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Resonances in the
Two-Centers Coulomb Systems

Marcello SeriAndreas KnadfMirko Degli Espostiand Thierry Jeckb

We investigate the existence of resonances for two-centers Coulomb systems
with arbitrary charges in two dimensions, de ning them in terms of gener-
alised complex eigenvalues of a non-selfadjoint deformation of the two-centers
Schredinger operator. We construct the resolvent kernels of the operators and
prove that they can be extended analytically to the second Riemann sheet. The
resonances are then analysed by means of perturbation theory and numerical
methods.
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1. Introduction

Our work concerns the study of the quantum mechanical two- xed-centers Coulomb systems
in two dimensions. The two-dimensional restriction of the two-centers problem arises natu-
rally in the analysis of the three-dimensional problem and, as described in [48], it is essential
to be able to analyse that case.

Since three centuries the two-centers Coulombic systems have been studied, from a classi-
cal and later also from a quantum mechanical point of view, starting from pioneering works
of Euler, Jacobi [28] and Pauli [43] and going on until the recent years. For an historical
overview we refer the reader to [48].

The interest for the quantum mechanical version of the problem comes mainly from molec-
ular physics. Indeed it de nes the simplest model for one-electron diatomic molecules (e.qg.
the ionsH; and HeH** ) and a rst approximation of diatomic molecules in the Born-
Oppenheimer representation.

In fact many of the results in the literature are related to the hard problem of nding
algorithms to obtain good numerical approximations of the discrete spectrum and of the
scattering waves [22, 23, 35, 36, 47], and to the asymptotic analysis of spectral properties
in the very small or very large center distance [10, 15, 21, 31]. In contrast, really little is
known on the regularity of the solutions with respect to the parameters of the system [52]
and even less on the problem of resonances.

Quantum resonances are a key notion of quantum physics: roughly speaking these are



scattering states (i.e. states of the essential spectrum) that for long time behave like bound
states (i.e. eigenfunctions). They are usually de ned as poles of a meromorphic function,
but note that there is no consensus on their de nition and their study [62]. On the other
hand, it is known that many of their de nitions coincide in some settings [26] and that their
existence is related to the presence of some classical orbits \trapped" by the potential.

If a quantum systems has a potential presenting a positive local minimum above its upper
limit at in nity, for example, it is usually possible to nd gquantum resonances, called shape
resonances. These are related to the classical bounded trajectories around the local minimum
[27]. These are not the only possible ones: it has been proven in [7, 8, 20, 50] that there can
be resonances generated by closed hyperbolic trajectories or by a non-degenerate maximum
of the potential. The main di erence is that the shape resonances appear to be localised
much closer to the real axis with respect to these last ones.

Even the presence or absence of these resonances is strictly related to the classical dynam-
ics. In fact it is possible to use some classical estimates, called non-trapping conditions, to
prove the existence of resonance free regions (see for example [6, 38, 39]).

A major shortcoming of the actual theory of resonances is that the existence and localisa-
tion results require the potentials to be smooth or analytic everywhere, with the exception
of few results concerning non-existence [38, 39] or restricting to centrally symmetric cases
[3].

In this sense, the two-centers problem represents a very good test eld. In fact, it is not
centrally symmetric but presents still enough symmetries to be separated (see Theorem 2.7).
This allows us to shift most of the analysis from the theory of PDEs with singular potentials
to the theory of ODEs, simpler and more explicitly accessible.

Moreover, the two-centers models present all the previously cited classical features related
to the existence of resonances: the non-trapping condition fails to hold [11], there are
closed hyperbolic trajectories with positive energies [32, 49] and there is a family of bounded
trajectories with positive energies [49]. At the same time, the energy ranges corresponding
to the closed hyperbolic trajectories and to the bounded ones are explicitly known [49].

In general the relation between di erent de nitions of resonances is not fully understood,
even for smooth symbols. In this work we de ne a notion of resonances for the two-centers
Coulomb system. These are de ned as poles of the meromorphic extension of the Green's
functions of the separated equations. We then show how to approximate them in di erent
semiclassical energy regimes.

These approximations lead to strong evidence that relates the energies of the resonances
far from the real axis (i.e. not-exponentially close to it w.r.t. the semiclassical parameter) to
that of the closed hyperbolic trajectories.

Our work is strongly inspired by [3] but we treat a more interesting situation since the
scattering by two nuclei is richer than the one by one nucleus. We get similar results as in
[3], except for the expansion of the Green function in partial waves. In [3], the latter can be
justi ed thanks to a special property of spherical harmonics. We did not succeed in proving
it in our context (and this would be an important result). This explains why we did not
completely connect our de nition of resonances to usual ones.

Compared to other results on resonances, we provide quite precise informations in an
usually unpleasant context since our potential (as in [3]) contains Coulomb singularities.



Except for some results in Section 6.2, our main contributions are not of semi-classical
nature in contrast to those in [6, 7, 8, 50].

The structure of the paper is as follows.

In Section 2 we introduce the two-centers problem both in its classical and gquantum
mechanical formulation. We describe its main properties and the separation of the di erential
equation associated to the operator into radial and angular equations.

In Section 3 we describe the spectrum of the operator obtained from the angular di erential
equation and the properties of its analytic continuation.

In Section 4 we focus on the spectrum of the operator obtained from the radial di erential
equation and the analytic continuation of its resolvent. This is done constructing explicitly
two linearly independent solutions with prescribed asymptotic behaviour. They mimic the
incoming and outgoing waves of scattering theory, in fact we will use them to construct the
Jost functions, and consequently de ne and analyse the Green's function and the scattering
matrix. The main results are contained in Theorem 4.5 and Theorem 4.14 and their corol-
laries. In particular they provide the key ingredients to de ne the Jost functions and their
analytic continuation in Corollary 4.19. In Theorem 4.5 is proven the existence and unique-
ness of the incoming and outgoing waves for real and complex values of the parameters. In
Theorem 4.14, it is shown that these solutions admit an analytic continuation across the
positive real axis into the second Riemann sheet.

In Section 5 we explain how the resolvent of the two-centers system relates to the angular
and radial operators.

In Section 6 we apply the theory developed for the angular and radial operators to the
objects described in Section 5. Here we de ne the resonances for the two-centers problem
(see (6.2)) and analyse some of their properties. The rest of the section is devoted to
the computation of approximated values of the resonances in di erent semiclassical energy
regimes, see in particular (6.9), (6.18) and (6.22).

In Section 7 we use the approximations obtained in the previous section to compute the
resonances and study their relationship with the structure of the underlying classical systems.
The numerics strongly support the relation between the resonances that we've found and the
classical closed hyperbolic trajectories.

In Section 8 we make some additional comments relating our results for the planar two-
centers problem to the three-dimensional one and to theenters problem.

In the Appendix A we describe how to modify the generalised Prnafer transformation in the
semi-classical limit to get precise high-energy estimates. These results are needed for the
high-energy approximation obtained in Section 6.5.

Notation. In this articleN = f1;2;3;:::g, R := Rnf0g.

2. The two-centers system on L?(R?)

2.1. The two-centers Coulomb system

We consider the operator ih?(R?), given by
. Z1 Z;
H:= h®’+ V with  V(q) := - -+ - - 2.1
(@ (@ 9 s13 )9 s (1)




whereh > 0 is a small parameter.

This describes the motion of an electron in the eld of two nuclei of chargg2 R =
Rnf0g, xed at positionss; 6 s, 2 R?, taking into account only the electrostatic force. By
the unitary realisationUf (x) := jdetAj 72f (Ax + b) of an a nity of R? we assume that
the two centers are ab; := a:=( %) ands; ;= a.

Remarks 2.1.

Notice that if we setZ; = Z, > 0 in the operator in (2.1), we get the Schredinger
operator for the simply ionized hydrogen molecidg [10, 15, 53], whereas faZ; =
Z, it describes an electron moving in the eld of a proton and an anti-proton [21, 31].

Another example covered by this model is the doubly charged helium-hydride molecular
ion HeH™ , with Z; =2Z, > 0, see [60].

Even if (2.1) does not directly describe the interactions in molecules, it is related to
the study of scattering theory for such systems. In Example 1.3 in [11], the scat-
tering of a heavy particle by a molecule is partially studied and, thanks to a natural
physical assumption, the Hamiltonian of the heavy particle is given(®yl) plus an
additional potential correction. In the paper [29], scattering cross sections for diatomic
molecules are estimated in a semi-classical regime related to the Born-Oppenheimer

approximation. A Schmdinger operator of the typ@.1) enters in the computations
as an e ective Hamiltonian for the scattering process.

2.2. Elliptic coordinates

The restriction to the rectangleM :=(0;1) ( ; ) of the map

. p2 2 cosh( )cos( )
G:R?! R? , 7SOl (2.2)
de nes aC! di eomorphism
G:M! G(M) (2.3)

whose imageG(M) = R2n (R f 0Og) is dense inR?. Moreover it de nes a change of
coordinates frong 2 R?to (; ) 2 M. These new coordinates are calletliptic coordinates

Remarks 2.2. 1. Inthe (au; p)-plane the curves = c are ellipses with foci at a, while
the curves = c are confocal half hyperbolas, see Figure 2.1.
2. The Jacobian determinant o& equals

F(; ):=det(DG(; ))=sinh?( )+sin?( )=cosh?( ) co(): (2.4)

Thus the coordinate changé€2.2) is degenerate at the point§; )2f0g f 0; ¢
inM. For =0 the coordinate parametrizes the;-axis interval between the two
centers. For =0 ( = ) the coordinate parametrizes the positive (negative)
p-axis withjouj > 1.



Figure 2.1:Elliptic coordinates.

2.3. Classical results

The classical analogue of (2.1) is described by the Hamiltonian function on the cotangent
bundleT Q; of Q2 := R?nf ag relative to the two-center potential given by:
ipi® Zy Z;
H:T Q! R , H(p;g:=—7+: -+ - o
° P="5 " jq 4 jara
Lemma 2.3 (see e.g. [49]) UsingG de ned in (2.3), andZ := Z, Z1, H is transformed
by the elliptic coordinates into

(2.5)

1
H (GH((P:p;; )= gy Halpi )+ Hap ) (2.6)
where(G 1) : T M ! T Q;is the cotangential lift ofG 1, and
02 02
Hi(p; ):= > Z.,cosh() , Hap; ):= 7+ Z cos(): (2.7)

There are two functionally independent constants of motibhand L := H; cost( )H
with values and K respectively.

Taken together, the constants of motion de ne a vector-valued function on the phase
space of a Hamiltonian. We can study the structure of the preimages of this function (its
level sets), in particular their topology. In the simplest case the level sets are mutually
di eomorphic manifolds.

De nition 2.4. (see [1, Section 4.5]) Given two manifold; N ,f 2 C1 (M;N ) is called
locally trivial at yp 2 N if there exists a neighborhood N of yg such thatf (y) is a
smooth submanifold oM for ally 2 V and there thereisamag2 C* (f Y(V):f (yo))
such thatf g:f Y(V)! V f 1(yg) is a di eomorphism.

