a success occurs

(i.e. Zr = 1) for the first time, say at trial r, then the probability for success in the subsequent trial is

1We do not consider here cases where S∞ = 1 −

∑
∞

k=1
ψk > 0 where a finite survival probability exists, i.e. a finite

probability that in infinitely many trials never a success occurs.
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reset to α1 as in the first trial and the process starts anew. In the renewal picture the trial number r of

first success can be seen as the integer renewal time (arrival time of event ‘success’) in a discrete-time

renewal process.

With these remarks we introduce the discrete-time counting process N(t) which counts the successes

among t trials (success = ‘arrival’ or ‘event’ in the counting process) as

N(t) =
t∑

j=1

Zj , N(0) = 0, Zj ∈ {0, 1} a.s. (19)

We call the so defined discrete-time counting process with conditional probabilities (18) ‘generator

process’ of the ADTRW. The number of trials between two successes then can be seen as IID interarrival

times ∆tj which can take positive integer values ∆tj ∈ {1, 2, . . . }. Further, to define the jump directions

in the ADTRW, we associate with each ‘success’ a positive jump and with each ‘fail’ a negative jump.

Hence, the integer variable N(t) ∈ N0 counts the number of positive jumps and t−N(t) the number of

negative jumps within the time interval [0, t] and clearly we have 0 ≤ N(t) ≤ t.

Then we define a discrete-time renewal process fulfilling property (18) where the IID interarrival

times follow the waiting-time density (∆tj → t)

P(Z1 = 0, . . . , Zt−1 = 0, Zt = 1) = ψ(α1, . . . , αt) = αt

t−1∏

j=1

(1 − αj), t ∈ {1, 2 . . .}. (20)

We use from now on the synonymous notations ψt = ψ(t) = ψ(α1, . . . , αt) for Eq. (20). Of utmost

importance are the ‘state probabilities’, i.e. the probabilities that in t trials n successes occur (n

arrivals up to time t). The state probabilities are defined as

Φ(n)(α1, . . . , αt) = P(N(t) = n) = P





t∑

j=1

Zj = n



 , n, t ∈ {0, 1, 2, . . .} (21)

In general, for non-constant αt the complete history of the outcomes of t trials is considered, and the

generator process has a memory and is non-Markovian. The probability of no success (t successive

fails) in t trials writes

P(N(t) = 0) = S(α1, . . . , αt) =
∏t
j=1(1 − αt), t ∈ N

P(N(t) = 0)
∣
∣
t=0

= 1,

(22)

i.e. the survival probability which we have previously introduced. We have the initial condition P(N(t) =

n)|t=0 = δn,0 and we point out a further feature of discrete-time counting processes, namely P(N(t) = n)

is non-null only for n ∈ [0, t], reflecting that 0 ≤ N(t) ≤ t. One further observes the normalization

condition

P(N(t) ≤ t) =
t∑

n=0

P(N(t) = n) = 1, (23)

of the state distribution (21). In other words Eq. (23) covers all 2t possible paths in the branching tree

of the t trials. In order to connect the trial process with the above biased random walk (see Eq. (2)) we

define the transition matrix for the jump taking place at instant t ∈ N as

Wt(Zt) = ZtW
+ + (1 − Zt)W

−, Zt ∈ {0, 1}, t ∈ N. (24)
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For Zt = 1 (‘success’) the walker makes a positive jump following W+ and a negative jump following

W− otherwise. Then we have that

P(t) = E

t∏

j=1

[ZjW
+ + (1 − Zj)W

−]

= E

[

(W+)N(t)(W−)t−N(t)
]

=
t∑

n=0

P(N(t) = n)(W+)n(W−)t−n

(25)

which is the initially claimed ADTRW transition matrix (2).

For our convenience we make extensively use of generating functions. Let ψ(t) be a discrete-time

density of Eq. (20). Then we introduce its generating function by2

ψ̄(u) =
∞∑

t=1

ψ(t)ut, |u| ≤ 1 (26)

with ψ(t) = 1
t!
dt

dut
ψ̄(u)|u=0 and where ψ̄(u)|u=1 = 1 reflects the normalization of density (20). Further,

we impose in generating function (26) the initial condition ψ(t)|t=0 = 0 ensuring that the minimum

waiting-time between two successes is ∆t = 1. Then we introduce the convolution of two discrete

distributions g(t), h(t) supported on N0 by

[g ⋆ h](t) =:
t∑

n=0

g(n)h(t − n) (27)

with generating function
∑∞
t=0 u

t[g ⋆ h](t) = ḡ(u)h̄(u). We denote convolution powers as

[g ⋆ . . . ⋆ g
︸ ︷︷ ︸

n times

](t) = [g⋆]n(t),

with generating functions (ḡ(u))n (where especially [g⋆]1(t) = g(t) and [g⋆]0(t) = δt,0). For an outline of

the connections between generating functions, discrete-time convolutions and related shift-operators

we refer to our recent article [41]. By simple conditioning arguments one obtains for the state proba-

bilities (21)

P(N(t) = n) = Φ(n)(t) = Φ(0)(t) ⋆ [ψ(t)⋆]n = [S(α1, . . . , αt) ⋆ [ψ(α1, . . . , αt)⋆]
n] (t), n, t ∈ N0. (28)

The state probabilities (28) are non-zero for 0 ≤ n ≤ t simply telling us that the number of successes in

t trials is within 0 ≤ N(t) ≤ t. Especially convenient is to employ the generating function of the state

probabilities (see [40, 41] for detailed derivations)

Φ̄(n)(u) =
∞∑

t=0

P(N(t) = n)ut =
∞∑

t=n

Φn(t)ut =
1 − ψ̄(u)

1 − u
(ψ̄(u))n, n ∈ N0 (29)

with P(N(t) = n) = 1
t!
dt

dut
Φ̄(n)(u)|u=0 where ψ̄(u) = α1u + o(u) = u

∑∞
t=1 ψ(t)ut−1 having lowest order u

reflecting ψ̄(u)|u=0 = ψ(t)|t=0 = 0. Hence Φ̄(n)(u) = αn1u
n + o(un) thus confirms P(N(t) = n) = 0 for

t < n. We further observe that P(N(t) = n)|t=n = αn1 which is the situation when in t trials all outcomes

2We indicate generating functions of densities f(t) by f̄(u).
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are successes with N(t) = t. It is convenient to introduce the polynomial of degree t (generating

function of the state probabilities)

P(v, t) = EvN(t) =
∞∑

n=0

vnP(N(t) = n) =
t∑

n=0

vnP(N(t) = n), t ∈ N0 (30)

where the series stops at n = t as P(N(t) = n) = 0 for n > t. Thus this generating function is a

polynomial of order t. We call P(v, t) the ‘state polynomial’ of the generator process. Useful is also a

rescaled version (see Eq. (25))

Λ(a, b, t) =: E [aN(t)bt−N(t)] =
t∑

n=0

anbt−nP(N(t) = n) = bt P
(
a

b
, t

)

. (31)

We observe that P(v, t)
∣
∣
v=1

= Λ(1, 1, t) = 1 as a consequence of the normalization (23) and we have

Λ(v, 1, t) = P(v, t) with the scaling property Λ(λa, λb, t) = λtΛ(a, b, t). The state polynomials (30) and

(31) in the ADTRW model come along as matrix functions defining the transition matrix (25): P(t) =

Λ(W+,W−, t). The state polynomial contains the complete stochastic information of the simple ADTRW.

So for instance the expected position of the walker in a simple ADTRW at time t is obtained as

E[Yt]simple = E[N(t) − (t−N(t))] =

(
∂

∂a
− ∂

∂b

)

Λ(a, b, t)
∣
∣
∣
a=b=1

= 2
∂

∂v
P(v, t)

∣
∣
∣
v=1

− t,

(32)

containing the drift term −t which is removed from the coordinate system of the moving particle:

E[q(t)] = 2 ∂
∂v

P(v, t)
∣
∣
v=1

= 2E[N(t)]. This corresponds to a strictly increasing walk with jumps of size

2, see Eq. (11). Clearly, the expected position of the walker in a simple ADTRW is bounded −t ≤
E[Yt]simple ≤ t. We point out that we employ the synonymous notation E[A] = EA for expectation values

of random variables A where we sometimes omit the braces [..]. Then, it is convenient to introduce the

generating function of the state polynomial

P̄(v, u) =:
∞∑

t=0

utP(v, t) =
∞∑

t=0

ut
∞∑

n=0

vnP(N(t) = n), |u| < 1, |v| ≤ 1

=
∞∑

n=0

vnΦ̄(n)(u) =
1

(1 − u)

1 − ψ̄(u)

1 − vψ̄(u)
=

Φ̄(0)(u)

1 − vψ̄(u)

(33)

which is related to the generating function of expression (31), yielding

Λ̄(a, b, u) = P̄
(
a

b
, ub

)

=
∞∑

t=0

ut
t∑

n=0

P(N(t) = n)anbt−n =
1 − ψ̄(bu)

1 − bu

∞∑

n=0

an

bn
(ψ̄(bu))n

=
b[1 − ψ̄(bu)]

(1 − bu)[b− aψ̄(ub)]
, |u| < 1, |a|, |b| ≤ 1, (b 6= 0)

(34)

converging at least for |u| < 1. See also Appendix A.1 for some pertinent limiting cases. We have

Λ̄(1, 1, u) = P̄(1, u) = 1
1−u reflecting the normalization (23) and the initial condition

Λ̄(a, b, u)|u=0 = Λ(a, b, t)|t=0 = P̄(v, u)|u=0 = P(v, t)|t=0 = 1, (35)
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as P(N(t) = n)
∣
∣
t=0

= δn0. The ADTRW transition matrix (2) is then given by the matrix function

P(t) = Λ(W+,W−, t) =
1

t!

dt

dut

(

W−[1 − ψ̄(W−u)]

(1 − W−u)[W− − W+ψ̄(W−u)]

) ∣
∣
∣
∣
u=0

(36)

and fulfills the initial condition P(t)
∣
∣
t=0

= 1 as a consequence of Eq. (35). The convergence of the

matrix generating function Λ̄(W+,W−, u) is ensured by the fact that the eigenvalues W±(ϕ) of the

transition matrices W± fulfill |W±(ϕ)| ≤ 1 [42, 43]. In general we have that Λ̄(a, b, u) 6= Λ̄(b, a, u) where

the absence of the exchange symmetry is telling us that the ADTRW is in general biased even ifW+
0,p−q =

W−
0,−(p−q) have mirror symmetry. As a consequence of the asymmetry of the walk the eigenvalues of the

transition matrix Λ(e−iϕ, eiϕ, t) are complex and the transition matrix (36) is generally not symmetric.

This holds true with the exception of the class of ‘strictly unbiased walks’ where the transition matrices

are self-adjoint (symmetric) with real eigenvalues being even functions of ϕ. We will prove in Section

5 that a simple ADTRW is strictly unbiased only if its generator process is the symmetric Bernoulli

process.

We observe that the state polynomial Λ(a, b, t) fulfills the following renewal equation (see Appendix A.2)

Λ(a, b, t) = btΦ(0)(t) +
t∑

r=1

abr−1ψ(r)Λ(a, b, t − r), t ∈ N,

Λ(a, b, t)
∣
∣
t=0

= 1

(37)

containing the survival probability P(N(t) = 0) = Φ(0)(t) = S(α1, . . . , αt) =
∏t
ℓ=1(1 −αℓ) and the waiting

time density ψ(t) = αtS(α1, . . . , αt−1) (see Eqs. (20), (22)). The right-hand side of the renewal equation

contains the history of the process {Λ(a, b, r)} (0 ≤ r ≤ t − 1) reflecting the memory and the non-

markovian nature of the ADTRW. The renewal equation is especially useful for numerical evaluations

to successively compute Λ(a, b, t) from all its previous values and the waiting time density ψ(r) (r ∈
{1, . . . , t}) of the generator process. For instance, for t = 1 we have Λ(a, b, 1) = b(1 − α1) + aα1, and

so forth. The renewal equation for the state polynomial is contained in Eq. (37) by accounting for

P(v, t) = Λ(v, 1, t). By simply replacing a → W+, b → W− in Eq. (37) gives the time-evolution equation

with memory which governs the transition matrix (36). For the simple walk (i.e. Ŵ+ = T̂−1, Ŵ
− = T̂+1)

we get

Pi,j(t) = Φ(0)(t) δi,j+t +
t∑

r=1

ψ(r)Pi,j+r−2(t− r), t ∈ N

Pi,j(t)
∣
∣
t=0

= δij

(38)

being solved by the transition matrix of the simple ADTRW (see Eq. (13)). Then we can rewrite the

renewal equation as a master equation with memory as

Pij(t) − Pij(t− 1) = Φ(0)(t) δi,j+t +
∞∑

r=1

ψ(r)[Pi,j+r−2(t− r) − Pij(t− 1)], t ∈ N (39)

with initial condition Pij(t)
∣
∣
t=0

= δij and recall causality, i.e. Pij(t) = 0 for t < 0. Consult also Appendix

A.2 for some operator representations. It appears instructive to consider the following two limiting

cases which correspond to strictly increasing and decreasing walks, respectively.