The bifurcation set of f is the set

B(f):= fyp 2 N jf is not locally trivial atyqg:



Notice that if f is locally trivial, the restrictiong ¢ 1) : f y)! £ Y(yp) is a dieo-
morphism for every 2 V.

Remark 2.5. The critical points off lie in B(f) (see [1, Prop. 4.5.1]), but the converse is
true only in the casd is proper (i.e. it has compact preimages).

De ne the function on the phase space as follows (omitting a projection in the second
component)

Fi= 4 T Q! R%: (2.8)
whereH (p; ):= Hy(p; ) cosi( )E.

Theorem 2.6 ([49]). Let (Z1;Z2) 2 R R, then the bifurcation set of(2.8) for positive
energies equals

B(F)\ (R, R)=f(E;K)2Lj E 0OandK.(E) K K (E)g:

HereL := Lo[L Y [L 2[L3[L 2[L 3 R?with

Lo:= fE =0g; Lt =fK=Z Eg
L2 :=fK = Z, Eg; L2:=fK = Z Eg; (2.9)
L3 := f4EK = Z2g; L3 := f4EK = Z2?g;
andK, andK are de ned by
8
31 E>0
Ke(E):=  (Ze+E); B min 0
2
== 0 E>min %50
(
z E E 4

2
E E> %

The energies lying on the line2 are the ones associated with the closed hyperbolic
trajectory bouncing between the two centers [49].

Mereover, forjZ.j < Z the set of energy parameters included in the regibi
0g\ (E;K)2L3 E< 2 and contained between the curve$ andL! is somewhat

special: on the con guration space they are associated with a family of bounded trajectories
trapped near the attracting center [49].

2.4. Separation in elliptic coordinates

The importance of the change of coordinate (2.3) for the quantum problem is clari ed by
the following well-known theorem (see e.g. [5]). Here we enlarge the domafd tf M .



n 0
Theorem 2.7. Letu 2 Ca(R?) := U2 C(R?) U geyy 4 iS twice continuously di erentiable.

The eigenvalue equation
h? + V(9 u(g) = Eu(q); E2R;
transformed to prolate elliptic coordinates, separates with the ansatz
u G(; )=f()a()

into the decoupled system of ordinary di erential equations

( h2@ Z.cosh() Ecost()+ f()=0

h2@+ Z cos()+ E co( ) g( )=0;
where 2 C is the separation constant,
f2 Ci@e1) = h2CX[0;1)jh0)=0 ;
92 Chut 5 D= h2C* ; Dih®( )=h®()fork=0;1

(0]

and we have se¥ = Z, Z;and@ = @@.

Remark 2.8. Without loss we assum& 2 [0;1 )andZ, 2R, Z, 6 Z ,ie. Zy, Z;.

Remark 2.9. SinceG is a di eomorphism and sincé de ned in (2.4) equalgdet(DG), the
transformation to prolate elliptic coordinate§; ) de nes a unitary operator

G:L?%(R%dg)! L?(M;d ) ,with d :=F(; )dd:

Proof of 2.7. We setr; ;= jq si1j, r2:= jg Spj and transform toelliptic coordinates
We have 5
r51=(aw 1°+ = cosh() cos() "

Thus the distances from the centers equal
r, = cosh cos and rp=cosh +cos :

ForF(; )=sinh?( )+sin?( )=cosh?( ) cog( ) we obtain

V G(: )= .Zl' .ZZ.: Z+cosh()-Zcos()
ja a jg+ aj F(; )
and the Laplacian acts in elliptic coordinates as
1
= @+ @ : 2.10
T FG) (2.10)



With the ansatz
e(; )=f()g() with f2Ci(0;1)) andg2Cl(l ; 1

the rst equation separates and we obtain the decoupled system of ordinary di erential
equations

h?@f()+(V()+ )f()=0 , h?@g( )+(V () )o()=0 (211
whereV andV are the multiplication operators for the functions

V()= Zycosh() Ecostf() , V():=2Z cos()+ Ecod() (2.12)

U

Remark 2.10. Here the separation constant plays the role of the spectral parameter in
time independent Schredinger equations, and enekjythe one of a coupling constant.

Proposition 2.11. The operatorH on L?(R?) de ned as in (2.1) is unitarily equivalent to
the operator inL?(M;d ), given by

Z, cosh() Z cos().

Ho:= h? g+ Vg with Vg(; ):=
G e+ Ve c(: ) ()

Hg has form core
GCI(R? = f2Ck M jf(; )=f(; )and@fj- =0
It admits a unique self-adjoint realisation with domafs(D (H)) with
D(H):= u2L?R?)jVu2Li(R?; u2HL(R?; Hu2L*R? ; (2.13)
whereHu is to be understood in distributional sense.

Proof. Itis well-known thatH has a self-adjoint realisation dn?(R?). The proof is based on
the in nitesimal form boundedness of w.r.t. [2, Theorem 3.2] and the KLMN Theorem
[44, Theorem X.17]. In this way the operator is well-de ned and has form domai(R?).
Moreover its domairD (H) is given by (2.13), see [2, Theorem 3.2].

The domain of the unitarily transforme#i g = GHG ! is then transformed taG(D (H)).

Finally C} (R?) is a form core for the quadratic form associated t, therefore it is
unitarily transformed to a form core for the quadratic form associated Hig;. See [46,
Section VII1.6] for the de nitions. The form of the operator is given by Theorem 2.7.

It is natural at this point to move our point of view from the study bfg E onL?(M;d )
to the study of the separable operator

Keg =K 1+1 K
actingonL?(M;d d )= L?(0;1 );d) L3%[ :; J];d). Here

h’@ Z. cosh() E cost( );
h?@+ Z cos()+ E cos( ):

(2.14)



In fact, the separation reduces the problem to the study of two Sturm-Liouville equations
(K + )()=0 and (K )Jg( )=0: (2.15)

Following the standard convention used in the literature, we will call the rst equatiadial
equationand the second equatioangular equation For the proper boundary conditions on
L2([0;1 );d ) respectivehL?([ ; ];d ) they de ne essentially self-adjoint operators.

More speci cally the eigenvalue equation & (h) is in the class of the so called Hill's
equation. In view of Proposition 2.11, we are interested in theperiodic solutions of the
equation, i.e. we look fog 2 L%([ ; ];d ) such that

o )=9() and oY )=o)

For K (h) it is clear thatO is a regular point, we will see later how to treat the singular
point1 (we refer the reader to [61] for additional information concerning regular and singular
points of Sturm-Liouville Problems). For what concerns the boundary condition§, ias
suggested by Proposition 2.11 we will require

f%0)=0: (2.16)

The transformation needed to move fromg E to (2.14) is obviously not unitary, as we are
passing from a semibounded operator to a family of non-semibounded ones. On the other
hand, their spectra are related, and we will studyH ) by means of the spectra associated

to (2.14).

3. Spectrum of the angular operator and its analytic
continuation

We now turn the attention to the second equation in (2.15), the angular equation. Let
T:=T(Z :h;;E):= h ?K (h) h %E; (3.1)

with parametersZ 2 R andE 2 (0;1 ). With this de nition, h?[T ]( ) =0 denotes the
eigenvalue equation fdKk .

We start considering the simpler case of equal chargés € 0). Then the eigenvalue
equation[T ]( ) =0 is the Mathieu equation
2 E E
e )25
with periodic boundary conditions in ; ]. We apply Floquet theory (see [16, 37, 41, 55]),
using the fundamental matrix

T1)= @& () cos(2) ()=0 (3.2)

C oy faf -2 E _E.
F(1 )'_ f]l(_)fg) ( [ )l — W, — W’ (33)
built from the fundamental system of solutions7! fi( ; ; ), with
f100; 5 )=1=f0;; ) , f200;; )=0= f{0;; ) (3.4)

10



(henceforth the prime” means the partial derivative w.r.t. the rst variable). The potential
V() := cos(2 ) being even, it follows that all the2 -periodic solutions must be either

-periodic or -antiperiodic in[0; ] (or [ ; 0]).

The structure of the periodic solutions and their eigenvalues for the Mathieu equation
is well-understood (see [41, Chapter 2]): For each integer 0 one nds two solutions
cen( ; ) andse+1( ; ), called Mathieu Cosineand Mathieu Sinerespectively, that have
exactlyn zeroes in(0; ) and that are -periodic for evem and -antiperiodic for oddn,
the corresponding eigenvalues being( ) and ., () respectively. For parameter values
E2R, 2(0;1)the ; and ,,, arereal and

+
0< 1< 1< 2< 2%

The following facts are proved in [30, Chapter VII.3.3], [40, Chapter 2.4], [41, Chapter
2.2] and [58].

1. The eigenvalues of the Mathieu operators are real-analytic functions 2nC, whose

algebraic singularities all lie at non-real branch points.

2. They can be de ned uniquely as functions, ( ) of by introducing suitable cuts in
the -plane. Moreover they admit an expansion in powers afith nite convergence
radiusry, such thatliminf pi1 % C for someC > 0.

The number of branch points is countably in nite, and there are no nite limit points.
The operatorT corresponding to (3.2) can be decomposed according to

P w

L 5 D=1Lg Li Lo Ly

where the superscripts denote respectively the sets of even and odd functions and
where the subscript® and 1 denote respectively the sets of functions symmetric and
antisymmetric with respect to« = =

5. The restrictions ofT to the four subspacest ,_, are self-adjoint and have only simple
eigenvalues, as given by the following scheme:

Lg M n=0;246;:::;
Ly = 5 b n=1;35::;
Lo © ns ns n=1;3;5:::;
Ly & oy ons n=2;4,6;::::

6. All the eigenvalues in each of the four groups of the previous remark belong to the
same analytic function, i.e. the eigenvalues in the same group lie on the same Riemann
surface [41, 59].

7. The eigenfunctions 7! |, ( ) are themselves analytic functions gfand . For all
n 2 N they coincide with the Mathieu Cosine and the Mathieu Sine introduced above,
namely ; ce and ,; S&+1 (N2 Np).

Despite the completeness and the clarity of perturbation theory for one-parameter analytic
families of self-adjoint operators, the situation is much more intricate and much less complete
in presence of more parameters. On the other hand we can use our restrictions on the
parameters and the special symmetries of the potential to play in our favor.

11



For a general value o , the eigenvalue equation is

T10)= @ () Sycos()+ gqc0s2) 2ot ()=0; (35

with periodic boundary conditions op ; ] and eigenvalue . Let us call

— 2 E . . — Z . . — E .

W, 1 -— W’ 2 .= W (36)

Notice that the main di erence between (3.5) and the Mathieu equation is that now the
period of the potential is no more smaller than the length of the considered interval. Thus,
in applying Floquet theory we do not anymore look for solutions which are (anti-)periodic
under translation by .

Remark 3.1. By standard Sturm-Liouville theorems (see for instance [16, Theorems 2.3.1
and 3.1.2]) we know that for every choice of and » the spectrum ofK (h) is discrete,

at most doubly degenerate and accumulates only at in nity. Anyhow it follows from [37,
Theorem 7.10] using a change of variable that in this case there cannot be coexistence of
2 -periodic eigenfunctions for the same eigenvalue. Thus the spectrum is non-degenerate.

It is proved in [54] that, for real-valuedE and Z , the eigenvalues oh 2K (h) form
a countably in nite setf ,( 1; 2;h)g, o of transcendental real analytic (actually entire)
functions of the parametersy; 2 2 R, so that in the( 1; »; ) space the sets

(1, 2 n( 1 2)i( 1 2)2R?

de ne a countably in nite number of uniquely de ned real-analytic surfaces.
We can apply analytic perturbation theory [30, Chapter VII] to

T()=T+ (1+cos(2))

whereT is de ned in (3.1) and is assumed to be de ned bl and some real parameter
Eim as follows
(Eim; h) := |';']”; (with i = pT; h2 (0;1)):

Therefore T( ) is merely (3.5) with complexE. It is evident that T( ) de nes a self-
adjoint analytic family of type (A) in the sense of Kato. Therefore [30, Chapter VII] each

n( 1; 2; ) admits an analytic extension on the complex plane around each Eeghat
can be expanded as a series in= iE;y=2h? with an n-dependent convergence radius

n. Remark 3.1 concerning the simplicity of the spectrum and the construction described
at points 4. and 5. on page 11 is still valid. Therefore we may continue to regard each
eigenvalue as simple restricted on its proper subspace and consider the lower bound of the
convergence radius in terms of the eigenvalues' spacing in the proper subspace. These
distances are known to be at least of ordeyin the sense that there exisS > 0 such that
liminf ,, Dtdistance ¢ gea [30, Chapter VII.2.4].

n
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In the particular case considered, we can use the ansatz given by [37, Theorem 1.1] to
bound the distance between the periodic solutions with a boundary-value problem. To this
end we can use the discussion of [57, Section 5] and apply it to our case to obtain the
following rough estimate, generalizing point (2) on page 11.

Theorem 3.2. Let E > 2jZ j. Then the convergence radiiy™N corresponding to(3.5)
with Dirichlet (resp. Neumann) boundary conditions satisfy

. . n
Ilmlnf 7 13

Proof. In [57], Section 5, it is shown that a result like our Theorem 3.2 holds for the Mathieu
equation (see [57, Theorem 5.1]). This is a particular case of a more general theorem on the
guadratic growth of the convergence radii for the eigenvalues of a big family of di erential
equations (see [57, Theorem 3.4)).

To apply [57, Theorem 3.4] and obtain the theorem for the Mathieu equation, it is enough
to check the assumptions and use the estimates obtained there to get the constants in the
growth rate. This check relies on some crude estimates on incomplete elliptic integrals and
on the potential that can be used also for our problem.

Indeed, we can replace the estimgtcos(Z)j 2cosh(2z) for the Mathieu potential
by a corresponding estimate faos() + é—E cosik): if E j 2Z |, then

z
cos(Z) +2 = cosfz) 2cosh(Zz):
Then, the constants in the proof of [57, Theorem 5.1], would coincide with the constants
obtained for our potential:R = 2cosh(2 ), Rp = 2, U? = 1—2 + 2 (notation from [57,
Section 5]). And choosing = 5 one can check that the assumptions of [57, Theorem 3.4]
are satis ed and the growth constant i% also in this case. O

Remark 3.3. As for [57, Theorem 5.1], we used very crude estimates. The constants, and
in particular the lower bound for the growth rate, are far from being optimal also in this case
and could be improved following the enhancements presented in [58].

Remark 3.4. We expect that Theorem 3.2 still holds true f&; < E  2jZ |.

4. Asymptotic behaviour of solutions of the radial Schiedinger
equation and their analytic extensions

The general estimates that we develop in this section are needed in order to justify the formal
step in the separation of variables and the construction of the Green's functions. We proceed
with a philosophy close to the one of [3].
With the substitution E = k? of its parameter, the radial equation in (2.15) takes the
form
v :k)+ h ? k®cost( )+ Z4 cosh() v(;k)=0 (4.1)

13



where > 0,h > Oandk 2 C are arbitrary. Now fol 2 Nwe set := |, thel-th eigenvalue
of K (counted in ascending order for real parameters and then extended analytically). We
assume w.l.o.g. thah = 1, sinceh can be absorbed in the other parameters.
We will be interested in the solutiong ( ;k) := v (;k; ) of (4.1) which decay as
'l for k in the upper, resp. lower, half-plan@ = fk 2 Cj=(k) 7 0g. We call them,
following [3] \outgoing”, resp. \incoming”, and we will make a speci ¢ choice of such a
family of solutions by xing the behaviour of (;k)as !1
We want to construct a phase function that is an approximate solution of the eikonal
equation for the Schredinger equation (4.1), that is characterized by a particular asymptotic
behaviour and that is analytic ik. We would like to consider something of the form
Z q
(:k) k2cost?(t) + Z. cosht)  dt; (4.2)
0

but this gives a well-de ned analytic function only fgkj? > jZ. j. For our analysis
it will be essential that the phase function is analytic in2 C nf0g. To construct it we

reconsider the previous ansatz and perform a change of variables. If we sainh(t), the

above equation is transformed into

Z sinh( ) p Z.

(:k) . k2 o()d with o )= — P2 (4.3)

If we callr = sinh( ), we may consider the map 7! (arcsinh(r); k) to be the phase
function of a long-range potential, asymptotic to 7! kr asr ' 1 , (see (4.7) for a more
precise statement), plus a short-range perturbation.

4.1. Decomposition into long and short range

To construct the phase function , we introduce an appropriate decomposition of the po-
tential g into short and long range parts.
Letj 2 N. Wedenelj;s; 2 (0;1)! Rby

z
si()=a() Ii() and Ij():= ()%; (4.4)
where ( )=1 if Z, 0 and otherwise is de ned as follows: 2 C} ((0;1 );[0; 1]) such
that ( )=0 if jjiZ+jand ()=1if JJZ+)+1.
Note that s;( ) 2 L1((0;1)), lj 2 C?((0;1)),

suplj( ) 1= and Ij( )= pZ;for >R j;
>0 1+ 2
for Rj := jjZ+j+1.
Let ; :=fk2 Cjjkj2> 1=jgand ;2 (0;1) ! C,dened by
Zsinh()q

i(ik):= . k2 1;()d: (4.5)

14



Here we have taflf)en the principal branch of the square root, i.e. the uniquely determined
analytic branch of z that maps(0; 1 ) into itself.
Note that j(; ) is analyticin ; and j(;k) 2 C%((0;1)). Furthermore, fork 2 ;,
j (;k) satis es the eikonal equation

j@ ()i*= K> lj(sinh()) (4.6)

on(0;1).
Theorem 4.1. Let

D:=f(;k)2(0;1) Cnfogjsinh() j k ?Z+j+1g:
There exist a function : D ! C satisfying the following properties:
1. Forall(;k)2D, (; k)= (k).

2. For allj 2 N, the restriction of j o (Rj;1) j doesn't depend on and is
an analytic function ofk.

3. Forallk2 CnfOg, (; ) is analytic oneach j, forj 2 N such thatsinh( ) >R;.

4. Forallk 2 Cnf0g, (;k) 2 C?(0;1)) and satis es the eikonal equatio(4.6) on
(Rj;1 ) wherej is the integer part ofik?j L.

The theorem follows from the construction above with the same proof as [3, Proposition
2.1].

Remark 4.2. The phase function de ned in the previous theorem is not unique. This
is, however, immaterial for our purposes. In fact, our main concern is to have a controlled
behaviour,as 1  (see Proposition 4.3) and good analyticity properties in order to identify
the two (unique) wavess for a wide range of parameters.

Henceforth we will refer to the ( ; k) de ned in Theorem 4.1 as global phase function

Proposition 4.3. The global phase function( ; k) has the asymptotic behaviour given by
. Z. k
(;k)= ksinh()+ 5~ +O(1)= Je 1+o1) as !1 : (4.7)

Remark 4.4. In the proposition the terms( ) := ;— has been dropped out. In fact
it belongs to the short range componers; of (4.4) and choosing in(4.4) a dierent
decomposition ofy( ) into a short-range and long-range part, keepil{g) xed near in nity,
modi es (;k) by an analytic function ok alone.

Proof. Without losing generality we can suppo$kj > jZ.j and consider the simpli ed
phase function
Z q z S

(;k):= . k2 cost?(t) + Z, cosht) dt = k 0 coshf) 1+ kZCZo;h(t) dat  (4.8)
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as !'1

VA

k coshf) 1+
0

. Z+ 2 2
(;k) 2kzcosh(t)+ O k “cosh “(t) dt

+

k sinh( ) + Zz—k + O(L);

Writing sinh( ) = (e e *)=2 and collecting the growing term we have the thesis. [
The Liouville-Green Theorem [17, Corollary 2.2.1] guarantees that for daéhC there
exist two linearly independent solutions of (4.1) whose asymptotics &4&  is given by

yio( )= P===exp i (ik) 1+o@) for I1

In particular, it follows from the asymptotic estimate of Proposition 4.3 that (4.1) must be
in the Limit Point Case at in nity (more precisely Case | of [9, Theorem 2.1]) if we set
r(x) := cosh?(x), p:=1 and := k2. In what follows we investigate the regularity of the
solutions with respect to andKk.

Theorem 4.5 (Outgoing and incoming solutions)For eachk 2 Cnf0g, equation(4.1) has
unigue solutionsy ( ; k) verifying the asymptotic relation

v(;k)=p§e zexp i (;k) 1+01) as !1 (4.9)
(4.9) holds uniformly in any truncated cone
(; ):=fk2Cnf0g]j arg( k) ; jkj g with 0, > O

The family of solutionsk 7! v ( ; k) de ned by (4.9) is analytic in the half planek 2 C
pointwise in , and extends continuously t& 2 C n f0g.

-1 0 1

Figure 4.1:Cones for =1=3and =1=2
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Remark 4.6. (1) and the uniqueness of Theorem 4.5 imply that(;k)= v (; k). In
particular it su ces to considerv. .

Proof. In view of Theorem 4.1 and the subsequent remark, we can reduce the proof to the
case where the phase functionis given by (4.8) for > 0 andjkj® > jZ.+j. We call a
local phase functionLet

L

k 2
V (k)= ——— gl Gk 4.10
(:k) @ (;k) (4.10)
de ne the approximate solutions of (4.1).
For jkj the functionV satis es the comparison equation
V% k)+ Kk2costf( )+ Z. cosh()+ 3S (;k) V (;k)=0 (4.11)

whereS denotes the Schwarzian derivative

000 3 00 2
S =— 5 0 (4.12)
w.rt. . Fork2 (; ) we consider the inhomogeneous Volterra Integral Equation [56]
Z,

v (k)= V (k) Kk(St)Fk(v (tk) dt (4.13)

where Fy(t) = %S (t;k) + is the function that expresses the di erence between the
Schradinger equation (4.1) and the comparison equation (4.11) a0d ;t) is the Green's
function associated with equation (4.10):

K(;t)= W(V ;Ve) YHEVE()V (1) VetV ()g (4.14)

(the parameterk being suppressed), with Wronskia' (V Vi) := V V2 VO, =2ik.