(i) Limit of short waiting times: ‘Markovian limit’

A markovian limit is obtained for the ‘trivial case’ when each trial almost surely is a success with
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ψ(t) = δt,1 (α1 = 1), i.e. the waiting time density has the shortest possible tail of one time unit. The

survival probability then is Φ(0)(t) = δt,0. Then renewal equation (37) boils down to the memoryless

recursion

Λα1=1(a, b, t) = δt,0 + aΛ(a, b, t− 1) (40)

which has, with initial condition Λ(a, b, t)
∣
∣
t=0

= 1, the simple solution Λα1=1(a, b, t) = at independent of

b and therefore coincides with the limiting case Λ̄(a, 0, u) = 1
1−au for α1 = 1 and ψ̄(u) = u (see Eq. (134),

Appendix A.1). In this limit the evolution equation takes the form

Pij(t) = δijδt,0 + Pi,j−1(t− 1)

P(t) = 1δt,0 + W+P(t − 1), W+
ij = T̂−1δij = δi,j−1

(41)

being solved by P(t) = [W+]t = T̂−t1 with entries

Pij(t) = T̂−tδi,j = δi,j−t (42)

corresponding to a strictly increasing walk with unit jumps +1 (almost surely).

(ii) Limit of long waiting times: ‘Frozen limit’

Another limiting case of interest is when the waiting time density is concentrated at infinity, i.e. the

probability for a success in the generator process becomes smaller and smaller (though not zero) and

the waiting time density then has an extremely long tail. We then have that αt ≤ ǫ → 0 for each finite

t. Examples for this limit include the geometric waiting-time density ψB(t) = pqt−1 for p = ǫ → 0, or in

the Sibuya density (17) this limit is obtained for β → 0 (considered subsequently). In the Bernoulli case

the survival probability Φ(0)(t) = (1 − p)t remains close to one during a ‘very long’ time interval, i.e. at

time scales 0 ≤ t < 1/pδ with 1/pδ → ∞ for any δ ∈ (0, 1) and 1 ≪ 1/pδ ≪ 1/p. Indeed, for the Bernoulli

ADTRW we have for p → 0 the state polynomial (148) limp→0+ ΛB(a, b, t) = limp→0+(ap + qb)t = bt. This

limit is therefore connected with the limit Λ(a, b, t) when a → 0 having generating function (136), see

Appendix A.1. The effect is that the survival probability Φ0(t) = (1 − α1) . . . (1 − αt) → 1− (for t finite)

remains for a very long time close to its initial value one thus the walker remains a long time ‘frozen’

in its ‘ground state’ N(t) = 0 (though not ‘forever’ as eventually Φ0(t) → 0 for t ≫ 1/ǫ). The renewal

equation for the frozen limit becomes

Λ(a, b, t) = btΦ(0)(t) ∼ bt, 0 ≤ t <
1

ǫδ
≪ 1

ǫ
, δ ∈ (0, 1) (43)

and it is independent of a, so that in such a walk negative jumps strongly dominate. The renewal

equation (38) then writes

Pij(t) = T̄tδi,jΦ
(0)(t) = δi,j+t, Φ(0)(t) = 1−, 0 ≤ t <

1

ǫδ
≪ 1

ǫ
, δ ∈ (0, 1). (44)

In the coordinate system of the moving particle the walker hence does not move for a long time which

is reflected by Qi,j(t) = T̂−tPi,j(t) = δi,j.
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4 Connections with Bell polynomials

Here we point out an interesting connection with a certain class of Bell polynomials [49, 50]. Consider

first the generating function representation of convolution powers of the waiting-time density:

[ψ∗]n(r) =
1

r!

dr

dur
(ψ̄(u))n

∣
∣
u=0

=
1

r!

dr

dur

(

ψ1u+ . . .+ ψr−n+1u
r−n+1

)n ∣
∣
u=0

=
1

r!

∑

n1+n2+...nr−n+1=n

n!

n1! . . . nr−n+1!
ψn1

1 ψn2
2 . . . ψ

nr−n+1

r−n+1

dr

dur
un1+2n2+...(r−n+1)nr−n+1

∣
∣
u=0

=
∑

n1+n2+...nr−n+1=n

n!

n1! . . . nr−n+1!
ψn1

1 ψn2
2 . . . ψ

nr−n+1

r−n+1 δr,n1+2n2+...(r−n+1)nr−n+1

= Br,n(ψ1, ψ2, . . . , ψr−n+1), 1 ≤ n ≤ r ∈ N.
(45)

We have [ψ∗]n(r) = 0 for n > r and therefore

Br,n = 0, n > r. (46)

In Eq. (45), for the expression of ψ̄(u) we omit the terms with orders t > r − n + 1 as they give zero

contribution. We further have Br,1 = ψr. The trivial cases n = 0 and r = 0 (considering [ψ∗]0(r) = δr,0,

r ∈ N0), yield
Br,0 = δr,0, r ∈ N0

B0,n = (ψ̄(u))n
∣
∣
∣
∣
u=0

= δ0,n.

(47)

The quantities Br,n(ψ1, ψ2, . . . , ψr−n+1) are referred to as the ‘incomplete ordinary Bell polynomials’

[49, 50]. The Kronecker symbol δr,n1+2n2+...(r−n+1)nr−n+1
indicates that the only terms which contribute

are those for which
∑r−n+1
k=1 knk = r and nk (0 ≤ nk ≤ n) are non-negative integers such that in above

multinomial
∑r−n+1
k=1 nk = n. This summation covers all possible partitions of the integer r into n

members where each member is of integer size k = 1, 2, . . . , r − n + 1 ∈ N. The member k occurs with

multiplicity nk where for n > r no such partition exists thus property (46) holds true. For instance,

when r = n there is only one partition into n members, namely each member of size k = 1 with

multiplicity n1 = r. On the other hand, for n = 1 there is only one partition (i.e. nk = 1) of size k = r. It

follows hence from Eq. (45) that

(ψ̄(u))n =
∞∑

t=n

utBt,n(ψ1, ψ2, . . . , ψt−n+1). (48)

We point out that the incomplete ordinary Bell polynomials Br,n and the ‘incomplete exponential Bell

polynomials’ Bexp
r,n are related by [50]

Bexp
r,n (x1, . . . xr−n+1) =

r!

n!
Br,n

(
x1

1!
,
x2

2!
, . . . ,

xr−n+1

(r − n+ 1)!

)

. (49)

Indeed the exponential Bell polynomials come into play in the remarkable Faà di Bruno’s formula [51]

emerging in a composition of functions from the chain rule dt

dxt
f(τg(x))

∣
∣
x=0

. For an outline of this
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beautiful theory and its interpretations in combinatorics we refer the interested reader to [52, 53] and

the references therein.

For a fixed t ∈ N, by means of the set of ordinary incomplete Bell polynomials {Bt,n} (1 ≤ n ≤ t) we

can generate the complete ordinary Bell polynomial as

Bt(ψ1, ψ2, . . . , ψt; v)

=
t∑

n=1

vnBt,n(ψ1, ψ2, . . . , ψt−n+1) =
1

t!

dt

dut

(

vψ̄(u)

1 − vψ̄(u)

) ∣
∣
∣
∣
u=0

, t ∈ {1, 2, . . .}
(50)

and with B0,0 = 1 we have B0 = 1. Then, by accounting for Eq. (29) the state polynomial writes

P(v, t) =
t∑

r=0

Φ(0)(t − r)Br(ψ1, ψ2, . . . , ψr; v), (51)

where in this convolution B0 = 1. Using the representation (50) we can write for the expected number

of arrivals within [0, t]

E[N(t)] =
∂

∂v
P(v, t)

∣
∣
∣
v=1

=







t∑

r=1

Br(ψ1, . . . , ψr; 1), t = 1, 2, . . .

0, t = 0.

(52)

5 Expected sojourn times on sites

An important issue in random walk theory are recurrence/transience features. If the walker in an

infinitely long walk returns to the departure site with probability one, the walk is said ‘recurrent’

and ’transient’ if this probability is smaller than one. A vast literature on this topic exists [2, 4, 46].

For the simple symmetric walk on Z
d the celebrated recurrence theorem was established by Pólya [44].

Recurrence and transience for symmetric Lévy flights in multi-dimensional lattices and fractal features

in distributions were analyzed in [47] and a recurrence theorem for these motions was established

[54, 55]. Further models considering recurrence and transience for modified Lévy motions emerged

only recently [56].

Recurrence/transience of a walk is an intrinsic property linked to the expected sojourn time (EST)

of an infinitely long walk. The EST on site n (departure sitem) in an infinitely long ADTRW (i.e. t → ∞)

can be extracted from the generating function of the transition matrix (36):

E[τm,n] = E[τ0,n−m] =
∞∑

t=0

[P(t)]m,n = [Λ̄(W+,W−, u)]m,n
∣
∣
u=1

=
1

π
ℜ
∫ π

0

W−(ϕ)[1 − ψ̄(W−(ϕ))]

(1 −W−(ϕ)){W−(ϕ) −W+(ϕ)ψ̄[W−(ϕ)]}
eiϕ(n−m)dϕ.

(53)

Here ℜ extracts the real part of the following complex quantity.

The ADTRW is transient if E[τ0,0] < ∞ and recurrent if this quantity diverges. It is sufficient to

consider the EST on the departure site in order to verify recurrence/transience and we have that

E[τm,n]/E[τ0,0] ≤ 1. In a transient walk a site is visited only a finite number of times as t → ∞ whereas

in a recurrent walk (E[τ0,0] = ∞) infinitely often by recurrent visits.
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5.1 Recurrence/Transience features of the simple ADTRW

The goal of the present part is to explore recurrence/transience features of simple ADTRWs by means

of analyzing their EST. The EST on site n (departure site 0) of Eq. (53) has the canonical form

E[τ0,n]simple =
1

π
ℜ
∫ π

0
einϕΛ̄(e−iϕ, eiϕ, u)

∣
∣
∣
∣
u=1

dϕ, Λ̄(e−iϕ, eiϕ, u) = P̄(e−2iϕ, ueiϕ), n ∈ Z. (54)

with transition matrices W+
1 = T̂−11, W−

1 = T̂11 having eigenvalues W+
1 (ϕ) = e−iϕ and W−

1 (ϕ) = eiϕ

(ϕ ∈ (−π, π]) due to the occurrence of (positive and negative) unit jumps. For what follows it is impor-

tant to keep in mind that the transition matrices all have the same set of eigenvectors: The left eigen-

vectors are row-vectors with components eiϕn/
√

2π (to fulfill T̂−1e
iϕn/

√
2π =

∑∞
s=−∞ δs,n−1e

iϕs/
√

2π =

e−iϕeiϕn/
√

2π), and the right eigenvectors are column-vectors with components e−iϕm/
√

2π, see Eq. (8).

Note that Λ̄(1, 1, u) = 1/(1 − u) (see Eq. (34)) is diverging for u → 1. Correspondingly the generating

function Λ̄(e−iϕ, eiϕ, 1) becomes singular for ϕ → 0 which is the only singularity in the integration in-

terval. The type of this singularity is crucial for the integrability of Eq. (54) at ϕ = 0 and hence to

understand whether the walk is recurrent or transient. In order to explore this singular behavior we

expand

ℜ
{

P̄(e−2iϕ, eiϕ)
}

= ℜ
{

[1 − ψ̄(eiϕ)]

(1 − eiϕ)

1

[1 − e−2iϕψ̄(eiϕ)]

}

(55)

for small ϕ. To this end we need to account for the following possible cases: the interarrival time

density ψ(t) is either (a) ‘fat-tailed’ (FT) or (b) ‘light-tailed’ (LT). To capture this feature we expand the

generating function ψ̄(u) = ψ̄µ(u) around the critical value u = 1 which gives

ψ̄µ(u) = 1 −Aµ(1 − u)µ + o((1 − u)µ), µ ∈ (0, 1] |1 − u| → 0. (56)

containing the positive constant Aµ > 0 (independent of u) and µ indicates the lowest order occurring

in this expansion. Let us now analyze the FT and LT cases separately.

(a) µ ∈ (0, 1): ψ̄µ(t) fat-tailed (FT):

We call a waiting-time density ‘fat-tailed’ (FT) if expression (56) is weakly singular at u = 1 leading

to an asymptotic power-law decay ψµ(t) ∼ Aµ(−1)t−1
(µ
t

)

∼ Aµµ

Γ(1−µ) t
−µ−1 (t → ∞) which is of the same

type as in the Sibuya distribution. Therefore, the Sibuya distribution is a prototypical example for a FT

distribution and of utmost importance. We will consider it closely in Section 6. Eq. (55) then takes for

ϕ small

P̄µ ∼ Aµ(1 − eiϕ)µ−1

1 − e−2iϕ[1 −Aµ(1 − eiϕ)µ]
∼ i

ϕ

1

(1 + 2
Aµ
iµ+1ϕ1−µ)

, (ϕ → 0)

∼ i

ϕ
+

2ϕ−µ

Aµ
iµ.

(57)

Taking the real part shows the weakly singular behavior

ℜ{P̄µ} ∼ 2ϕ−µ

Aµ
cos

(
µπ

2

)

> 0, µ ∈ (0, 1), (ϕ → 0+) (58)

and hence it is integrable at ϕ = 0. We conclude that in the fat-tailed range µ ∈ (0, 1) the integral

(54) exists, i.e. the EST on the sites is finite. Therefore, simple ADTRWs with generator processes of

fat-tailed interarrival time densities always are transient. A sufficient criteria is the weakly singular

behavior of the state probability generating functions

∞∑

t=0

P(N(t) = n) = lim
u→1

1 − ψ̄(u)

1 − u
ψ̄(u)n = lim

u→1
Φ̄(0)
µ (u) ∼ Aµ(1 − u)µ−1 → ∞, µ ∈ (0, 1) (59)
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independent of state n reflecting the universal asymptotic power-law behavior

Φ
(n)
µ (t) ∼ Aµ(−1)t

(µ−1
t

)

∼ Aµ
t−µ

Γ(1−µ) (t → ∞), see e.g. [41].

(b) µ = 1: ψ̄1(t) light-tailed (LT):

We call an interarrival time density ‘light-tailed’ (LT) if its decay for large t is at least geometrical or

faster, i.e. there are constants C, ξ > 0 such that |ψ̄(t)| ≤ Ce−tξ for t → ∞. As a consequence LT

densities have finite moments (see also Appendix A.4). For our convenience we introduce the complex

variable z = eiϕ to rewrite the EST on the sites n ∈ Z in expression (54) for an infinitely long walk as a

closed complex contour integral over the unit circle |z| = 1, namely

Esimple[τ0,n] = lim
ǫ→0+

Λ̄(T̂−1, T̂1, e
−ǫ)δ0,n = lim

ǫ→0+

∞∑

t=0

e−tǫ[P0,n(t)]simple, (ǫ > 0)

= lim
ǫ→0+

1

2π

∫ π

−π
einϕ P̄(e−2iϕ, ei(ϕ+iǫ)) dϕ

= lim
ǫ→0+

1

2πi

∮

|z|=1

[1 − ψ̄(ze−ǫ)]

(1 − ze−ǫ)

zn+1

[z2 − ψ̄(ze−ǫ)]
dz

=: P.V.
1

2πi

∮

|z|=1

zn+1 Φ̄(0)(z)

(z − 1)[z + 1 − Φ̄0(z)]
dz

= P.V.
1

2πi

∮

|z|=1

zn Φ̄(0)(z)

z − ḡ(z)
dz.

(60)

In the last line we introduced ψ̄(z) = zḡ(z) with the auxiliary generating function ḡ(z) (see Appendix

A.4 for essential features). The integrand of Eq. (60) is singular at z1 = 1 and corresponds to the

singularity of the quantity (55) at ϕ = 0. In order to achieve a regularization we consider instead of

u = 1 the limit u = e−ǫ for infinitesimally positive ǫ with Λ̄(e−iϕ, eiϕ, u)
∣
∣
u=e−ǫ = P̄(e−2iϕ, ei(ϕ+iǫ)). In this

way we shift the singularity at z1 = 1 infinitesimally away from the unit circle and obtain a well defined

integral.

Let us explore in which direction this regularization procedure shifts the singularity z1 = 1. First, we

observe as a consequence of the LT feature that the generating function of the survival probability

Φ̄(0)(z) is analytical and finite at z = 1 (see Eqs. (64), (65)) thus the singularity at z1 = 1 is due to the

zero z2 − ψ̄(z) = 0. To this end we put the shifted zero to z1(ǫ) = eaǫ which is infinitesimally close to

one, where the constant a is independent of ǫ and has to be determined from z2 − ψ̄(ze−ǫ) = 0, leading

to

e2aǫ − ψ̄(e(a−1)ǫ) = 0. (61)

The first order in ǫ must identically vanish, which yields

a =
A1

A1 − 2
= −1 + g1

1 − g1
, g1 =

d

dz
ḡ(z)|z=1 = A1 − 1 (62)

where the constant A1 = d
dz
ψ̄(z)|z=1 =

∑∞
t=1 tψ(t) (with A1 ≥ 1) indicates the expected waiting time

between successes (positive unit jumps). The sign of the parameter a is crucial in order to see whether

z1 = eaǫ is within or outside the unit disc. It follows that (i) a > 0 for A1 > 2 and (ii) a < 0 for A1 < 2,

and therefore

z1 ∼ e
ǫA1
A1−2 ∼ 1+, for A1 > 2,

z1 ∼ e
ǫA1
A1−2 ∼ 1−, for 1 ≤ A1 < 2.

(63)

16



Hence the residue at z1 = 1 contributes to contour integral (60) for 1 ≤ A1 < 2 but does not contribute

in the range A1 > 2. Interestingly, the sign of the infinitesimal shift is solely determined by the sign

of B = 2 − A1. Later on we will see more closely that B is a measure for ‘bias’ in an asymptotic sense

which emerges in a simple ADTRW for large t.

Crucial for the further analysis is the expansion of the generating function of the survival probability

Φ̄(0)(z) =
1

z − 1

(

−1 + ψ̄(1) +
∞∑

ℓ=1

(z − 1)ℓ

ℓ!

dℓ

dzℓ
ψ̄(z)

∣
∣
z=1

)

= A1 +
∞∑

ℓ=2

Aℓ(z − 1)ℓ−1, Aℓ =
1

ℓ!

dℓ

dzℓ
ψ̄(z)

∣
∣
z=1

≥ 0

(64)

which is analytic on the unit disc |z| ≤ 1 where all Aℓ are finite as a consequence of the LT feature of

ψ(t). The lower bound of the expected waiting time is A1 = 1 and occurs only in the trivial case when

each trial almost surely is a success, corresponding to the interarrival time density ψtrivial(t) = δ1,t

with ψ̄trivial(z) = z. Further, we observe that Φ̄(0)(z)
∣
∣
z=0

= A1 − ∑∞
l=2(−1)ℓAℓ = 1 recovering the

initial condition of the survival probability. On the other hand d
dz
ḡ(z)

∣
∣
z=1

= g1 = A1 − 1 ≥ 0 thus

g1 =
∑∞
l=2(−1)ℓAℓ. In particular, we have that

Φ̄(0)(z)
∣
∣
z=1

= Φ̄(n)(z)
∣
∣
z=1

= lim
z→1

1 − ψ̄(z)

1 − z
=

d

dz
ψ̄(z)

∣
∣
z=1

=
∞∑

t=1

tψ(t) = A1 ≥ 1 (65)

yielding the expected interarrival time between successive successes. We hence observe the inequality

1 ≤ Φ̄(0)(z) ≤ A1 for z ∈ [0, 1] where we also use that Φ̄(0)(z) is absolutely monotonic (AM) in that

interval (see Appendix A.4). Clearly by using the LT feature (65) it follows for the state probabilities

∞∑

t=0

P(N(t) = n) =
(

Φ̄(0)(z)(ψ̄(z))n
) ∣
∣
z=1

= A1, ∀n ∈ N0. (66)

Hence, recurrence/transience solely depends on the singularities of the part z
(z2−ψ̄(e−ǫz))

(ǫ → 0+) within

the unit disc where

D(z) = z2 − ψ̄(z) = −z (ḡ(z) − z) , ψ̄(z) = zḡ(z). (67)

We prove in Appendix A.4 that the complex function ḡ(z)− z has a canonical representation of the form

ḡ(z) − z = (z − 1)(z − r)eh(z), r ∈ R
+, |z| ≤ 1, (68)

which exists at least on the unit disc |z| ≤ 1. The zero r is real with the properties r = r(A1) > 1 for

A1 < 2 and r(A1) < 1 for A1 > 2. Further, r = 1 for A1 = 2 which is the recurrent limit where the

multiplicity of the zero z = 1 then is two. The contribution eh(z) has no zeros and h(z) is analytic at least

on the unit disc |z| ≤ 1. Consult Appendix A.4 for a detailed discussion with proofs and the example

of Poisson distributed waiting times where a canonical form (68) for all z ∈ C exists (see Eq. (168)).

Due to the structure of the zeros of Eq. (68) in the evaluation of the contour integral (60) by residue

theorem we have to distinguish the two cases 1 ≤ A1 < 2 and A1 > 2.

For 1 ≤ A1 = g1 + 1 < 2 (g1 = d
dz
ḡ(z)|z=1 ∈ (0, 1)) we get

E[τ0,n]simple =







Φ̄0(z)

1 − d
dz
ḡ(z)

∣
∣
z=1−

=
1 + g1

1 − g1
=

A1

2 −A1
, n ∈ N0

A1

2 −A1
+

1

(|n| − 1)!

d|n|−1

dz|n|−1

(

Φ̄(0)(z)

z − ḡ(z)

)

∣
∣
z=0

, −n ∈ N

(69)
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where we accounted for the properties (63), i.e. the fact that singularity at z = 1 → 1− is for A1 < 2

infinitesimally shifted inside the unit disc and therefore contributes whereas the second zero r(A1) > 1

does not contribute. The second line in Eq. (69) refers to the sites n < 0 where due to z−|n| an additional

singularity at z = 0 occurs. Remarkably, all sites n ≥ 0 are equally long visited in an infinitely long

walk, namely E[τ0,n]simple = E[τ0,0]simple = 1+g1

1−g1
≥ 1 with 0 ≤ g1 < 1 in the range 1 ≤ A1 < 2. Moreover,

in the trivial strictly increasing walk where each jump almost surely is of size +1 with A1 = 1 we have

the minimum value τ0,n = 1 ∀n > 0 where the EST on all these sites is one.

We observe that E[τ0,n] → ∞ for A1 → 2 which is hence the recurrent limit. In the recurrent limit

the expected waiting time between jumps of the same direction is A1 = 2 which physically means that

for t → ∞ an equal expected numbers of jumps +1 and −1 occur. We expect therefore that a recurrent

simple ADTRW is unbiased at least in an asymptotic sense, i.e. for an infinitely long observation time.

We prove this assertion subsequently in this section (see asymptotic relation (80)) and explore the in-

terplay of bias and recurrence/transience features. To this end we consider the quantity B = 2 − A1

which will turn out to contain crucial information on the bias.

We call a simple ADTRW strictly unbiased if the following conditions (i) and (ii) are fulfilled.

(i) A1 = 2 (B = 0), i.e. the walk is recurrent and the expected position (80) is null in the limit of an

infinitely long observation t → ∞.

(ii) The state polynomial (31) and its generating function fulfill the exchange symmetry property

Λ̄(a, b, u) = Λ̄(b, a, u), and as a consequence the transition matrix then is symmetric (self-adjoint) with

Λ(T̂−1, T̂1, t) = [Λ(T̂−1, T̂1, t)]
† = Λ(T̂1, T̂−1, t)

as the unitary shift operators (T̂−1)† = T̂1 are adjoint to each other. As a consequence of (ii) the

eigenvalues of the transition matrix Λ(e−iϕ, eiϕ, t) = Λ(eiϕ, e−iϕ, t) (and of its generating function matrix

Λ̄(e−iϕ, eiϕ, u)) are real and even functions of ϕ. We also see that in this case the expected position of

the walker (32)

E[Yt]simple =

(
∂

∂a
− ∂

∂b

)

Λ(a, b, t)
∣
∣
∣
a=b=1

= 0, ∀t ∈ N0 (70)

is null for all times as a consequence of the exchange symmetry Λ(a, b, t) = Λ(b, a, t) (where 0 is the

departure site). The occurrence of a symmetry in Λ(a, b, t) such as the exchange symmetry a ↔ b re-

flects a conserved quantity, namely E[Yt]simple = 0. We point out that this observation has a remarkable

analogy with Noether’s theorem which roughly tells us that each symmetry corresponds to a conserved

quantity [57]. If (ii) is fulfilled (i) is fulfilled, conversely if (i) is fulfilled (ii) does not necessarily hold

true. To see this, consider the generating function (see Eq. (78) below) of the expected position of the

walker. For a strictly unbiased simple ADTRW this quantity must vanish which yields a condition for

the generating function ψ̄unbiased(u) of the generator process for which the walk is strictly unbiased,

namely3

2ψ̄unbiased(u)

(1 − u)(1 − ψ̄unbiased(u))
− u

(1 − u)2
= 0. (71)

This yields

ψ̄unbiased(u) =
u

2(1 − u
2 )

(72)

that is the generating function ψ̄B(u) = pu
1−qu with geometrically distributed waiting times ψB(t) = pqt−1

of the Bernoulli generator process for the symmetric case p = q = 1/2. In particular, we have the state

polynomial ΛB(a, b, t) = (a+ b)t/2t (see Eq. (148)) which indeed fulfills the claimed exchange symmetry

3u/(1 − u)2 being the generating function of t and ∂
∂v
P̄ (v, u)

∣
∣
v=1

= ψ̄(u)

(1−u)(1−ψ̄(u))
.
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ΛB(a, b, t) = ΛB(b, a, t), i.e. condition (ii). We have for this recurrent walk indeed A1 = 1/p = 2, i.e.

condition (i) also holds true. Since the result (72) is unique for simple walks, it follows that the simple

ADTRW with symmetric Bernoulli generator process with p = q = 1/2 indeed is the only one which is

strictly unbiased, i.e. fulfills conditions (i) and (ii) with Eq. (70) for all times t ∈ N0. Further, note that

this is consistent with the fact that the interarrival times between two consecutive successes and those

between to consecutive fails are equally distributed. We consider briefly the Bernoulli ADTRW at the

end of this section and consult Appendix A.3 as well as the references [2, 4, 44, 45, 46]. The class of

simple walks with A1 = 2 which do not have Bernoulli generator process are recurrent fulfilling (i) but

they are not strictly unbiased since they do not fulfill (ii). The class of these simple walks is unbiased

in an asymptotic sense, i.e. limt→∞ E[Yt]simple = 0 (see (80) for A1 = 2).