To give (4.13) meaning we need to check if the de nition makes sense and a solution can
be found.

We explicitly computeS and thusF using (4.12), obtaining

10k* z2  2k*cosh(2)+ Z. sech() 12k?+52Z. sech()

S =
) 8(Z. + k2cosh())?
and thus, for real and for everyk 2, (; ), we have
lim jF()j= %+ and Cg = sup jF()j<1: (4.15)
"1 2(0:1)

Of courseCg depends orZ,, andk, thuson and . Moreover from (4.10) and (4.7),
writing k 2+ (; ) ask = k; + ik;j (kr; k; real), we get

_ ik k)
iV (;k)j= P 2% 2(1+ o(1)) e k Cve zexp e (1+ o) ; (4.16)
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whereCy (k) := sup e~?jk= 4 ;k)j < 1 by (4.8). Therefore for0 < t< 1 we

200:1)
have
s
_ 1 k2 o (o
: = - ___* @ dl(k) (k) i (tk) (k)
KEO= 200 g0 o 6 °
Cc2 . R q
TVe 2 Cx exp ik ‘cosh() 1+ #;h()d ; (4.17)
where
. . R a Z. .
Ck (k) = t-Sl;FF)v 1 exp 2k “cosh() 1+ osyd 2.

It follows from (4.15), (4.16) and (4.17) that the Volterra Integral Equation (4.13) is
well-de ned as a mapping from the function space

n (0]
C(; )= f2C2@1) (;) 82 (; )ikike= sup f(xk)e' 0 <1

x2(0;1)

(4.18)
to itself. In particular, beingy 2 C (; ) we can apply the Picard iteration procedure to
nd a solution of the equation and prove its existence. We claim that the solution must be
unique. Suppose that there exists two solutions; v 2 C, of (4.13), then
Z,
GGk)=ve(:k) w(;k)= K(;t)F() (k) dt (4.19)

At this stage, it is not obvious that the r.h.s. of (4.13) is a contraction, that would allow us
to conclude the proof in a standard way. In the rest of the proof we show that for appropriate
initial values this is indeed the case, therefore proving the unicity and the uniformity of the
estimates. The previous estimates applied to (4.19) give
Z, Z,
i (Gk)j= K(;t)F() (tk)dt JKOGHF®) (Hk)j dt
S 7 S
CK CF C k el ( ;k) 1 k
2 q k) qt; k)
CKCFC CVe 5 el (,k)
2

dt

1 pi t
2e 7(1+ o(1)) dt
YA 1
e 2dt=C Cge € (% (4.20)

1
whereC (k) := k kg, C; = sup Z(O;l)pé (1+e? )q 1+ #;h() * and Cyt =
Ck CeECyC,. Using equations (4.19) and (4.20) we can reiterate the procedure, in fact
de ning
Z, Z,
1(;k) = KO F(®) (Gk)dt and (k)= KOOF®) o a(tk) dt
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one can prove by induction that

Chen . Chre™ . .
(K= i k)i tot i (k) c ot i (k)
JGRK)= (k)] Gn Den 3 31° —e— @
(4.21)
uniformly ink 2 4 (; ) and for alln 2 N. The convergence of
Ch _ P
C %e ng k) =c ¢ 0K gfae g (4.22)

n=1

implies thatj (;k)j=0,i.e. v = v,.
The same inequality implies that after some iterates the homogeneous integral equation is
a contraction, and coupled with the bounds on it implies that (4.13) has a unique xed
point. This proves the existence and uniqueness of the solution. In fact if we de ne
Z,
Vor (1K) = Ve (K) , Vs (G K) = KGRV 1+ (G K) dt;

the Picard iteration converges to, = P #:o Vn:+, and the series converges absolutely
uniformly ink 2 4+ (; ) with jv+ (;K)j j Vi(;k)je“® for some positive constant.
Therefore one has

Vi(ik)= Vi(;k)2+ o1l)) as Il

and (4.9) holds.
The fact that all the bounds are valid fdk 2 R completes the proof. O

Remark 4.7. It is possible to compute an explicit bound liKd.21) using the fact that

i () Ciee " .

jvn+ ()i Cve z e oA

In particular the dependence on, the parameter of the short-range potential i(%.3),
appears in the constanCi;. In view of the previous estimates it can be bounded by
j jO(1). Therefore we can be more precise and estimate

v (;k):pﬁe ze ' CK) 1+ M (;k; ) as 11 (4.23)

where for some constarn€ 6 0 we haveM (;k; )= €% & o1).

Remark 4.8. Let w be any other family of solutions of4.1), analytic ink 2 Cnf0g and
satisfying fork 2 4 (; ) the estimatew( ;k)= 0o(1) as !1 . Then

w( k)= (kv (5k);

where (k) is a nowhere-vanishing analytic function bf2 . (; ).
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Remark 4.9. In caseZ, = 0, the solutions of(4.1) are given by linear combinations of
the modi ed Mathieu functions Mc and S¢ [18, x16.6]. In particular, if we look at their
asymptotic behaviour, we nd out that up to a constant factor

k? k2

vi(;k)=Mc i (4.24)

whereMc(a; g;x) is the modi ed Mathieu cosine, i.e. the solution of
y®x) (a 2qcosh())y(x) =0

that decays forP q 2 Cs. Itis well-known [41, Chapter 2] that the function in the RHS
of (4.24) admits an analytic continuation through the positive real axis on the negative
complex plane for =2  arg(k) =2and thatforx ' 1 andk 2 C; it has the
following asymptotic behaviour [18, 41]

k? k2

Mc A
2’ 4

x =e 2exp ike‘(1+0(1) 1+0() ;

in line with the estimateg4.7) and (4.9), valid for allZ .

For what follows we will need to work in a slightly di erent setting. If we perform the
change of variable de ned by 7! Log(x+1) (with the principal branchLog of the logarithm),
for w(x; k) := v(Log(x +1);k) Equation (4.1) takes the form

(x + ¥ k) %+ h 2qxk:Z4; )wx;k)=0  with
2
ax; k;Z+; )::kz X+1+2(x+1) T+ (x+1) 3 +

Zy >

— 1+(x+1 —
(x+1) T 1

(4.25)

wherex > 0, h> 0andk 2 Cnf0g. As before we assume =1 for the moment.

Remark 4.10. In this case Theorem 4.5 and Remark 4.8 is still valid and in accord with the
Liouville-Green Theorem we have two unique solutions thakdsl  are asymptotic to

v (xK) = pﬁe (XK (1 + (1))

1 .
= P=op | Kx + Z-log(x + 1)+ & (4.26)

exp | Zh(x+1) 1+0 (x+1) 2 (1+ o(1))

where ( X;k) = (Log(x+1);k). The asymptotic behaviou(4.26) holds uniformly fork in
any sector (; )=fk2Cj arg( k) K| g with Oand > 0. The
family of solutions de ned by(4.26) is analytic ink 2 C nf0g and extends continuously
tok2 C nfog.

Remark 4.11. From now on we write with an abuse of notation(x; k) in place of ( x; k).
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Before presenting Theorem 4.14, the main result of this section, we need the following lemma.

Lemma 4.12. Let K be a compact setirCnf0g. Then for any < < , there is a
constantA such that any solution of Equatio4.25) veri es the estimate

OGK)] A (g + jeh)ple” () (4.27)

forx 2 € [0;1 ) andk 2 K, wherec = v(0; k); c®= vq0; k) are the initial data atx = 0.

Proof. We start proving (4.27) in the case | argkj for any Oand =0 (i.e.

x 2 (0;1)). All the constants that we are going to use without an explicit de nition are
de ned as previously. Using the approximate solutions given by (4.10) de neW bix; k) :=

V (log(x +1);k), we determinea, anda from the initial data requiring

c=a Vi (0:;k)+a Vv (0;k); , = a,Vo0:k)+ a V°(0;k): (4.28)
Then wx; k) satis es the Volterra Integral Equation
Zx dt
wWx;k)= ar Vo (x;k)+ a VvV (x k) + K(x;t)F (t)w(t; k) — (4.29)
0

whereK(x;t) := K(Log(x +1);Log(t +1)) andF (t) := F(Log(t +1)) are de ned from
the respective function (4.14) and (4.13). Notice similarly as in the previous theorem that
forO t x there exist constant€y(; ) and Cy such that we have

Kool ) s s e (k) (6K)
C\Z/Co( ; )n . ) LV -
> P mem =0 6k)  (Gk))j - (4.30)
De ne now p_ 1
V(x;k) = 2(ja+j+ ja j)ism exp = (xK)j : (4.31)
The sequence
Z x dt
vo(x; K) = ar Ve (k) + a V(K)o (k)= KGR (% 1(tk) o
0

is uniformly convergent. In fact, suppressing the dependence of the constant and |,
we havejw(x; k)] CyV(x;k) and, using the transformed version of (4.30), it follows by
induction that

0GR SVOGKILT(0); (4.32)
where
z, yi
1 dt X 1 dt 1
L(x) = Co o qtK) JF (1)] T+l CoCv . pﬁJF (t)j T+l COCVCFPﬁ
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is uniformly bounded fox 2 (0;1 ). Thereforep ﬁzo v, (X; k) converges uniformly and
absolutely and coincides with the given solutigfx; k) of (4.29) for | argkj ,

0. In particular beinga bounded in terms of the initial data and c®, we obtain (4.27)
for real values ok.

At this point it is enough to notice that as soon as we do not cross the branch cut of the
logarithm, all the inequalities and the equations written up to this point are valid, therefore
the result holds replacing with € x for every < < . O
4.2. Analytic continuation

We are ready to prove that the functiong can be analytically extended ik up to the
positive real axis. To this end we consider the transformed ferm

Remark 4.13. The potentialq de ned in (4.25) is analytic inCn (1 ; 1]. Therefore its
analyticity in the cone

=fz2Cnf0gj < argz< ¢ (4.33)

forall ; 2 [0; )isclear.

Theorem 4.14. Let v (x;k) be dened as in Remark 4.10. Thewr, (x;k) admits an
analytic continuation ink through the positive reak-axis into the region

fk2CnfOgj < argk< g;
v (x; k) admits an analytic continuation into
fk2CnfOgj < argk< g;

forany ; 2 [0; ) and both verify the asymptotic relatio4.9)
v (k)= p%e POk 1+ 01) as x!1 in . ; (4.34)

where (4.34) holds locally uniformly ink and uniformly inx. Furthermore an analytic
continuation ofw, (x; k) andw (x;k) through the negative real axis is de ned via

v (GK)=v (x; Kk): (4.35)

Remark 4.15. If + > | the analytically continued functior+ (x;k) may be double-
valued fork 2 C . By an abuse of notation we denote the corresponding, possibly not
simply-connected, domain by

D (; )=fk2Cnf0gj < arg( k)< + g: (4.36)

See Figure 4.2.
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Figure 4.2:DomainsD for =2 =3and =2 =5.