We devote the subsection 5.2 to consider the class of admissible prescribed functions for the expected

position E[Yt]simple = f(t) in an ADTRW.

The class of simple ADTRWs with A1 6= 2 are both biased and transient (with finite EST E[τ0,n]simple ≤
E[τ0,0]simple < ∞). The walk is ‘right-biased’ for A1 < 2 (B > 0) where the expected number of positive

jumps dominates, and ‘left-biased’ for A1 > 2 (B < 0) with domination of the expected number of

negative jumps in infinitely long walks. In the picture of Gambler’s Ruin Problem the simple ADTRW

defines in the range B = 2 − A1 > 0 (B ∈ (0, 1]) a long-time ‘winning strategy’. We will come back to

the asymptotic behavior subsequently.

For A1 > 2 (g1 = d
dz
ḡ(z)|z=1 ∈ (1,∞)) the EST integral (60) yields

E[τ0,n]simple =







rn Φ̄(0)(r)

1 − d
dz
ḡ(z)

∣
∣
z=r

n ∈ N0

rn Φ̄(0)(r)

1 − d
dz
ḡ(z)

∣
∣
z=r

+
1

(|n| − 1)!

d|n|−1

dz|n|−1

(

Φ̄(0)(z)

z − ḡ(z)

)

∣
∣
z=0

, −n ∈ N.

(73)

where the zero of (68) r = r(A1) ∈ (0, 1) and the singularity at z = 1 → 1+ is here infinitesimally shifted

outside the unit disc and therefore does not contribute (see Eq. (63)). By using the convex feature

of ḡ(z) we show in Appendix A.4 that d
dz
ḡ(z)

∣
∣
z=r

∈ (0, 1) (see Eq. (163)) ensuring that the quantity

(73) is strictly non-negative. The EST on the sites n ≥ 0 on the right of the departure node decays

geometrically as rn which is consistent with the picture that this walk with B = 2 − A1 < 0 is left-

biased for t → ∞. Therefore the geometric decrease of the EST for positive sites physically makes

sense.

Indeed, expressions (69) and (73) are both positively singular for the recurrent limit A1 = 2 (B = 0),

thus integrability of the contour integral (60) breaks down as the multiplicity of zero z = r = 1 in

(68) is two. The divergence in formula (73) for A1 = 1 + g1 → 2+ can be seen by r(A1) → 1− and

accounting for d
dz
ḡ(z)

∣
∣
r(A1)

→ 1− in this limiting case (see Appendix A.4 for a detailed outline of related

properties).

Consider again the EST (69) in the range A1 < 2 for the left neighbor site n = −1 from the departure

site. We have

E[τ0,−1]simple =
A1

2 −A1
− Φ̄0(z)

ḡ(z)

∣
∣
z=0

=
A1

2 −A1
− 1

α1
, 1 ≤ A1 < 2 (74)

where we used ḡ(0) = ψ(1) = α1 together with the initial condition of the survival probability Φ̄(0)(z)
∣
∣
z=0

=

Φ(0)(t)
∣
∣
t=0

= 1. We see that E[τ0,−1]simple < E[τ0,0]simple which clearly reflects the fact that the walk with

B = 2 − A1 > 0 is right-biased as t → ∞ where the jumps in positive direction dominate. For a proof

of non-negativeness of E[τ0,−1]simple consult Appendix A.4. For the trivial walk with A1 = 1, α1 = 1 we
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have E[τ0,0] = 1, i.e. the walker is present on the departure site almost surely only during one time unit

following its departure at t = 0. On the other hand we then have E[τ0,−1] = 0, i.e. the site −1 is almost

surely not visited in the strictly increasing trivial walk. Consider the trivial walk A1 = 1 for all n < 0

which yields (where in this case Φ̄0(z) = 1 and ḡ(z) = 1)

E[τ0,−n]simple = 1 +
1

(n− 1)!

dn−1

dzn−1

1

(z − 1)

∣
∣
z=0

= 1 +
(−1)n−1

(z − 1)n
∣
∣
z=0

= 0 n ∈ N (75)

i.e. all sites on the negative side of the departure node are almost surely not visited. This is perfectly

consistent with the physical picture of the trivial strictly increasing walk performing unit jumps +1

almost surely in each time increment.

A further interesting quantity also is the probability that a site n in an infinitely long walk is ever visited

(for n = 0 that the walker ever returns to the departure site). This quantity is related with the EST by

[4, 44, 54, 55]

F0,n =
E[τ0,n]simple − δ0,n

E[τ0,0]simple
(76)

and yields for 1 ≤ A1 ≤ 2:

F0,0 =
2(A1 − 1)

A1

F0,n = 1, n = {1, 2, . . .} ∈ N.

(77)

The quantity 1−F0,0 = (E[τ0,0]simple)
−1 can be interpreted as the ‘escape probability’, i.e. the probability

that the walker never returns to the departure site. Further, we have 0 ≤ F0,0 ≤ 1 where in the

recurrent limit F0,0 = 1 and we have F0,0 < 1 in all transient (biased) cases (A1 6= 2). For A1 = 1 have

F0,0 = 0 (almost surely no return to the departure site) and a.s. no visits on negative sites F0,−n = 0

(−n < 0) in the trivial strictly increasing walk. In the recurrent limit A1 = 2 we have for all sites

F0,0 = F0,n = 1 (n ∈ Z), i.e. each site is almost surely ever visited.

It appears instructive to consider here also the connection of bias and expected position of the walker

(32) for large times t → ∞. The generating function Ȳsimple(u) of this quantity is

Ȳsimple(u) = 2
∂P̄
∂v

(v, u)|v=1 − u

(1 − u)2

=
2ψ̄(u)

(1 − u)(1 − ψ̄(u))
− u

(1 − u)2

(78)

where u
(1−u)2 =

∑∞
t=1 tu

t is the generating function of t ∈ N0 and N̄(u) = ∂
∂v

P̄(v, u)
∣
∣
v=1

of the expected

number of arrivals. In order to capture the large time asymptotic behavior we expand (78), u → 1−,

and arrive at

Ȳsimple(u) ∼ (2 −A1)

A1

u

(1 − u)2
, u → 1− (79)

which gives the asymptotics for the expected position of the walker for t large

E[Yt]simple ∼ (2 −A1)

A1
t, t → ∞. (80)

The sign of this quantity defines the bias in an asymptotic sense where this formula holds for all B

and indeed in the recurrent case B = 0 the walk is unbiased in the limit t → ∞. For the Bernoulli

generator process relation (80) recovers the well known classical result (149) (see Appendix A.3). For
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the trivial strictly increasing walk with A1 = 1 we have necessarily E[Yt]simple = t. On the other hand

the asymptotic behavior E[Yt]simple = −t is approached in the fat-tailed limit A1 → ∞ and is indeed

the dominant contribution in the asymptotic formula (108) for the simple Sibuya ADTRW considered in

Section 6.

Simple Bernoulli ADTRW

Let us compare some of these results with the case of the Bernoulli generator process (see also Ap-

pendix A.3). The Bernoulli trial process has geometric light-tailed waiting-time density ψB(t) = pqt−1

(p + q = 1) with generating function ψ̄B(z) = pz
1−qz where A1 = d

dz
pz

1−qz |z=1 = 1/p and we have for the

canonical form (68)

ḡB(z) − z =
p

1 − qz
− z = (z − 1)(z − p

q
)

q

1 − qz
= (z − 1)(z − p

q
)ehB(z) (81)

with the zeros 1, rB = p/q and hB(z) = log(q) − log(1 − qz). For A1 = 1/p < 2, i.e. p > q the second

zero rB > 1 is outside the unit disc in agreement with our above result that for A1 < 2 the function

ḡB(z) − z = 0 has the only (infinitesimally shifted) zero z1 = 1− in the unit disc (See Appendix A.3

for details). The second zero rB = p/q is within the unit disc only for A1 > 2 (p < q), and outside for

1 ≤ A1 < 2 (p > q) in agreement with the general behavior outlined above (and see Appendix A.3).

On the other hand p = q = 1
2 (A1 = 2) represents the recurrent limit and represents the only existing

strictly unbiased simple ADTRW where the multiplicity of the zero z1 = rB = 1 in expression (81) then

is two and E[(Yt)B ]simple = 0 ∀t.
One obtains with relations (69) and (73) for the EST on the departure site in an infinitely long simple

Bernoulli ADTRW

E[τ0,0]B = lim
ǫ→0+

1

2πi

∮

|z=1|

dz

(−q)e−ǫ[z2 − eǫ z
q

+ p
q
]

=
1

|p− q| (82)

which is a classical result given by Feller [4] (see Chapter VIII).

5.2 Prescribed expected position and bias in a simple ADTRW

In many applications it may be interesting to prescribe in a simple ADTRW not the generator process,

but the expected position of the walker E[Yt]simple = f(t) where f(t) has to be an admissible function

which fulfils f(t)
∣
∣
t=0

= 0, t ∈ N. It follows from formula (32) that the class of admissible functions f(t)

is restricted by −t ≤ f(t) ≤ t and f(t) = −t + 2C(t) where C(t) is non-negative and non-decreasing

with 0 ≤ C(t) ≤ t as a consequence of 0 ≤ N(t) ≤ t with C(t) = E[N(t)] and therefore is defined as well

on t ∈ N (with C(0) = 0). Its generating function C̄(u) is absolutely monotonic. Considering Eq. (32)

we have that

E[Yt]simple = 2
∂

∂v
P(v, t)

∣
∣
∣
v=1

− t = f(t) = 2C(t) − t, t ∈ N0. (83)

Let f̄(u) =
∑∞
t=1 f(t)ut be the generating function which we assume to converge at least for |u| < 1. It is

convenient to put f̄(u) = uk̄(u)/(1−u)2 (i.e. f(t) = t⋆k̄(t)) and k̄(u) = 2c̄(u)−1 with C̄(u) = uc̄(u)/(1−u)2.

Taking then generating function on both sides of Eq. (83) it yields

ψ̄f (u) =
u(1 + k̄(u))

2[1 − u
2 (1 − k̄(u)]

=
uc̄(u)

1 − u+ uc̄(u)
, k̄(u) = 2c̄(u) − 1 (84)

where c̄(u) ∈ [0, 1] for u ∈ [0, 1). We observe that ψ̄f (u)|u=0 = 0 and ψ̄f (u)|u=1 = 1, i.e. ψf (t) has the

good properties of a waiting-time density supported on N. Generally, the resulting generator process

corresponding to Eq. (84) allows both LT and FT waiting-time densities ψf (t).
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Consider the linear law f(t) = b0t with constant b0 ∈ [−1, 1], (i.e. kb0(t) = b0δt,0). Then Eq. (84) takes

the form

ψ̄b0(u) =
u(1 + b0)

2[1 − u
2 (1 − b0]

(85)

where we identify this expression with the generating function of the LT waiting time-density of the

Bernoulli generator process with p = (1 + b0)/2 (and c̄(u) = p constant), q = (1 − b0)/2, i.e. b0 = p − q,

recovering the well known relation (149) for the expected position of the walker. The case f(t) = 0 ∀ t ∈
N0 is covered by k̄(u) = b0 = 0 in Eq. (85) and recovers the generating function (72) corresponding to

the strictly unbiased simple ADTRW, i.e. the ADTRW with the symmetric Bernoulli generator process.