Proof. It is well-known [12, Chapter 3.7] that, as solutions of the linear di erential equation
(4.25) with analytic coe cients, v (x; k) admit an analytic continuation irx into the region
. The main point of this proof is to use this information to obtain the analyticitykrvia

dilation. More in details we will imitate the strategy of [3, Theorem 2.6], re ning the crude
bound of Theorem 4.12 by using the Phragmen-Lindelef principle. This allows us to identify
the dilated solutions with a decaying solution of the dilated equation. In view of Lemma
4.12, (up to multiplication with a function only depending ok) this solution is uniquely
de ned by the asymptotic behaviour as goes to in nity.

Let us considem (z;k) alongaray ;= fz2 CnfOgjargz= gwith0< <
Then forx > 0 andk 2 C, nfQOg, the function

Lk )= v (€ xk) (4.37)
satis es the equation
(€ x+1)! Yx:k) %+ e;—izq(ei x;K;Z+; ) (xk)=0 (4.38)
with g from (4.25). Moreover the initial data
LO:k; )= (0;k); 1A0k; )= € ¥ (0;K); (4.39)
are analytic ink 2 C; nf0g.

To obtain an analytic continuation of (x; k) into the lower half-plane, rst observe that
by the Liouville-Green Theorem and Remark 4.10, Equation (4.38) has a unique solution

'+ (x;k; ) inthe cone < argk< characterized by the asymptotic relation
ek )= ]E)eli=ei (€ xk)(1+ o(1)) as x!1 : (4.40)
X
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We claim that in fact
Lok, )=1(xk; ) forx2 (0;1); O< argk< X (4.41)

Then !, (0;k; ) and! 9(0;k; ) provide the analytic continuation of the initial data for
¥ (X; k) into theregion < argk < 0, implying thatw, (x; k) can be continued analytically
into the lower half-plane.

To prove (4.41), we observe that 7! w (x; k) is of exponential type fox 2 . and
decays exponentially for (k) > 0. Then it follows from the Phragmen-Lindelf principle
[13, VI.4], applied to D
gix;k) = " xexp i (XK) v (X k) (4.42)

that for xed =(k) > 0 the function v (X; k) decays exponentially as ! 1  in a small
cone containing0;1 ).

Therefore Remark 4.10 and Remark 4.8 applied to the dilated functian(x; k; e) for
some smalke> 0 imply that ! . (x; k; e) is a multiple of! (x;k; €). This means moreover
that it decays at a rate given by the expected function

1 .
p——exp i (€°x;k) :
So P 1 ( )
We can repeat this procedure a nite number of times and deduce that for xedhe

analytic functiong(x; k) is uniformly bounded ag ! 1  withinan angle < argx< +
for some > 0. Since hy (4.26)

XI!llm g(x;k)=1;
it follows from Montel's theorem [13, VII.2] that this limit is assumed uniformlyas 1
in0 argx . This proves (4.41). Since 2 (0; ) was arbitrary, we obtain an analytic
continuation ofw (x;k) to < argk < . It remains to prove (4.34).
For < < we can apply Lemma 4.12 to the dilated function(x; k; ) to have
g(x;k)=0O(1) as x!1 within . : (4.43)

We already know from (4.41) thag(x;k) ! 1asx !1 along any ray such thaD <
arg(kx) for some 0. Therefore we have that also locally uniformly in
k2CnfOg, < argk<

g(x;k)= O(1) as x!1 within

andg(x; k) is uniformly bounded along the boundary rays of . That g(x; k) is uniformly

bounded inx 2 . is now a consequence of the Phragmen-Lindelef Principle. The fact
that g(x;k) tendstol asx !'1  since it does so along some ray contained in its interior,
completes the proof of the theorem. O

Remark 4.16. The analytical extension of{x;k) = v(Log(x + 1);k) gives in turn the
extension ofv( ; k).
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4.3. Generalised eigenfunctions, Green's function and the scattering matrix

We are now ready to construct the main elements for the partial wave expansion required to
give a de nition of the resonances of our operator.

We considered in the previous section thatgoing respectivelyincomingsolutions as the
solutions meeting a \regular" boundary condition at in nity. Because of the fact that the
boundary conditions are at in nity it requires some work to prove that they can be analytically
extended to the second Riemann sheet across the positive real axis.

This is much simpler for the solutiory(x; k) of (4.25) (or the correspondingo( ; k) of
(4.1)) that is regularin 0 in the sense of the boundary conditions derived from (2.16), i.e.

vw(0;k)=1 , v(0;k)=0: (4.44)

Being the solution of a boundary problem with analytic coe cients and analytic initial condi-
tions, the following theorem follows as a corollary of the standard theory of complex ordinary
di erential equations (see [12, Chapter 1.8]).

Theorem 4.17 (The regular solution) The unique solutionwy(x; k) of (4.25) de ned by
the condition (4.44) is analytic in the conex 2 . , k 2 Cnf0Og de ned in (4.33) and
satis es

vo(X; K) = vo(Xx; K): (4.45)

Remark 4.18. Working with (4.25) or (4.1) is equivalent. We will use each time the
representation that makes the proofs and the computations easier. Therefore in what follows
we do not continue to remark that the properties are equivalent. It is always possible to
understand in which setting we are working, looking at the name of the functions and the
variables.

From now on, we will always assume that the Wronskian is de ned in its generalised form
given by

Wi (f;g) = p(x) f)gU%)  FAx)g(x) ;

where the notation comes frorfA.6).

We are nally ready to introduce the basic elements for scattering theory on the half-line.
We call Jost functions associated to the radial equation (4.25) and our choice of phase
function (x; k) the Wronskians

f (k):=W v (;k);v( k) : (4.46)
They connect the regular solution to the incoming and outgoing ones via the identity
W ;w)vg=few  f w; with W(w ;v )=2ik; (4.47)

that follows expanding explicitly the Wronskian and using the asymptotic behaviour of the
solutions in their domain of analyticity. In particular this implies the following corollary of
Theorem 4.17 and Theorem 4.14.
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Corollary 4.19. The Jost functionsf (k) are analytic ink 2 D (; ) de ned in (4.36)
and verify o
f (k)= (2ik) lim € 2" xexp i (€ x;k) wo(€ x;k); (4.48)

X!

where 2 ( ; ) satises ? arg(k) according to the choice of sign of4.48).

It will be convenient for what follows to change the normalisatigs{0; k) = 1 to one at
\in nity" in the sense of Corollary 4.19. Namely if. (k) 6 0, we de ne the generalised
eigenfunctionof the radial equation (4.25) and our choice of phase functiofx; k) the
function

e k) == f+ (k) wo(x;k): (4.49)
With this notation we introduce fok 2 . with f4 (k) 6 0 the radial Green's function
G(x;x%K) := e(x<:K)¥s (Xs; K); (4.50)

where forx;x%> 0, x< := minfx;x% and x> := maxfx;x%. G(x;x%k) is a fundamental
solution of the radial Schredinger equation (4.25).

Remark 4.20. We now consider the spectral parameterappearing in Equatior{4.1) as a
perturbation of the operatolK de ned in (2.14). Consequently we will write

K (Z+; )= K +
for the perturbed operator.

Remark 4.21. Notice that eventual zeros df, (k) for k 2 C, nfOg correspond to eigenvalues
of the operator.

In view of Theorem 4.14 and 4.1G(x; x% k) possesses a meromorphic continuatiorkin
into the possibly two-sheeted domain, projecting B, (; ) de ned by (4.36).
Finally we introduce the so-callestattering matrix element

_f (k)
T (k)

which in view of Corollary 4.19 is a meromorphic functionkobverD.(; )\ D (; ).

s(k)

(4.51)

Lemma 4.22. Letx;x%> 0and < arg(k) <
1. The radial Green's function and the radial generalised eigenfunctions satisfy the func-
tional relation

Gx;x%k) G(x;x% k)= 2ike(x<:k)e(xs; k): (4.52)
2. The scattering matrix element satis es the following relation
s( k)= s(k) *: (4.53)

3. The scattering matrix elements and the radial generalised eigenfunctions satisfy the
functional relation
s(k)e(x; k) = e(x;k): (4.54)
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Proof. From (4.35) and (4.45) we have that
fo( K= W w(; Kivol(; k) =W v (;k);w( k) =1 (k) (4.55)

fork 2 D+(; )\ D (; ). Therefore, using (4.47) and the de nitions of the radial
Green's function and the radial generalised eigenfunctions, we get

G x%K)  G(;x% K) = e(x<;K)ws (X>:K)  e(X<; KW (Xs; k)

= wo(x<;K) f (k) Yw (%K) fi( k) tw(xs; k)
vo(X<;K)f ( K) a( k) T Fa( Kwe(Xs: k) f ( K)we(Xs: k)
vo(X< K)Fr(K) Mo k) T ( Kv (Xs; k) f ( Kwe(xs: k)
2ike(x<;K)f+( k) Ywo(xs; k)= 2ike(x<:k)e(xs; k):

The second part and the third part follows as a direct application of (4.55) to the de nition
of the scattering matrix elements. O
A rst consequence of Lemma 4.22 is that it is enough to discuss the scattering matrix
elements in the angle < arg(k) <
With the above de nitions we can discuss the notion of eigenvalues for the radial non-
selfadjoint Schmdinger operatdk (Z.; ) in L2((0;1 );cost( )d ). We de ne
n 0
Es,. = k2CynfOgjfs(k)=0;e =2 (K) 2 L2((0;1 );costf( )d ) : (4.56)

If kK 2 Ez, . , we callk an eigenvalueof this quadratic eigenvalue problenAll other zeros
of the Jost functionf . (k) are called resonances &f (Z.; ) and we denote them by
Rz, = k2Ds(; )nEk,. jf+(k)=0 : (4.57)
Remarks 4.23. 1. The condition 7! e zé (k) 2 L2((0;1 );cost?( )d ) is automat-
ically ful lled whenk 2 C, nf0Og, independently of .
2. There cannot be real positivk 2 Ez, . . In fact, if there would existkk 2 (0;1 ) in
E. . , then by Theorem 4.14 we would hawe ( ;k) 2 L2((0;1 );cost?( )d ), but
it is evident from the asymptotic behaviour @f. that this is impossible. On the other
hand, we cannot exclude a priori the presence of teah Rz, . .
3. Two Jost functions cannot vanish simultaneously in < arg(k) < , otherwise
v, andwv (or v¢ andv ) would be linearly dependent in contradiction with their
asymptotic behaviour. Therefore the points & ,. [R z,. contained in <
arg(k) < are in one to one correspondence with all the poles of the scattering
matrix elementss(k).
In view of the de nitions (4.49) and (4.50), the setEz,. [R z,. can be identi ed
with the set of poles of the radial Green's functi@( ; ©Kk) or with the set of poles
of the generalised radial eigenfunctioeg; k).
4. The setRz,. of resonances does not depend on the choice of the phase function
which determines the Jost functions (k), the generalised radial eigenfunctions and
the scattering matrix elements.
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5. Formal partial wave expansion of the Green's function

For realE we know from Remark 3.1 that the spectrum & = K (E;Z ;h) consists of
an in nite number of simple eigenvalues

oE)< 1(E)< 2E)< 3(E)<:::

tending to in nity, where in the notation of Remark 3.1 we have ;= ,+ 2: These extend
to analytic functions ofE in some neighborhood of the real line. We shall denote Ry
the eigenfunctions
K(E)ne()= n(E) ne(); n2Ng;
normalised by 7
+

k' n;Ek2: J' ne( )jzd =1
for E 2 (0;1 ) and then extended analytically. We choosgg real forE real.

De ne
K :=F Hg (5.1)

with Hg from Proposition 2.11 and= from (2.4). Instead of solvingHg E)u = f in
L2(M;F (; )dd )forE 2 Cn (Hg), we look at the solutions of

K F( DB UG )=FG G ) (5.2)
We already know (see (2.14)) that
K F(; JEu(; )=Kgu(; )=(K +K)u(; ):

Now, using the completeness of the orthonormal b#se.e g, for E 2 R, u possesses
the expansion

X
u(; )= Un(; ) with un(; ):=="ne() ne(); (5.3)
n2N0

where Z,

ne( )= "me(Ju(; ) d:

This expansion extends to complex valuegoby analyticity (note that no complex conjugate
is involved, sincé g is chosen real foE 2 R). Analogously we get

X Z .
FCOECG )= "ne()Oe () with gne():= "ne()(FF)C; ) d:
e (5.4)
Substituting (5.3) and (5.4) into (5.2) one gets
X X
(K +K) un(; )= “ne ()one ()
n2No n2No
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or equivalently
X
"ne() (K(E)+ n(E) ne() one() =0: (5.5)
n2Np

Remark 5.1. (5.5) extends to complex pointg 62 (H), whereK (E)+ n,(E) possesses
an inverseR,(E) by means of the Green's function de ned {#.50).

z Z,
ne( )= Ra(E)gne()= 1) Gn(; TE) "ne (€)(FF)(7e)ded (5.6)
using (5.5). Combining (5.6) and (5.3) we obtain
X ZZ
u(; )= "ne() Gn(; TE) ne(e)(Ff)(T7edde
n2No Mo

and we read o the partial wave expansion for the Green's function

X
G(; ;7E)= "ne( ) ne(€)Gn(; E)(COSh2 ~ cod e): (5.7)
Y‘I2No

It would be of great interest to be able to prove that the sum converges in the sense of
distributions in the product spac®YM) DYM). Then we could use our results on the
analytic continuation of theG,, and of the angular eigenfunctions to give a meromorphic
continuation of theG(; ;7 ~E) in E to the second Riemann sheet (&2 C ).

Anyhow, for each xedN 2 N, we can consider the restrictiok y of the operatorK to
the subspace

M
N (E) = an(E) L3(0:1);cosif()d) L[ ; Iid) L3(0;1);cosi( )d)
=0
" (5.8)
where ,(E) is the subspace spanned by.e . The relative Green's function

X
Gn(; ;T&E)= " ne() ne(®Gn(; SE)(cosh? = cose)
n=0

is the truncated sum obtained from (5.7). Being a nite sum of well-de ned terms, it is
convergent. Moreover it follows from the results of the previous sections that it possesses a
meromorphic continuation irE to the second Riemann sheet.

6. Resonances for the two-centers problem
With the expansion of Section 5 and the theory developed in the previous sections, we are

nally ready to de ne the resonances for the two-centers problem and analyse some of their
properties. This is done in Section 6.1.
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The rest of the section is then devoted to asymptotically locate these resonances. In
particular in Section 6.2 we show that the resonances can be computed as roots of some
explicit asymptotic equation, and in the subsequent sections we explicitly solve this equation
in di erent semiclassical energy regimes.

6.1. De nition of the resonances

The operatorK de ned by (3.5) has discrete spectrum,(k?) admitting an analytic con-
tinuation in k? := E in some neighborhood of the real axis. At the same time for each
the resolvent of the operataK (;Z +) (see Remark 5.1) can be extended in termskato
the negative complex plane, having there a discrete set of pkies ).

With the de nitions given in Section 4.3 we set

En:= k2C,nfogjfs(k; n(k?)=0;e =2d Gk (k) 2 2((0;1 );cos( )d ) :
(6.1)
If k 2 E, (for somen 2 Np), we callk an eigenvalueof the quadratic eigenvalue problem
for K = K(Z ;Z+) denedin (5.1). All other zeros of the Jost functiofi, (k; ,(k)) are
calledresonance®f K (Z ;Z.) and we denote them by

Rn:= k2D+(; )nE |jf+(k; r,(kz))zo : (6.2)
Proposition 6.1. The setsE, andR,, are made by an at most countable number of elements
km2D+(; )(m21 N)of nite multiplicity such that f+ (km; n(k3))=0.

Proof. f. (k) and ,(k?) being non-constant analytic functions & the statement is clear.
O

Remark 6.2. Notice that if k? is an eigenvalue of the full operatdt (or its restriction
K ), then it must be an eigenvalue &€ (Z.; ) for some ,(k?) (i.e. an element o).

Remark 6.3. By de nition E,\R , = ;. Furthermore, it is clear looking at the asymptotic
behaviour (4.7) of the phase function that it is impossible thdt 2 E, andk 2 R o for
né nl

Relying on the previous discussion and on Remark 4.23.2 we can switch frok? thiane
to the k plane and refer to

EN = B RN := R, (6.3)

as the sets okigenvaluesand resonance®f K. Moreover, in view of Remark 4.23.2, the
points of EN [R N contained inD+(; )\ D (; ) are in one-to-one correspondence
with the poles of the scattering matrix elemensg (k) := s(k; ) and with the poles of the
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Remark 6.4. If we suppose tha{(5.7) is convergent, we can refer to
E:= E; R = Rn (6.4)
n=0 n=0

as the sets ofeigenvaluesind resonance®f K. As for the restricted operator, in view of
Remark 4.23.2, the points oE [R contained inD.+(; )\ D (; ) are in one-to-one
correspondence with the poles of the scattering matrix elemeqr{k) and with the poles of
the Green's function&s, ( ; € k).

6.2. Computation of the resonances of K
Consider the equation
0=K (h) ()= h?@ () Zs+cosh() () Ecost() () (6.5)
with the condition Y0) = 0. The potential
V(;Z+;E):= Z,cosh() E cost()

has a Taylor expansion around= 0 given by

z E 2
V(;Z+E)= %e+e 7 ete
= Z+. E E+Z7+ 2+ 0(H=A 122+ 0(%;
q
whereA:= Z, Eand! = E+ %

Let nowE + ZT > 0. We would like to apply the theory developed in [6, 7, 8] and [50]

to get the resonances from the eigenvalues
en(h) = h(2n +1)! (n 2 Np)
of the harmonic oscillator
Hosc = h?@+ ! 2 2

according to
An(h;E;Z+)= Z. E ih@n+1)! + O(h*?):

Remark 6.5. [6, 7, 8] and [50] are not directly applicable, as there itassentiato assume
that the potential is bounded, and this is clearly false(B5).

The problem stressed by the previous remark can be solved. With the change of variable
iven byy := sinh( ) : (0;1) ! (0;1) we change the measure fromostf( ) d to
y2+1 dy. At the same time the di erential equation oK (Z.; ) takes the form

h(y>+1) @u(y) h*y@u(y)+ k*(y*+1) Z4 P y2+1 u(y)=0:
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Note that will correspond to an eigenvalue of the angular equation, and as such it will
be an analytic function o. Moreover it will be real for real values & (see Section 3).
With the ansatz

n 1
u(y) == ﬁzjv(y)
yc+1
we can rewrite the di erential equation in Liouville normal form as

y?+1

ﬂﬁ h2@v(y)+ V(K;Z+; ;h;y)v(y) =0 (6.6)

where
Z, y2 2,

p——— +
TyZel 1+y? o 4(y2+1)2

V(k;Z+; ;hy) = K2

This potential V has the following properties:
it is smooth in(0;1 );
it is bounded;
it is analytic in a cone centered at the positive real axis;
it has a non-degenerate global maximumyat O;
around the maximunV can be expanded in Taylor series as

V(kZeiihiy)= A L2y2+ Oy,

q___

whereA .= Z, k%+ % and! = +5h2 4,
Therefore it satis es the assumptions of [6, 7, 8] and [50], there a resonance is an exact
zero of some symbol in the semi-classical parameter, and we are left to compute the leading
terms of this symbol. This allows us to approximate the resonances with the eigenvalues of

the harmonic oscillator according to
An(h;E;Z+; )= Z+ K2+ ih(2n+1)! + O(h%?): (6.7)

This given, we have a solution of (6.6) ¥f is identicallyO or if A, = 0. In summary,

Proposition 6.6. For any givenZ, and , the resonances df (Z.; ) are asymptotically
given by the zeroes of a symbal,(h;E;Z.; ) whose expansion as! 0 is provided by
(6.7).

From this formula one can have a rst very rough approximation of the resonafges k2

in orders of<( ) 0 andh small but constant as follows
P _ q
=Ep=(2n+1h < += +0 (<) ¥ | <Ep= < Z,+0 (<) =2
(6.8)

Remark 6.7. The approximation(6.7) identi es the resonances generated by the top of
the potential (at = 0) and these corresponds to the resonances generated by the classical
closed hyperbolic trajectory bouncing between the two centers (see Remark 2.2.1).
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Remark 6.8. In [49] it is proven that forZ, < 0, jZ+j<Z , there is for small energies a
region of the phase-space characterized by closed orbits related to a local minimum of the
potential. We expect in this case the appearance of some shape resonances at exponentially
small distance irh from the real axis (see [24, 25] and [27, Chapter 20]). We plan to study
the existence and the distribution of these other resonances in a future work.

6.3. Eigenvalues asymptotics and resonant regions for Z =0 near the
bottom of the spectrum

As we did previously, before studying the general system, let us have a look to the simplest
caseZ = 0. With a proper renaming of the constants and the notation of (3.3), in [41,
Section 2.331] it is proved that

Theorem 6.9. For ! +1 andn 2 Np, the eigenvalues , of the Mathieu equation
written in the form  y%x)+ (2 cos(%) )y(z) =0 are

P - p-
n()= 2+@n+2) +0() , ,u()= 2 +@n+2) +O():
Thus we have as a direct consequence the following theorem.
Corollary 6.10. In the limit h & 0 and for everyE > 0 we have
" (h;E; 0) =(2n+1)th +0(h? , ,(hE;0)= (2n+1)th + O(h?):

where |, are the eigenvalues described in Section 5 reindexed using the parity separation
described by item 5. of our 'fact sheet' in Section 3 on page 11.
We can use this result in combination with (6.7) to obtain the following proposition.
Proposition 6.11. The resonances in the sd&®, (see (6.2)) are given asymptotically as
h! 0 by the solutions of the following equation
An(hE;Z+; 5(hE;0)=0:

Neglecting the error terms and writin§ = k? we have

.
2
k2+Z, (2n+1)kh+ ih(2m+1) (2n+1)kh+% %*zo: (6.9)

6.4. Eigenvalues asymptotics and resonant regions for Z > 0 near the
bottom of the spectrum

Notice that we can always de n& in such a way that it is non-negative. In presence of
the Z term the equationK () =0 assumes the form

0= h’@ ()+ +27Z cos()+ Ecog() (); (6.10)

with periodic boundary conditions oh ; 1.
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Remark 6.12. In view of (6.10), we have, for all normalized in the domain ofK
GK%) zZ (K ) (K°)+Z:
By the min-max principle (see [45, p. 75]), we get, for all
jn(E;Z ) W(MEQ) Z ]
where the behaviour of ,(h; E; 0) is given by Corollary 6.10.