6 Sibuya ADTRW

In this section we consider an ADTRW with generator process of Sibuya distributed interarrival times

as a FT prototypical case. We refer this walk to as ‘Sibuya ADTRW’. The probabilities of first success

(17) in a Sibuya trial process have generating function

ψ̄Sibuya(u) =
∞∑

t=1

(−1)t−1

(

β

t

)

ut = 1 − (1 − u)β , |u| ≤ 1, β ∈ (0, 1). (86)

The FT feature of the Sibuya distribution is reflected by the divergence of the expected interarrival

time between successes: d
du
ψ̄Sibuya(u)

∣
∣
u=1

= β(1 − u)β−1|u=1 → ∞ (see also the asymptotic expansion

(56)). The generating function (33) of the Sibuya state polynomial yields

P̄Sibuya(v, u) =
(1 − u)β−1

1 − v + v(1 − u)β
, |u| < 1, |v| ≤ 1 (87)

where necessarily P̄Sibuya(1, u) = 1
1−u (corresponding to the normalization of the Sibuya state probabil-

ities) holds true. Then we have for the generating function (34)

Λ̄Sibuya(a, b, u) = P̄Sibuya
(
a

b
, ub

)

=
b(1 − bu)β−1

b− a+ a(1 − bu)β
(88)

with the limiting cases Λ̄Sibuya(1, 0, u) = 1
1−βu and Λ̄Sibuya(0, 1, u) = (1 − u)β−1 (see Appendix A.1 for

details). The Sibuya state polynomial is obtained from

PSibuya(v, t) =
1

t!

dt

dut
P̄Sibuya(v, u)

∣
∣
u=0

=
1

t!

dt

dut

{
∞∑

n=0

vn(1 − u)β−1[1 − (1 − u)β ]n
} ∣
∣
∣
∣
u=0

(89)

and yields

PSibuya(v, t) =
t∑

n=0

vnP(NSibuya(t) = n) =
1

t!

dt

dut

{
t∑

n=0

vn
n∑

ℓ=0

(

n

ℓ

)

(−1)ℓ(1 − u)βℓ+β−1

}

∣
∣
u=0

=
(−1)t

t!

t∑

n=0

vn
n∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

Γ(β[ℓ + 1])

Γ(β[ℓ+ 1] − t)

=
t∑

n=0

vn
n∑

ℓ=0

(−1)ℓ
(

n

ℓ

)(

t− β(ℓ+ 1)

t

)

.

(90)

22



Figure 1: (Color online) Sibuya state polynomial of Eq. (90) for v = 0.1 and different values of β ∈ (0, 1)

with extremely long waiting times for small β. The fat-tailed power-law decay emerges for large t and

can be seen in the slopes of the log-log representation.

The expression for the Sibuya state probabilities P(NSibuya(t) = n) and some related quantities were

derived earlier [40]. In Figure 1 we plot the state polynomial for different values of β where the non-

markovianity with long-time memory of the Sibuya generator process is reflected by very long waiting

times for small β and shorter waiting times for larger β. One can identify the FT asymptotic power-law

decay for large t by the slopes, see also Eq. (94). Then we have

ΛSibuya(a, b, t) = EaNSibuya(t)bt−NSibuya(t) = btPSibuya
(
a

b
, t

)

. (91)

The Sibuya ADTRW transition matrix then, with Eqs. (2) and (90), yields

PSib(t) =
(−1)t

t!

t∑

n=0

(W−)t−n(W+)n
n∑

ℓ=0

(−1)ℓ
(

n

ℓ

)

Γ(β[ℓ+ 1])

Γ(β[ℓ+ 1] − t)
, t ∈ N0 (92)

with the initial condition PSibuya(t)
∣
∣
t=0

= 1. The terms for ℓ = 0 are all identical, namely Γ(t+1−β)
Γ(1−β)Γ(t+1)

and dominating for t → ∞. From Tauberian arguments it follows that this contribution is obtained

from the dominating order for u → 1 in the generating function, namely the weakly singular term

Φ̄(n)(u) ∼ Φ̄(0)(u) = (1 − u)β−1. From this we see that all state probabilities have the same universal

asymptotic scaling as the survival probability,

P(NSibuya(t) = n) ∼ lim
t→∞

Γ(t+ 1 − β)

Γ(1 − β)Γ(t + 1)
=

t−β

Γ(1 − β)
, β ∈ (0, 1], ∀n ∈ N0 (93)

independent of n. This type of power-law scaling is universal for all fat-tailed waiting time distributions

and it is equal to the asymptotic scaling of the Mittag-Leffler survival probability, see relation (59). This

fact can be generally attributed to non-Markovianity and long-time memory [13, 14] (consult also [41]).

It follows that for the long-time asymptotic behavior of the state polynomial which then becomes an

infinite power series in v, we have

PSibuya(v, t) ∼ 1

(1 − v)

t−β

Γ(1 − β)
, β ∈ (0, 1], t → ∞. (94)
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For β → 0+ extremely long-waiting times occur between Sibuya successes (positive jumps), i.e. t−β

Γ(1−β) →
1. The limit β → 0 corresponds to the above discussed frozen limit with very long waiting times be-

tween positive jumps and therefore strong domination of negative jumps. For β → 1− the waiting times

between Sibuya successes reaches their lower bound one, thus a strictly increasing markovian walk

emerges where almost surely solely positive jumps occur, drawn from W+. In this Markovian limit the

asymptotic relation limβ→1−
t−β

Γ(1−β) = δ(t) = 0 for t large reflects the loss of memory.

6.1 Simple Sibuya ADTRW

We now consider the simple Sibuya ADTRW, where almost surely only directed jumps of size one occur.

The transition matrix (13) seen by the moving particle then yields

QSibuya0,r (t) =
(−1)t

t!

t∑

n=0

δ0,r−2n

n∑

ℓ=0

(

n

ℓ

)

(−1)ℓ
Γ(β[ℓ + 1])

Γ(β[ℓ+ 1] − t)
, r ∈ Z

=
(−1)t

t!
δr,2⌈ r−1

2
⌉

r
2∑

ℓ=0

(
r
2

ℓ

)

(−1)ℓ
Γ(β[ℓ + 1])

Γ(β[ℓ+ 1] − t)

(95)

supported on r ∈ {0, 2, . . . , 2t − 2, 2t}. The Sibuya transition matrix then is related to Eq. (95) by

PSibuya0,r (t) = QSibuya0,r+t (t), see relations (12), (13). The Sibuya transition matrix solves with relation (38)

the renewal equations

PSibuyai,j (t) = (−1)t
(

β − 1

t

)

δi,j+t +
t∑

r=1

(−1)r−1

(

β

r

)

PSibuyai,j+r−2(t− r), t ∈ N (96)

with PSibuyaij (t)
∣
∣
t=0

= δij and those for QSibuyai,j (t) = PSibuyai,j−t (t) write by shifting the Kronecker symbols

δk,l → δk,l−t in Eq. (96). The return probability to the departure site then is non-zero only for even

t = 2s (s ∈ {0, 1, 2, . . .}) to give

PSibuya0,0 (t) = δt,⌈ t−1
2

⌉P[NSibuya(t) =
t

2
]

=







1

t!

t
2∑

ℓ=0

(
t
2

ℓ

)

(−1)ℓ
Γ(β[ℓ+ 1])

Γ(β[ℓ+ 1] − t)
, t ∈ {0, 2, 4, . . .}

0, t ∈ {1, 3, 5, . . .}.

(97)

We plot in Figure 2 the Sibuya return probabilities to the departure site (97) for different values of β.

The smaller β the more negative jumps −1 occur which reduces the return probability to the departure

site thus the transient nature with a strong left-sided bias of the walk becomes more pronounced

which can be clearly seen in Figure 3 depicting the expected position of the walker. Figure 2 shows

the tendency of the frozen limit β → 0+ when negative jumps strongly dominate where the return

probability to the departure site drops for t > 0 ‘immediately’ to zero.

For the issue of recurrence/transience indeed the generating function of the return probabilities is

especially important. In fact, this generating function is the diagonal element (see Eq. (60))

[Λ̄Sibuya(T̂1, T̂−1, u)]0,0 =
∞∑

s=0

u2sPSibuya0,0 (2s) =
∞∑

s=0

u2s

(2s)!

s∑

ℓ=0

(

s

ℓ

)

(−1)ℓ
Γ(β[ℓ + 1])

Γ(β[ℓ+ 1] − 2s)
(98)
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Figure 2: (Color online) Return probability to the departure site of Eq. (97) for different values of

β ∈ (0, 1).

and its canonical representation (see Eq. (54))

[Λ̄Sibuya(T̂1, T̂−1, u)]0,0 =
1

2π

∫ π

−π
Λ̄Sibuya(e

−iϕ, eiϕ, u)dϕ

=
1

π
ℜ
∫ π

0

eiϕ(1 − ueiϕ)β−1

2i sinϕ+ e−iϕ(1 − ueiϕ)β
dϕ.

(99)

The EST on the departure site in an infinitely long walk yields (see also relation (53))

E[τ00]Sibuya = [Λ̄Sibuya(T̂1, T̂−1, u)]0,0
∣
∣
u=1

=
∞∑

s=0

1

(2s)!

s∑

ℓ=0

(

s

ℓ

)

(−1)ℓ
Γ(β[ℓ + 1])

Γ(β[ℓ+ 1] − 2s)
. (100)

To explore this quantity it is convenient to consider integral (99) at u = 1, namely

E[τ00]Sibuya =
1

π
ℜ
∫ π

0

eiϕ(1 − eiϕ)β−1

2i sinϕ+ e−iϕ(1 − eiϕ)β
dϕ. (101)

Taking into account that for ϕ → 0+ we have

ℜΛ̄Sibuya(e
−iϕ, eiϕ, 1) ∼ ℜ (−i)β−1ϕβ−1

2iϕ + (−i)βϕβ ∼ 2ϕ−β cos

(
πβ

2

)

(102)

being at ϕ = 0 weakly singular as ϕ−β (β ∈ (0, 1)). Hence Λ̄Sibuya(e
−iϕ, eiϕ, 1) is integrable at ϕ = 0,

by accounting for Aβ = 1, in agreement with the general FT feature (58). As a consequence the EST

on the departure site (relations (100), (101)) is finite. Therefore, the simple Sibuya ADTRW indeed is

transient in agreement with our general proof for simple ADTRWs with FT waiting-time densities (case

(a) in Section 5.1).

Let us now explore the bias and consider Eq. (32) by the generating function of the expected number

of Sibuya arrivals, namely

N̄Sibuya(u) =
∂

∂v
P̄Sibuya(v, u)

∣
∣
v=1

=
1

(1 − u)

ψ̄Sibuya(u)

(1 − ψ̄Sibuya(u))

= (1 − u)−β−1 − (1 − u)−1, |u| < 1

(103)
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Figure 3: (Color online) Expected position of the simple Sibuya ADTRWwalker of Eq. (105) for different

values of β.

yielding the exact non-negative expression

ENSibuya(t) = (−1)t
(

−(β + 1)

t

)

− 1 =
(β + 1) . . . (β + t)

t!
− 1, t ∈ N

=
Γ(β + t+ 1)

Γ(β + 1)Γ(t + 1)
− 1 =

(

β + t

t

)

− 1, t ∈ N0

(104)

holding for β ∈ (0, 1], see also Ref. [40]. The second line includes t = 0 and reflects the initial condition

NSibuya(0) = 0. We see in (104) that ENSibuya(t)β→0+ → 0 which means that for small β the interarrival

times between the Sibuya successes becomes infinitely long corresponding to the ‘frozen’ limit. On

the other hand we have the Markovian limit ENSibuya(t)β→1− → t where the trivial strictly increasing

trivial walk emerges, see Section 3.1. With Eqs. (104), (32) we obtain for the expected position of the

walker the exact expression

E[Yt]Sibuya = −t+ 2ENSibuya(t) = 2
Γ(β + t+ 1)

Γ(β + 1)Γ(t + 1)
− 2 − t, t ∈ N0, β ∈ (0, 1] (105)

where this result also holds in the Markovian limit β = 1 and yields the upper bound E[Yt]β=1 = t. We

also see that E[Y0]Sibuya = 0 reflects the initial condition. In Figure 3 it is depicted the expected position

E[Yt]Sibuya for different values of β ∈ (0, 1). The smaller β the longer the waiting times between positive

jumps +1, the closer the lower bound −t is approached. For β → 0+ the ‘frozen’ limit emerges and the

expected position approaches the lower bound limβ→0+ E[Yt]Sibuya = −t of a strictly decreasing walk

with almost surely solely jumps −1, see Section 3.1. On the other hand, for β → 1− where positive

jumps +1 dominate one can see in the plot the larger β the more the expected position approaches the

upper bound t reflecting limβ→1− E[Yt]Sibuya = t.