To obtain better estimates for the spectrum in orders of sntalve use the -quasimodes
[4, 34]. If A is a self-adjoint operator oD (A) in a Hilbert spaceH, then for > 0 one
calls a pair

€E 2D(A) R; with € =1land A E €

an -quasimodgso with this notation an eigenfunction with eigenvaluée is a0-quasimode).
The existence of an-quasimode € E implies that the distance betwee® and the
spectrum ofA ful Is

dist (A);E ; (6.11)

In particular there exists an eigenvallie of A in the interval[E "; E + "] if we know that
in that interval the spectrum is discrete.
In our case we want to replac&é with an operator of the form

d2
— 2 "
Ph : h 02 V (x) (6.12)
with periodic boundary conditions oh?([ ; ) with 2 -periodicV 2 C [ ; ];R* ,so

that
2

V(x) = XZ+ W(x) and W(x)= O(x™) for mg 2 Nnfl;2g:

Let 2 C3(R;[0;1]) have supportif ; ]and equal one ofi =2; =2]. We choose the
positive constanth so that

h2L20 5 1 LAR) , h0:=d (x)Di(x)exp  x*=(2h)

is of L2 norm one. )
It is a well-known fact that onL2(R) for P, :=  h? &, + x2=4

PiD; = EfD;
with EX := n+ 3, D} the normalised Hermite Polynomials

(1" w2 d

Dl(x):= e —— : 2 No; 6.13
n(X) ﬁ?e“dxne 2 n 0 ( )

and the Hermite function®}(x) := Di(x)e 'z. It thus follows fromL?2 dilation that

P,D" = EMD"  with EN := hE} andD" := h 20! h zx : (6.14)
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Lemma 6.13. ( I;ED) (n 2 Ng) are O(h™o=?){quasimodes forPy,.

Proof. For any polynomialp 2 C[x] the function x 7! p(x)exp( x?=h) is of order

O exp( x?=(2h) for h & 0, uniformly injxj2 [=2;1). Thus

Z, zZz _,

jp(x)jexp( x?=h)dx = O(h') and ip(x)jexp( x?=h)dx = O(h) (" 2 N):
1

By compactness of the support of 2 C§(R;[0;1]), , °and ®are bounded.

The rst two remarks imply thatk | Djk= O(h’) (" 2 N). Since the scaled Hermite
function has normkDk = 1, the normalisation constant equaldl =1+ O(h) (" 2 N).
More generally, regardipg that the derivatives Bf! are of the formx 7! p(x) exp( x?=h),

(b DR =0(h) (1" 2No).

So for the casaV =0 in (6.12), ( M, ED) are O(h )-quasimodes foP, (n;” 2 Np).

We are thus left to prove thakW [k = O h™2 . This, however, follows by a splitting

of the L2 integral, regarding thatw (x) = O(x™M°) uniformly on the interval] =2; =2],

where ' = c'DJ!, and that W is bounded o ; 1.
The potential 7! Z cos( )+ E cos( ) has in general two non-degenerate minima at

the points with

Z
= — 2[=2
arccos = [=2 ]

2
where the potential reaches the valueif (see Figure 6.1).

/ //\\

\
\
\
\

Figure 6.1: Shape o cos()+ Ecog( )in[ ; 1]

We construct our quasimodes to be concentrated near one of the minima. Let the intervals

+

¢ and [ be two open neighborhoods of the rightmost minima such trﬁ 5 and

¢ is contained in the positive axis and is strictly separated fronFix . 2 C} (R) such

that + =1in " and + =0inRn }.

|3emma 6.14. Let P, be as in (6.12) but withV/(x) := & X1 4 W(x) and W (x) :=

m=mo @m(X X )™ (mg > 2) entire of orderl and nite type De ne

Nx):=h 4Dy h 2(x x) +(x)=DM(x x) +(x);
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where . is the characteristic function de ned in the previous paragraph. Ther (x); ED)
is anO h3% -quasimode foPy,.

Proof. Applying the operator to ! we have

2
00 X X
P p= he g X 4) ptWog
2
= ppp® XX ) 4X)DQ+WD,'3 . h? 2h 2D}° 9+ Dff ©

“EUER hew §on? 20 S 94Dl

For what concerndV ' we can apply Lemma 6.13, obtaining
KW "k=0 h?

We need now to take care of the last error term. For this last term the inequality
h2 2h DN 0+ Dh ©  phoe 7

holds with properc;; c, > 0 (that depend only o and ). Thus this term integrated on
[a; b will give an error that can be bounded with any polynomial order of decay, in particular

we can choose it to be

h2 2h :DM° 04+ ph © =g p%

We need now to transform our equation into something INéx) in the previous theorem.
We already know the two minima . If we expandV( ):= Z cos()+ E co( ) in the
neighborhood of those minima we obtain

2 2

z
V(X)= ——+E 1

i w2 (0 PFwe ) (6.15)

for a suitable entireW with mo = 3 and of orderl and nite type.

To simplify a bit the notation let us call
s
z? z?2
A= IE B= E 1 1E?

We focus for the moment only the localisation near the rightmost minima, i.e. we choose
( ). With the unitary transformationZ de ned by change of variable

2)="2B( )

the eigenvalue equation (6.10) is transformed into

0=K, (2):=2B h%@ (2)+ e+22+f/\/(z) (2) ; (6.16)
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wheree = %( + A) and W is entire withmo = 3 and of orderl and nite type. Ifin
the spirit of the previous lemmas we de ne

eh(2) = Di(2) (2); el = A+2B n+ 3 h;

where (z) is the transformed of the cut-o localised in the neighborhood of, then the
couple( €; el) is anO(h3)-quasimode folK ; and thus if

N()= z tehz ()

the couple( ! ;el) de nes anO(h3?)-quasimode foK .

Exactly the same happens if we look near the other minimum, i.e. if we ch¢ose ).
In other words in the limit oth & O the spectrum ofK consists of pairs , (h), | (h) with
the same asymptotice! in the limit. We have proved the following.

Theorem 6.15. LetE > %> 0. Dene

s
N ZZ 2
e,.= -——+ E 1

E ag2 @n+Dh: (6.17)

There exists an eigenvaluel of K and a constantc such that e ' = O(h3?).

Moreover, the interval e 2ch®2; el + 2ch32 contains at least two eigenvalues Bf .

Remark 6.16. It can be proved by standard methods involving the IMS formula [14, Chapter
3.1] and Agmon estimates [2] that the distance between the eigenvalues in each pair is of
the orderexp( C=h) with C 2 (0;1 ).

We can use this result in combination with (6.7).

Proposition 6.17. The resonances in the s®,\f< E > 27 > 0g (see(6.2)) are given

asymptotically ash ! 0 by the solutions of the following equation
An(h;E;Z+; H(ME))=0: (6.18)

Neglecting the error terms, the resonances f > ZT > 0 are given by the solutions of
r

z? q z? . - z2 z2 7z, _ A,
E Z. 22+ E Zzz(@m+1)h+ih(2n+1) E #@m+1)h = 5 =0:
Remark 6.18. ForZ =0 we recover(6.9) of the previous section. On the other hand, in
Section 6.3 the approximation error is of ordéx(h?) instead ofO(h%?).

ForO<E < ZT the bottom of the potential is reached at and thus we have to expand
the potential around this other point. It turns out that in this case the eigenvalues are
approximated by q

bhi=E z + % E@n+1)h (6.19)
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Proposition 6.19. The resonances in the s®, \f 0< <E < ZTg (see (6.2)) are given
asymptotically ash ! 0 by the solutions of the following equation

An(h;E;Z+; by (hE) =0:

Remark 6.20. This approach gives good results if we stay localised near the bottom of the
potential: in this case we can nd an approximation for the eigenvalue up to an order of any
integer power ofh.

The de ciency of this approach lies in the fact that we have no control on the relative
error betweenn and h. We need therefore to nd a di erent approximation scheme that
keeps track of the mutual relation between the parameters.

6.5. High energy estimates

We consider the potential in the fornvV (x) = E cog(x) + Z cos(). Substituting this
value in the formulae given in Theorem A.4 we have
z z 2

V(x)dx= E and V2(x)dx = 3E° 4 22

and thus the eigenvalues;n+1 and »m+2 can be represented as

2
p_ E z2 E- 1 1
= +1)h+ + + + — 2
(M+Dh+ m+on " Tem+ns T C msms ¥ ° man (6-20)
Therefore we can estimateom+1 and om+2 With
E E? 1 1 1
= +1)%n%2+ —+ 72+ — = 4+ 0 — 4+ ~ - (6.21
(m+1) 2 4 8(m+1)2n2 mopd TO mz ¢ (621

With this result, we can compute the resonancgg.om+1 and Ep.om+2 .

Proposition 6.21. The resonances in the s&®,, (see(6.2)) are given by the solutions of
the following equation
An(hiE;Z+; 2m+1(NE))=0; (6.22)

asymptotically ash! Oandm!1  with mh large.
More explicitly, for xedn and up to errors of orders
hz;  (mh) 4 and m %

we can approximate the resonant energies as solutions of
r

+i(2n+1)h (m+1)2h2+ E 2=+

z2+E2
8(m+1) 2h2

2 E?
E Z+T

- +(m+1)%h%+ —— 4 =0:
> Z,+(m+1)“h 8(m+1)2h2 0

Remark 6.22. We cannot hide the term(m + 1) 2h? inside the error term of ordeh3?
because we want to analyze the asymptotic behaviournfor C=h (C 2 (0;1 )) and that
term is rather big compared witn.
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7. Numerical investigations

In the previous sections we have explicitly written three implicit equations to approximate
the value of the resonances in terms of the atomic numbermsnd m (and of course of the
parametersh, Z, andZ ). In this section we investigate the qualitative structure of the
resonances using the approximations given by (6.18) and (6.22).

In view of Remarks 6.7 and 6.8 we know that at least for certain values of the chages
we are not describing all the resonances of the system. On the other hand the additional
resonances should appear only for smsglE). Therefore we are going to consider(E) big
enough to be sure that we are analysing an energy region in which all the resonances should
be generated by the classical closed hyperbolic trajectory between the centers.

In this case equation (6.8) implies that( ) must be big and thus it is evident from
(6.17), (6.19) and (6.21) thatm must be big. The quasimode approximation obtained in
Section 6.3 and 6.4 is valid only for small valuesnofand h, therefore these resonances are
automatically excluded from the analysis.