Consider now the asymptotic behavior with Γ(γ+t)
Γ(t) ∼ tγ for t large. We have then the power-law

E[N ]Sibuya(t) ∼ tβ

Γ(β + 1)
, t → ∞, β ∈ (0, 1] (106)
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which is well known in anomalous diffusion (see e.g. [13, 14, 19, 20, 21, 41]) reflecting the non-

Markovianity and long memory feature of the Sibuya trial process. This relation includes theMarkovian

and frozen limits, respectively.

To see more closely the strong tendency of occurrence of negative jumps for the smaller β, as visible

in Figure 3, we consider the generating function of the expected position (105) which takes, with Eq.

(103), the form

∞∑

t=0

E[Yt]Sibuyau
t = 2(1 − u)−β−1 − 2(1 − u)−1 − u(1 − u)−2 < 0, u → 1 − . (107)

We see in this relation the asymptotic behavior emerging in (105) for t → ∞, namely

E[Yt]Sibuya ∼ 2 tβ

Γ(β+1) − t ∼ −t → −∞, β ∈ (0, 1)

E[Yt]Sibuya = t, β = 1.

(108)

In the non-Markovian range β ∈ (0, 1) the long-time limit is governed by the term −t due to domination

of occurrence of negative jumps. Solely in the markovian limit β = 1 the walk is strictly increasing with

jumps +1 almost surely where the linear increase of the expected position is maintained for all t ∈ N0.

7 Asymmetric continuous-time random walk

In the present section we introduce time-changed versions of the ADTRW. We subordinate the ADTRW

defined in Eq. (1) to an independent renewal process, i.e. a continuous-time counting process M(t) ∈
N0 (t ∈ R

+) with IID interarrival times such as Poisson, fractional Poisson and others. We call the

so defined walk ‘asymmetric continuous time random walk’ (ACTRW). It turns out that the ACTRW is

different from the classical Montroll–Weiss CTRW apart of some special cases also discussed in this

section. ACTRWs are the class of random walks defined by

Y(t) = YM(t) =

M(t)
∑

j=1

Xj , Y0 = 0, Xj ∈ Z \ {0}, t ∈ R
+ (109)

where Ym∈N0 is the ADTRW defined in Eq. (1) with transition matrix (2). In the ACTRW the trials of

the generator process selecting the direction of the jumps Xj take place at the instants of arrival times

of the point process M(t). The variable counting the arrivals in the composed process N [M(t)] ∈ N0

(t ∈ R
+) indicates the number of successes (number of positive jumps) inM(t) trials andM(t)−N [M(t)]

the number of fails (number of negative jumps) occurring within the continuous time interval [0, t].

The instants of successes are the continuous arrival times of the composed process N [M(t)] which

therefore is also a point process. Compositions of counting processes (mainly of point processes)

where extensively studied in the literature [58, 59].

Denoting with P(M(t) = m) (m ∈ N0) the state probabilities (probabilities for m arrivals within [0, t]) in

the continuous-time process M(t), the state probabilities of the composed counting process N [M(t)],

i.e. the probabilities for n arrivals (successes in the picture of trial process) within [0, t]) are given by

P(N [M(t)] = n) =
∞∑

m=0

P(M(t) = m)P(N(m) = n), n ∈ N0, t ∈ R
+ (110)

where we maintained for our convenience the vanishing terms m < n for which the state probabilities

P(N(m) = n) = 0. We call the composed continuous-time counting process N [M(t)] the ‘time-changed
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generator process’ of the ACTRW since it contains information on the asymmetry of the walk: N [M(t)]

counts the number of positive jumps and M(t) − N [M(t)] the number of negative jumps within [0, t].

The ACTRW transition matrix is then the time-changed version of Eq. (25) and writes

Π(W+,W−, t) =
∞∑

m=0

P(M(t) = m)
m∑

n=0

P(N(m) = n)[W+]n[W−]m−n, t ∈ R
+

Πi,j(t) =
∞∑

m=0

P(M(t) = m)Pi,j(m)

(111)

where P(m) = (Pi,j(m)) is the ADTRW transition matrix (25). From the initial condition Pi,j(0) = δi,j
it follows Πi,j(t)

∣
∣
t=0

= δi,j , as a consequence of P(M(t) = m)
∣
∣
t=0

= δm,0. The elements Πi,j(t) of the

ACTRW transition matrix represent the probability that the walker is present on node j at time t with

the indicated initial condition. Clearly, the ACTRW transition matrix (111) preserves the circulant

property Πi,j(t) = Π0,j−i(t). Since M(t) is a continuous-time counting process, the random variable

(109) describes a continuous-time random walk which is intrinsically asymmetric and - as we will see

a little later - not of Montroll–Weiss type. Then, it is useful to consider the scalar version of transition

matrix (111),

Π(a, b, t) =
∞∑

m=0

P(M(t) = m)
m∑

n=0

P(N(m) = n)anbm−n, |a|, |b| ≤ 1, t ∈ R
+

=
∞∑

m=0

P(M(t) = m)Λ(a, b,m),

(112)

where Π(1, 1, t) = 1 reflects the normalization of the state probabilities
∑∞
m=0 P(M(t) = m) = 1 with

P(1,m) = Λ(1, 1,m) = 1 (see normalization Eq. (23)) and Π(v, 1, t) is the time-changed state polynomial.

This equation for Π(a, b, t) shows the main difference to the Montroll–Weiss CTRW: For b 6= 1 the

function Π(a, b, t) and therefore the ACTRW transition matrix (111) are not represented by a series of

the state probabilities (110) of the composed process. Therefore, the ACTRW generally is not in the

Montroll–Weiss sense a random walk subordinated to the composed counting process N [M(t)] (apart of

some special cases such as the limits (121), (122) and the example considered at the end of this section).

The general class of ACTRWs which can be reduced to Montroll–Weiss CTRWs have transition matrices

of the form Λ(W,1, t) where W is a single-jump transition matrix. The scalar version of this class is

obtained for b = 1 in (112) leading to (see Eq. (110))

Π(v, 1, t) =
∞∑

n=0

vnP(N [M(t)] = n) = EN [M(t)]v
N [M(t)] (113)

and is the time-changed state polynomial where the connection with the classical Montroll–Weiss CTRW

can also be seen by means of its time-Laplace transform (117).

For our further analysis it is convenient to consider the function (112) in the Laplace domain. The

time-Laplace transform of a causal function f(t) supported on t ∈ R
+ is defined as

f̃(s) = (Lf)(s) =

∫ ∞

0
e−stf(t)dt (114)

with a suitably chosen Laplace variable s. The time-Laplace transforms of the state probabilities

P (M(t) = m) reduce to
∫ ∞

0
P (M(t) = m)e−stdt =

1 − η̃(s)

s
(η̃(s))m, m ∈ N0 (115)
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where η̃(s) denotes the Laplace transform of the interarrival time density η(t) of the point processM(t).

The Laplace transform of function (112) can hence be written as

Π̃(a, b, s) =
1 − η̃(s)

s

∞∑

m=0

(η̃(s))mbmP
(
a

b
,m

)

|a|, |b| ≤ 1

=
1 − η̃(s)

s
P̄
(
a

b
, bη̃(s)

)

=
1 − η̃(s)

s
Λ̄(a, b, η̃(s))

=
1 − η̃(s)

s

b(1 − ψ̄[bη̃(s)])

(1 − bη̃(s))(b− aψ̄[bη̃(s)])

(116)

where necessarily Π̃(1, 1, s) = 1/s as a consequence of Π(1, 1, t) = 1 (reflecting the normalization

condition of the state probabilities P(N [M(t)] = n) of the composed process). In Eq. (116) appears the

generating function of the state polynomial Λ̄(a, b, η̃(s)) = P̄(a/b, bη̃(s)) (34) with argument u → η̃(s)

(fulfilling |η̃(s)| ≤ 1), and Π̃(v, 1, s) is the Laplace transform of the time-changed state polynomial (113)

having the simpler form

Π̃(v, 1, s) =
1 − ψ̄[η̃(s)]

s

1

1 − vψ̄[η̃(s)]
, |v| ≤ 1. (117)

In this relation it appears the Laplace transform ψ̄[η̃(s)] of the waiting time density of the composed

counting process N [M(t)]. Therefore, Eq. (117) has an interesting interpretation. It is the time-Laplace

transform of the generating function of the state probabilities P[N(M(t)) = n] (n ∈ N0) of the composed

counting process. The interarrival time density of the composed process N [M(t)] then reads

χ(t) = L−1{ψ̄[η̃(s)]}(t) =
∞∑

r=1

ψ(r)[η⋆]r(t), t ∈ R
+ (118)

where we denote the inverse Laplace transform with L−1{. . .}(t). It follows from ψ̄[η̃(s)])
∣
∣
s=0

= ψ̄(1) = 1

that χ(t) is indeed a density. Then we have the Laplace transform of the state probabilities (110) as
∫ ∞

0
e−st

P(N [M(t)] = n) dt =
1 − ψ̄[η̃(s)]

s
(ψ̄[η̃(s)])n, (119)

consistent with (117). In view of (116) Laplace transform of the ACTRW transition matrix (111) can be

written as

Π̃(W+,W−, s) =
1 − η̃(s)

s

W−(1 − ψ̄[W−η̃(s)])

(1 − W−η̃(s))(W− − W+ψ̄[W−η̃(s)])
. (120)

Clearly, this expression does not have a Montroll–Weiss structure. However, in some special cases, for

instance for the limits αk ≤ ǫ → 0+ and αk → 1− ∀k, respectively strictly decreasing and increasing

Montroll–Weiss CTRWs emerge, namely

Π0+(t) =
∞∑

m=0

P(M(t) = m)(W−)m, αk ≤ ǫ → 0+

Π̃0+(s) =
(1 − η̃(s))

s
[1 − W−η̃(s))]−1

(121)

and

Π1−(t) =
∞∑

m=0

P(M(t) = m)(W+)m, αt → 1−

Π̃1−(s) =
(1 − η̃(s))

s
[1 − W+η̃(s))]−1.

(122)
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7.1 ACTRW evolution equations

With the above considerations we can derive the time-evolution equations for Π(a, b, t) and the ACTRW

transition matrix. To this end we rearrange Eq. (116) to

1 − ψ̄[bη̃(s)]

sψ̄[bη̃(s)]

[

sΠ̃(a, b, s) − 1
]

= −(1 − b)η̃(s)

1 − bη̃(s)

(1 − ψ̄[bη̃(s)])

sψ̄[bη̃(s)]
+

(
a

b
− 1

)

Π̃(a, b, s). (123)

Introducing the auxiliary kernels

K(b, t) = L−1

{

1 − ψ̄[bη̃(s)]

sψ̄[bη̃(s)]

}

(t), t ∈ R
+, |b| ≤ 1 (124)

and

R(b, t) = L−1
{

η̃(s)

1 − bη̃(s)

}

(t) (125)

where we observe that (1−b)η̃(s)
1−bη̃(s)

∣
∣
s=0

= 1 since η̃(s)
∣
∣
s=0

= 1 thus (1 − b)R(b, t) is a normalized density.

K(1, t) can be seen as the memory kernel of the composed process N [M(t)]. Writing Eq. (123) in the

time-domain yields the following Cauchy problem

∫ t

0
K(b, t − τ)

d

dτ
Π(a, b, τ) dτ = (b− 1)

∫ t

0
K(b, t − τ)R(b, τ) dτ +

(
a

b
− 1

)

Π(a, b, t), t ∈ R
+

Π(a, b, t)
∣
∣
t=0

= 1

(126)

and defines also the Cauchy problem for the ACTRW transition matrix (111) by replacing a with W+,

b with W− and considering the initial condition Πij |t=0 = δij . The left-hand side of the scalar equation

(126) is a general fractional derivative and has profound connections to the general fractional calculus

introduced by Kochubei [28] and see also [30, 31, 32, 33, 42]. The influence of the asymmetry can be

seen in the change of sign of the second term on the right-hand side for a > b and a < b for real a, b,

respectively. We also recover for a = b = 1 that the right hand side is null thus Π(1, 1, t) = 1 is constant

(the normalization of the state probabilities (110) as a conserved quantity ∀t as a = b introduces a

further symmetry — one should recall the previously mentioned connection with Noether’s theorem).

The difference to the Montroll–Weiss CTRW becomes obvious by the presence of the first term on the

right-hand side for b 6= 1. For b = 1 we have (1− b)R(b, t)
∣
∣
b=1

= 0 and the auxiliary kernel (124) reduces

to the memory kernel of the composed counting process N [M(t)]. Thus, Eq. (126) then reduces to the

form of a generalized Kolmogorov–Feller equation of Montroll–Weiss type for Π(v, 1, t), being solved by

the Laplace-inverse of Eq. (117).

Eq. (126) governs the time-evolution in a ACTRW and is the counterpart to the generalized Kolmogorov–

Feller equation which occurs in a Montroll–Weiss CTRW.

As a pertinent example let us consider the point processMµ(t) to be the time-fractional Poisson process

and the independent trial process NB(m) to be the Bernoulli process. We will see that in contrast

to the general case, in this example the ACTRW indeed boils down to a Montroll–Weiss type CTRW.

The Laplace transform of the waiting time density of the time-fractional Poisson process Mµ(t) has

the form η̃µ(s) = ξ0

ξ0+sµ (ξ0 > 0, µ ∈ (0, 1]) [19] and the Bernoulli waiting time generating function is

ψ̄B(z) = pz/(1 − qz) (p + q = 1), thus the waiting time density of the composed process NB[Mµ(t)] has

the Laplace transform

ψ̄B [η̃µ(s)] =
pξ0

pξ0 + sµ
, µ ∈ (0, 1] (127)
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i.e. the composition is also a continuous time fractional Poisson process with changed constant ξ = pξ0.

If µ = 1 the standard Poisson process is recovered. The auxiliary kernel (124) yields

Kµ(b, t) = L−1

(

sµ−1

pξ0b
+

1 − b

bp
s−1

)

=
t−µ

bpξ0Γ(1 − µ)
+

1 − b

bp
, t ≥ 0 (128)

and the second kernel (125) is expressed by a Mittag–Leffler density

(1 − b)Rµ(b, t) = L−1
(

ξ0(1 − b)

ξ0(1 − b) + sµ

)

= ξ0(1 − b)tµ−1Eµ,µ(−ξ0(1 − b)tµ) = − d

dt
Eµ(−ξ0(1 − b)), t ≥ 0

(129)

where Eµ,γ(z) and Eµ(z) denote the generalized and the standard Mittag–Leffler functions, respectively

(see [25, 26] for definitions and properties). We introduce the Caputo-fractional derivative [25, 26]

dµ

dtµ
y(t) =

∫ t

0

(t− τ)−µ

Γ(1 − µ)

d

dτ
y(τ)dτ, µ ∈ (0, 1] (130)

recovering for µ → 1− the standard first order derivative. The Cauchy problem (126) after some

routine manipulations takes the form of a fractional differential equation

dµ

dtµ
Πµ,λ(a, b, t) = −λΠµ,λ(a, b, t), λ = ξ0[1 − qb− pa)], µ ∈ (0, 1]

Πµ,λ(a, b, t)

∣
∣
∣
∣
t=0

= 1

(131)

where keep also in mind that |a|, |b| ≤ 1. Cauchy problem (131) then has the Mittag-Leffler solution

Πµ,λ(a, b, t) = L−1

(

sµ−1

sµ + λ

)

= Eµ(−λtµ) (132)

which is also directly obtained from Eq. (116). The ACTRW with the time-changed generator process

NB [Mµ(t)] has therefore the Mittag–Leffler transition-matrix

Pµ(t) = Πµ,λ(W+,W−, t) = Eµ(−ξ0t
µ[1 − pW+ − qW−]). (133)

One can see by means of the Laplace transforms that this transition matrix has the particularity that it

is of Montroll–Weiss type where Bernoulli jumps with a well defined ‘Laplacian matrix’ 1−pW+ −qW−

are subordinated to the independent time-fractional Poisson process Mµ(t).

8 Conclusions

We have presented a new type of asymmetric discrete-time random walk, the ADTRW. In this walk the

direction of the jumps is determined by the outcomes of a trial process (the ‘generator process’) which

is constructed as a discrete-time counting process. We considered the ADTRW on the integer line and

analyzed recurrence/transience features. We demonstrated that fat-tailed waiting time distributions in

the generator process generate transience and bias in a simple ADTRW whereas light-tailed waiting-

time distributions allow both transient and recurrent behavior. In the recurrent case the simple ADTRW

is unbiased in an asymptotic sense (i.e. in the limit t → ∞). We proved that among the simple ADTRWs

solely the one with symmetric Bernoulli generator process is strictly unbiased in the sense that the

expected position is null (i.e. on the departure site) at all times. On the other hand for all transient cases
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the simple ADTRW is biased and vice versa. The ADTRWmodel can be generalized to several directions.

For instance modifications in the trial process for the determination of directions of the jumps define

new types of ADTRWs with a large potential of new applications. Further possible generalizations

include involvement of long-range jumps where different one-jump transition matrices are selected

by counting processes, or the possibility of further considering the interarrival times between two

consecutive fails (negative jumps) not geometrically distributed.

We also considered prescribed admissible functions for the expected position E[Yt]simple = f(t) in a

simple ADTRW, see Eq. (83). For future research interesting candidates are constituted by the class

of discrete-time versions of non-negative Bernstein functions which are strictly positive E[Yt]simple =

f(t) > 0 for t ∈ N. The special interest of this topic is also due to the possibility to construct simple

ADTRWs which in the Ruin Game interpretation provide strategies where the expectation value of the

assets never hits the ruin condition (zero assets). For an analytical procedure to construct discrete

approximations of Bernstein functions, see [42] and consult also [40, 41].

We also introduced time-changed versions of the ADTRW leading to the ACTRW model. The ACTRW

constitutes a new class of biased continuous-time random walks which are generally not of Montroll–

Weiss type, apart of some special cases. In the present paper we could only introduce the main idea of

the ACTRW model which merits further thorough analysis and exploration of pertinent cases.

The new types of asymmetric random walks introduced in the present paper open a wide field of

interdisciplinary applications in ‘complex systems’ such as in finance, birth and death models, and

biased anomalous transport and diffusion.

A APPENDICES

A.1 Some pertinent limits of Λ(a, b, t)

We consider here some limiting cases of the state polynomial Λ(a, b, t) defined in Eq. (31).

First let b → 0 for which we get for the related generating function

Λ̄(a, 0, u) = lim
b→0

P̄
(
a

b
, ub

)

= lim
b→0

1

1 − a
b
ψ̄(bu)

=
∞∑

t=0

P(N(t) = t)utat, P(N(t) = t) = αt1

=
1

1 − aα1u
.

(134)

Thus

Λ(a, 0, t) = P(N(t) = t)at = (aα1)t (135)

containing only the order t of the state polynomial where we account for the probability of t successes

in t trials P(N(t) = t) = αt1 and limb→0 ψ̄(bu)/b = uα1.

A further pertinent limit is obtained for a = 0, namely

Λ̄(0, b, u) = P̄
(
a

b
, ub

) ∣
∣
∣
a=0

=
1 − ψ̄(bu)

1 − b̄u
=

∞∑

t=0

(bu)tP(N(t) = 0) (136)

retrieving the (rescaled) survival probability

Λ(0, b, t) = btP(N(t) = 0). (137)

Plainly, these limiting relations are connected with the ‘Markovian’ and ‘frozen’ limits, respectively,

see Section 3.1.
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A.2 Time shift operator representations

In order to derive some convenient operator representations of above deduced renewal and master

equations (37)-(39) be reminded that we deal with causal (discrete-time) distributions supported on

non-negative integers

F (t) = Θ(t)f(t), t ∈ Z (138)

i.e. they are null for negative t which we indicate by the discrete Heaviside function Θ(t) defined

in Eq. (4). Then, we introduce the time-backward shift operator T̂−1 which is such that T̂−1f(t) =

f(t−1), where t ∈ Z is the discrete time coordinate. We further use throughout the paper the following

equivalence of generating functions and shift operators (see [41] for an outline of essential properties)

f(t) =
1

t!

dt

dut
f̄(u)|u=0 t ∈ N0

=
∞∑

k=0

f(k)T−kδ0,t, T−kδ0,t = δ0,t−k = δk,t

= f̄(T̂−1)δ0,t.

(139)

We see that causality of a distribution f(t) is generated by f̄(T̂−1)δ0,t, where in the generating function

we replaced u with T̂−1 and only non-negative powers of the time backward shift operator T̄−1 are

considered (T k
−1 = T−k). The interarrival time density has then the backward time shift operator

representation

ψ(t) = ψ̄(T−1)δ0,t =
∞∑

k=1

ψ(k)T−kδ0,t =
∞∑

k=1

ψ(k)δ0,t−k . (140)

The state polynomial can be represented as

P(v, t) = P̄ (v, T̂−1)δ0,t =
1 − ψ̄(T̂−1)

[1 − T̂−1][1 − vψ̄(T̂−1)]
δ0,t (141)

and

Λ(a, b, t) = btP
(
a

b
, t

)

=
1 − ψ̄(bT̂−1)

1 − bT̂−1

1

1 − a
b
ψ̄(bT̂−1)

δ0,t, b 6= 0. (142)

Note that shift operators and shift operator functions commute among each other reflecting the com-

mutative property of discrete convolutions. Then by accounting for f̄(bT̂−1)δ0,t = btf̄(T̂−1)δt,0 = btf(t)

we can rewrite this relation as

Λ(a, b, t) =
1 − ψ̄(bT̂−1)

1 − bT̂−1

δ0,t +
a

b
ψ̄(bT̂−1)Λ(a, b, t)

= btΦ(0)(t) +
a

b
ψ̄(bT̂−1)Λ(a, b, t)

(143)

and use that

ψ̄(bT̂−1)Λ(a, b, t) =
∞∑

r=1

brψ(r)T̂−rΛ(a, b, t)

=
∞∑

r=1

brψ(r)Λ(a, b, t − r) =
t∑

r=1

brψ(r)Λ(a, b, t − r)

(144)
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where in the last line we used causality, i.e. Λ(a, b, t−r) = 0 when r > t. We hence arrive at the renewal

equation (37), i.e.

Λ(a, b, t) = btΦ(0)(t) +
t∑

r=1

abr−1ψ(r)Λ(a, b, t − r). (145)

A.3 Bernoulli trials

As the simplest and best known special case we briefly recall some well-known features of the mem-

oryless Bernoulli walk. This walk matches in our ADTRW model as ‘simple Bernoulli ADTRW’ where

αt = p ∀t ∈ N does not depend on t, leading to geometric waiting time density (20) ψB(t) = pqt−1

(p + q = 1, t ∈ N), with generating function ψ̄B(u) = pu
1−qu and survival probability Φ

(0)
B (t) = qt (t ∈ N0).

It is straight-forward to see that the Bernoulli state probabilities are given by the Binomial distribution

Φ
(n)
B (t) =

1

t!

dt

dut
pnun

(1 − qu)n+1

∣
∣
∣
∣
u=0

=
t!

n!(t− n)!
pnqt−n, n ≤ t

n, t ∈ N0.

= 0, n > t

(146)

The state polynomial (30) yields then straight-forwardly

PB(v, t) = (pv + q)t (147)

and

ΛB(a, b, t) = E aN(t)bt−N(t) = (pa+ qp)t. (148)

This relation contains information on the bias where the expected position of the walker E[(YB)t] at

time t in a simple walk (32) (i.e. with unit next neighbor jumps) leads to the well-known classical result

[4, 45]

E[(YB)t] =

(
∂

∂a
− ∂

∂b

)

ΛB(a, b, t)

∣
∣
∣
∣
a=b=1

= (p − q)t. (149)

A measure for the asymmetry of the walk is provided here by CB = t−1
E[(YB)t] = p − q where for

p = q = 1
2 this simple walk is strictly unbiased. The EST (53) then writes (with transition matrix

PB(t) = [pW+ + qW−]t)

E[τrs]B =
∞∑

t=0

[
(

pW+ + qW−
)t

]rs =

([

1 − pW+ − qW−
]−1

)

rs

. (150)

For more details consult [2, 4, 44, 45, 46], and the references therein.

A.4 Some features of light-tailed waiting time densities

We introduce the auxiliary generating function

ḡ(z) =
∞∑

t=1

ψ(t)zt−1, ψ̄(z) = zḡ(z) (151)

with ḡ(0) = ψ(1) = α1 and ḡ(1) = ψ̄(1) = 1 and where ψ̄(z) denotes the generating function (26) of a

discrete-time waiting time density supported on N (where 0 < ψ(1) = α1 ≤ 1 and α1 = 1 only in the
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trivial case when ψ̄trivial(z) = z with constant ḡtrivial(z) = 1 and ψtrivial(t) = δt1 with unit waiting times).

We consider here only the situation in which ψ(t) is LT. Then we introduce

g1 =
d

dz
ḡ(z)

∣
∣
z=1

=
∞∑

t=2

(t− 1)ψ(t) = A1 − 1 ≥ 0, z ∈ [−1, 1] (152)

where A1 = d
dz
ψ̄(z)

∣
∣
z=1

=
∑∞
t=1 ψ(t)t ≥ 1 denotes the expected waiting time. For some related proper-

ties of generating functions, we refer to the book of Harris [60]. The aim of this appendix is to prove

for LT waiting-time densities (with ψ(t) = g(t − 1), i.e. ψ̄(z) = zḡ(z)) the existence of the canonical

representation

ḡ(z) − z = (z − 1)(z − r)eh(z), |z| ≤ 1 (153)

at least on the unit disc where h(z) is analytic. The zero r is real and non-negative. The convex

property of ḡ(z) with g1 = d
dz
ḡ(z)

∣
∣
z=1

= A1 − 1 ≥ 0 allows us to determine the properties of the zero

r = r(A1) ∈ R
+:

r(A1) > 1, A1 < 2

r(A1) = 1, A1 = 2

0 < r(A1) < 1, A1 > 2.

(154)

Note that r is outside of the unit disc for A1 < 2, inside for A1 > 2, and r = 1 for A1 = 2. Since r(A1) is

a continuous function of A1 we can infer that

• limA1→1+0 r(A1) = +∞ (limit of trivial walk);

• limA1→∞ r(A1) = 0 (FT limit).

Further limiting properties can be seen from relations (154) together with the continuity of r(A1).

This behavior can be explicitly seen in the Bernoulli trial process: see Eq. (81) where rB = p
q
and

A1 = 1
p
thus ḡB(z) − z = (z − 1)(z − rB)ehB(z) with hB(z) = log(q) − log(1 − qz).

To prove the existence of canonical representation (153) let us now consider the cases 1 ≤ A1 < 2 and

A1 > 2 separately.

Case 1 ≤ A1 < 2 (g1 = d
dz
ḡ(z)

∣
∣
z=1

∈ [0, 1)):

One observes then the following properties:

(i)
dn

dzn
ḡ(z) ≥ 0, z ∈ [−1, 1], n ∈ N0

i.e. ḡ(z) is absolutely monotonic (AM) for z ∈ [−1, 1]. Hence ḡ(−z) is in that interval completely mono-

tonic (CM) and strictly positive. Therefore we have

(ii) 0 ≤ d

dz
ḡ(z) ≤ d

dz
ḡ(z)

∣
∣
z=1

= g1 = A1 − 1 < 1, z ∈ [−1, 1]

(iii) 0 < ḡ(−1) < ḡ(z) < ḡ(1) = 1 , ḡ(z) is AM for z ∈ [−1, 1].

In (ii) we have g1 = 0 only for A1 = 1, otherwise 0 < g1.

Remark: There is a connection of ψ̄(z) with Bernstein functions, see [42] (Formula (39)).

Remark to (i)-(iii):
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The derivatives
dn

dzn
ḡ(z) =

∞∑

t=n+1

(t − 1)!

(t− 1 − n)!
ψ(t)zt−1−n ≥ 0 are AM functions for z ∈ [0, 1] and for all

n ∈ N0. As a consequence ḡ(−z) is completely monotonic (CM) with (−1)n dn

dzn
ḡ(−z) ≥ 0 for z ∈ [0, 1].

Then, it follows that ḡ(−z) =
∑

t=1 ψ(t)(−z)t−1 is strictly positive on the interval z ∈ [0, 1] with the min-

imal value ḡ(−1). In that interval ḡ(−1) < ḡ(−z) < ḡ(0) = α1 ≤ 1. From this inequality, reflecting the

AM feature of ḡ(z), it follows the property (iii), i.e. ḡ(z) is strictly positive and AM on the real interval

z ∈ [−1, 1]. From (i)–(iii) we see that

ḡ(z) > z, −1 ≤ z < 1

ḡ(z) = z, z1 = 1

(155)

i.e. z1 = 1 is the only zero of the function (153) in the real interval [−1, 1] when 1 ≤ A1 < 2, therefore

we have in that range r(A1) > 1.

Recall that in this part our goal is to prove the canonical representation (153) first for g1 < 1 (1 ≤ A1 <

2). To this end we make use of
∣
∣
∣
∣

d

dz
ḡ(|z|eiϕ)

∣
∣
∣
∣ ≤

∣
∣
∣
∣

d

dz
ḡ(|z|)

∣
∣
∣
∣ ≤ g1 < 1, |z| ≤ 1 (156)

and therefore
d

dz
ḡ(z) = a(x, y)eiα(x,y) (157)

where a(x, y) = | d
dz
ḡ(z)| denotes the absolute value and α(x, y) the argument of d

dz
ḡ(z). If there are

complex zeros of the function (153) for |z| < 1 then they solve |y| = |ℑ{ḡ(x + iy)}| with y = ℑ(z) 6= 0.

Now consider the imaginary part

ℑ{ḡ(x+ iy)} = ℑ
{

ḡ(x) +

∫ y

0

d

dx
ḡ(x+ iτ)idτ

}

= ℑ
{∫ y

0

d

dx
ḡ(x+ iτ)idτ

}

, |y| ≤ |z| < 1

=

∫ y

0
a(x, τ)eiα(x,τ)dτ,

(158)

having absolute value

|ℑ{ḡ(x+ iy)| = |ℑ
∫ y

0 a(x, τ)eiα(x,τ)dτ | ≤ |
∫ y

0 a(x, τ)eiα(x,τ)dτ | ≤
∫ y

0 a(x, τ)dτ < g1|y| < |y|, (159)

i.e. the left-hand side is always smaller than |y| as a(x, y) < g1 = A1 − 1 < 1 where this inequality holds

for any |z| ≤ 1. Therefore y = ℑ{ḡ(x + iy)} has for x ∈ [−1, 1] only the trivial solution y = 0, which

concludes the proof that (153) for A1 < 2 has solely the zero z1 = 1 and no zeros for |z| < 1. We hence

can establish the following theorem:

Theorem I

Let ḡ(x) be non-negative and absolutely monotonic (AM) and ḡ(x) 6= x on the real interval x ∈ [0, ρ0)

with | d
dz
ḡ(z)| ≤ g1(ρ0) < 1 for |z| ≤ ρ0. Then, the complex function ḡ(z) − z 6= 0 has no zeros within the

disc |z| < ρ0.
We will use this theorem to complete the proof of the canonical representation (153) for A1 > 2.

Case A1 > 2 (g1 = d
dz
ḡ(z)

∣
∣
z=1

∈ (1,∞)):
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From the convexity of ḡ(x) for x ∈ (0, 1) it follows that there is a real zero r = r(g1) which is for g1 > 1

in the interval r(g1) ∈ (0, 1). We have then for x ∈ [0, 1),

ḡ(x) − x > 0, 0 ≤ x < r

ḡ(r) − r = 0, r ∈ (0, 1)

ḡ(x) − x < 0, r < x < 1.

(160)

The inequality of the first line can be seen from ḡ(0) = α1 > 0 and using the continuity of ḡ(x). On the

other hand we have |ḡ(z)| ≤ ḡ(|z|) (z = x+ iy) as a consequence of the AM property and together with

the third line of (160) the inequality

|ḡ(z)| ≤ ḡ(|z|) < |z|, |z| ∈ (r, 1) (161)

i.e. there are no zeros within the ring |z| ∈ (r, 1)

ḡ(z) − z 6= 0, |z| ∈ (r, 1). (162)

Now we finally consider |z| < r. From the convexity of ḡ(x) it follows that
∣
∣
∣
∣

d

dz
ḡ(z)

∣
∣
∣
∣ <

d

dz
ḡ(z)

∣
∣
∣
z=r

= g1(r) < 1, |z| < r (163)

i.e., the slope d
dz
ḡ(z)

∣
∣
z=r

< 1 must be smaller than one in the cutting point ḡ(x) = x, that is at x = r.

Since d
dz
ḡ(z)

∣
∣
z=r

< 1 apply Theorem I with ρ0 = r to see that

ḡ(z) − z 6= 0, |z| < r. (164)

The existence of the inequalities (162), (164) concludes the proof that for g1 > 1 there are no further

zeros for |z| ≤ 1 except the real zeros z = r ∈ (0, 1) and z = 1.

In conclusion the canonical form (153) with the property (154) holds true at least for |z| ≤ 1 in the

admissible range A1 ∈ [1,∞).

Poisson waiting time density

As a prototypical example for an LT waiting-time density we consider Poisson waiting times with

ψP (λ, t) = e−λ λt−1

(t−1)! (t ∈ N) and ψ̄P (λ, z) = zḡP (λ, z) with ḡP (λ, z) = eλ(z−1) where g1 = λ = A1 − 1

and λ ≥ 0 (λ = 0 corresponding to the trivial walk). Clearly, ḡP (λ, z) is AM on [−1, 1]. Consider

inequality (159) for 0 ≤ λ < 1. It yields

|eλ(x−1)ℑ{eiλy}| = eλ(x−1)| sin λy| < |y|. (165)

Therefore

eλ(z−1) − z = 0, 0 ≤ λ < 1 (166)

has the only zero z1 = 1 for |z| ≤ 1. We also see that

ḡP (λ, z) − z = eλ(z−1) − z = (z − 1)

[

λ− 1 +
∞∑

ℓ=2

λℓ

ℓ!
(z − 1)ℓ−1

]

(167)

has zero z1 = 1 with multiplicity one for λ 6= 1 and multiplicity 2 for λ = 1 (i.e. A1 = 2) which is the

recurrent limit. We prove now that the canonical form

eλ(z−1) − z = (z − 1)(z − rλ)ehλ(z), z ∈ C, ψ̄(z) = zeλ(z−1) (168)
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holds here for all λ ≥ 0 (A1 = λ+1). The zero rλ ∈ R
+ has the properties (154) where g1 = λ (A1 = λ+1).

Let us explore whether

z = eλ(z−1), λ > 0 (169)

has complex zeros with non-vanishing imaginary parts. Applying the logarithm to both sides we have

log(z) = λ(z−1) and with z = ρeiϕ, considering the real and imaginary parts, it yields the two equations

log ρ = λ(ρ cos(ϕ) − 1)

ϕ = λρ sin(ϕ)

(170)

each defining a parametrization of lines ρ1,2(ϕ) where both sides of Eq. (169) have the same argument

ϕ. The intersections of Eq. (169) are the points where ρ1(ϕ) = ρ2(ϕ). The second equation gives

ρ2(ϕ, λ) =
ϕ

λ sin(ϕ)
, ϕ 6= 0 (171)

Plugging Eq. (171) into the first equation of (170) we obtain

ρ1(ϕ, λ) = eϕ cot(ϕ)−λ. (172)

We will see that ρ2(ϕ, λ) − ρ1(ϕ, λ) > 0 by rewriting the inequality

ϕ

sin(ϕ)
> λe−λeϕ cot(ϕ) (173)

holding for all λ ≥ 0 and ϕ 6= 0 (which we show below) to conclude the proof of existence of canonical

form (168) with property (154).

We verify inequality (173) as follows: ϕ
sin(ϕ)

∣
∣
ϕ→0

= 1 > λe−λ ∀λ ≥ 0. Thus this inequality is true in the

limit ϕ → 0. Then consider the slope of the left hand side

d

dϕ

(
ϕ

sin(ϕ)

)

=
sin(ϕ) − ϕ cos(ϕ)

sin2(ϕ)
, ϕ ∈ [−π, π] (174)

This is an odd function with the same sign as ϕ, i.e. negative for ϕ < 0, null for ϕ = 0 and positive for

ϕ > 0, thus ϕ
sin(ϕ) ≥ 1 and the value 1 at ϕ = 0 is a minimum for ϕ ∈ [−π, π]. Then consider the slope of

the right-hand side of inequality (173),

λe−λ d

dϕ
eϕ

cosϕ
sinϕ = λe−λeϕ

cosϕ
sinϕ

(sin(2ϕ) − 2ϕ)

2 sin2 ϕ
(175)

which is an odd function with the opposite sign than ϕ, i.e. for ϕ 6= 0, i.e. the value at ϕ = 0 is a

maximum. Thus ϕ
sinϕ ≥ 1 > λe−λ ≥ λe−λe

ϕ
cosϕ
sinϕ and hence inequality (173) holds true for ϕ ∈ [−π, π]

(ϕ 6= 0), i.e. Eq. (169) has no intersections with non-vanishing imaginary parts.

Non-negativity of EST (74)
This formula holds for A1 < 2 which we rewrite as

E[τ0,−1]simple =
1 + g1

1 − g1
− 1

α1
, 0 ≤ g1 < 1 (176)

where from Eq. (152) follows that g1 ≥ ∑∞
t=2 ψ(t) = 1 −α1. Thus α1 ≥ 1 − g1 and so E[τ0,−1]simple ≥ 0 for

all non-trivial cases 1 − α1 ≤ g1 < 1 (and for the trivial walk ḡ(z) = 1 is constant with g1 = 0 and α1 = 1

thus E[τ0,−1]simple = 0) concluding the proof.
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