Figure 7.1(a) and 7.1(b) show all the approximated resonances obtained from (6.18) setting
Z =0. We plotted all the values including the one in regions of energies where we have no
control on the error. In these pictures we can observe an interesting behaviour. In particular
for big values ofm we recover the structure shown by the resonances approximated with
(6.22): see Figure 7.2(a) and Figure 7.2(b).

The physically interesting resonances are the ones close to the real axis, this because they
can be measured in experiments. Thus to keeE) as small as possible we will consider
small values oh (see (6.8)).

Remark 7.1. Unless di erently speci ed, in the plots we consider=0;1;2;3 andm 2
fdC=he+ kjk=0;1;2;:::;209. The values ofZ,, Z , h and C will be specied in the
title or in the caption of the plots. For practical reasons we plot the resonances in the plane

(<(E); = (E)).

Equation (6.22) has two couples of solution($,s;L+) and (S ;L ), specular w.r.t.
the real axis. They correspond respectively to the resonances and the anti-resonances, i.e.
the resonances de ned inverting the roles of the incoming and outgoing wavei the
construction of Section 4.3.

We restrict our analysis to the resonanc€S; ;L. ). The two setsS;;L+ 2 C charac-
terise two di erent energy regions, this meaning that the resonance&inhave relatively
small real part if compared to the resonanceslin (see Figure 7.2(a) and Figure 7.2(b)).

The structure that we nd is extremely regular. The rst question that arises is if we
are really computing the resonances associated with energy values on the critical3ine
associated to the hyperbolic closed orbits described in [32, 49] and summarised in Section 2.3.

For each computed resonané&s,,, we can use the approximation obtained in (6.21) to
estimate the associated constant of motidd,.,,. We can thus superimpose the points
(<(E);<(K)) to the bifurcation diagram and visualize how they are related. As shown in
Figure 7.3, the energy parameters appear to lay exactly upgn giving a strong hint on
the correctness of the result.

39



A related question regards the order of growth of the resonarEgs, in n and m. For
large energies there is only one bounded trajectory, which is closed and hyperbolic. In the
corresponding case for pseudo-di erential operators the real respectively imaginary parts of
the resonances in the complex plane are known to be related to the action resp. Lyapunov
spectrum of the the closed trajectory (see [19] for the physics perspective and [20] for a
mathematical proof).

For a two-centers system it is kBown that the Lyapunov exponent of the bounded orbit
of energyE diverges like' (E) = E In(E) (see [32, Proposition 5.6]). As these closed
trajectories collide with the two centers, where the Coulombic potential diverges, these
results are not applicable. However it is reasonable to normalize the real and imaginary part
of the resonances ih+ (or S:) dividing them by (<(E)). In this way it is possible to
investigate, at least qualitatively, the above prediction.

The numerics con rm the expected behaviour. It is evident from Figure 7.4(a) and 7.4(b)
that the renormalised resonances look like distributed on a regular lattice of points with
(almost perfectly) aligned and equispaced real and imaginary parts.

Notice moreover that the vertical spacing of the imaginary partsdiss O(h) and the
distance between the real axis and the resonances with smaller imaginary part is approxi-
mately d=2, as expected from the harmonic oscillator perturbation used to approximate the
resonances.

8. The two-center problem in 3D and the n-center problem

In [48, Chapters 3 and 5] it is shown that the three-dimensional two-centers system is not
essentially di erent from the planar one. In particular all the results obtained for the planar
problem and presented in this paper can be carried almost identical.

However two major di culties arises. There is a non-trivial e ect coming from the angular
momentum that makes the resonances set more complex and potentially more degenerate.
And the numerical approximations that we get in the planar setting fail to hold due to the
presence of singularities produced by the angular momentum.

Another important related problem is the study of resonances for theenters system.

The classical model fon 3 still presents hyperbolic bounded trajectories [32, 33]. In this
case however they form a Cantor set in the phase space. Moreover the non-trapping condition
fails to hold, thus in the quantum case one expects the resonances to be present and to be
distributed in some complicated way. There are only few known examples presenting a similar
structure that have been investigated rigorously (see [42] and [51]). They suggests that the
resonances are present and their density near the real energy axis scales with a fractal power
of h. The results obtained in this paper strongly support the idea that the resonances should
be present and be strictly related with the underlying classical hyperbolic structure.

Anyhow forn 3, mainly due to the lack of separability, the singularities of the potential
have to be treated by semiclassical techniques, as in [11]. A lot of work and new ideas are
required to properly extend results like [42, 51] to thecenter problem.
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A. Generalised Pusfer transformation in the semi-classical limit

The method for establishing estimates is based on a modi cation of the Pmafer variables
described in [16, Chapter 4.1]. Consider a Sturm-Liouville di erential equation>anx;]
of the form

(COOYY)) %+ D(X)y(x) =0 (A.1)
in whichC and D are real-valued, not necessarily periodic, di erentiable and with piecewise

Bontinuous derivatives. Suppose also tha{x) and D (x) are positive and de neR(x) :=
C(x)D(x). If y is a non-trivial real-valued solution of (A.1), we can write

RO)Y(X) = ()sin( (x)); C)Y(x) = (x)cos( (x)); (A.2)
where
P R(X)y(x)
X) = R2(x)y2(x)+ C2(x)y®(x) , X) ;= arctan — -~
() (Y20 + C2Y2) . (%) 00y
Up to now (x) is de ned as a continuous function of only up to a multiple of2 . To
solve this problem we select a poiap 2 [X1;X2] and we stipulate that (ag) <
Moreover, ify(ag) 0, we have by (A.1) that
0 (ag) < : (A.3)

Lemma A.1. With the above de nitions

To= 2O 2 1(C()D(X)°
C(x) 4 C(x)D(x)

sin(2 (x)): (A.4)

Let a; 2 (aog; x2]. If y(x) hasN zeroes in(ag;a1] andy(ag) 0, then

N (1) < (N +1) : (A.5)

Proof. The theorem is proved in [16, Chapter 4.1]. O
We want to apply (A.2) to equation (6.10). In particular we apply the transform to

h? p()y%x) *+  Va(x) y(x) =0 (A-6)

wherep andV; have perio® . Since we are concerned with the limit! 1 (parametrically

depending orh), we can consider large enough to have Vi(x) > 0in[ ; ]. Inthe
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new case (A.6) the two functions and depend on andh as well asx, and we write
h(X; ). Then (A.4) becomes
s
0
L V0, 1p) OOV o A

Ofy. y— * <
h(X )= h p(x) 4 | V1(X)) p(x)

A rst consequence of (A.7) isthatas !'1
s
1 %(x)
p(x)

N[

0

R(X )= Y + O(2); (A.8)

where¥,(x) := Vi(x)= . Moreover, ify(x) has period2 we have
n(; ) n(C 5 )=2k (A.9)

for an integerk.
Lemma A.2. Forf 2 LY ; ])andc2 RnfOglet nh(x; ) satisfy (A.7). Then
z
f(X)sin(c n(x; )dx! O

as !'1 (and/or h& 0). The same result holds withsin(c n(x; )) replaced by
cosC nh(x; )).
Proof. To keep the equations compact we drop thedependence of,(x; ) in the rest of

the proof. Fixany > 0. Letg:[ ; ]! R be a continuously di erentiable function such
that z

if(x) g(x)jdx< :

Then Z Z
f(xX)sin(c h(x))dx < + g(x)sin(c h(x)) dx : (A.10)
De ne S _
— p(x) |
G(x) = g(x) T %00 Vl(x)'

Then by (A.8)
z h z
g(x)sin(c n(x)) dx = —

|
G(x)sin(c n(x)) 2(x)dx+ O 11

= L% [G(x)cos (€ n(X))] R GYx)cos(c n(x))dx + O L%
Hence Z h
g(x)sin(c n(x)) dx ?K(g) <
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if is large enoughK (g) being a number independent of. The lemma follows by the
genericity of and (A.10). O

For !1 ,the rstterm on the right hand side of (A.7) can be rewritten expanding the
square root as

q — 1 1
1 Vi) = p? Vi(x) 4 2 2 Vix) 4 1
h px) h' p(x) 13 © h" p(x) 2h 2 p(x) © h 3
Then, in the case(x) =1,
P —— 1 VIx) .
Ofy- )= 1 N
= — V. - 2 A1l
R0 )= - 100 3G SN n06 ) (A12)

and asymptotically as !'1  the rst term on the right hand side becomes

1p > Vi(x) 1
= Vix) = — +0 A.12

Let , (n 2 N) denote the eigenvalues of the Sturm-Liouville periodic problem (A.6) in
ascending order (the potential being denoted Wyinstead ofV;). By standard theory of
Sturm-Liouville problems (see [16, Theorems 2.3.1 and 3.1.2]) the spectrum is pure point,
and the , are at most doubly degenerate and accumulate at in nity.

Theorem A.3. Letp(x)=1. Thenasm!1l , sn+1 and on+2 both satisfy

R
P—_ _ Vgdx 1
=(m+Dh+ o o T ° mh

Proof. Fix an > 0. Let V1 be a continuously di erentiable function with period such
that Z Z

Vi(x) V(x) and V1(x) dx + V (x) dx: (A.13)

Let 1., denote the eigenvalue in the periodic problem associated Witfx) (and with
p(x) =1)and 1., its eigenfunction. Then by [16, Theorem 2.2.2] and the rst eq. in (A.13)
we have

1n n-

We can assume that 1.n( ) 0 and we apply the modi ed Prafer transformation to
Y(X) = 1.2m+1 (X) with ag = in (A.3). Now, from (A.3) and (A.9) we have

2k (; 1om+1) < (2k+1)

for some integeik. From the standard theory of Sturm-Liouville problems (see aforemen-

tioned reference) we know that1.om+1 has2(m+1) zeroesin ; ], hence by (A.5) with
a; = we have2k =2(m +1) and thus
h(s zem+1) (5 1em+r)=2(m+1): (A.14)
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Integrating (A.11) with = 1.om+1 Over[ ; ] we obtain

z z
am+1) = P pgax b A0

= 2 A sin(2 p(x; )) dx: (A.15)

By Lemma A.2 the rightmost term i®( 1) asm!1 (becomingo(h=m?) in (A.16) and
thus being suppressed from the equation). For the rst integral on the right we can use the

binomial expansion as in (A.12). Thus (A.15) gives
!

1
2 V1 (x) dx
Xm+1) = —2 1(1) vo L
h 2h 2 h 2
that is Z

(m+1)hP ~ 4i Vi) dx+ 0 L =o:

Solving for one gets
I

-
Z

p*:% (M+Dh+ (M+1)2n2+ = Vyx)dx+ O( 1)

Extracting (m + 1) h and using once more the binomial expansion one gets

V1(X) dx 1

amer S(MADR* 2R T O men2

(A.16)

Hence by (A.13) and by the fact that is arbitrarily small

V (x) dx 1

om+l +1)h+ ——+0 —
amer (M+ADA+ 2R 0 Tn

The opposite inequality can be proved in the same way. The result fgr.; holds in the
same form using the fact that its eigenfunction must ha2ém + 1) zeroes. O

So far we have not used any di erentiability-related property \6f Using the di erentia-
bility, we can make the previous estimate much more preciseridarge.

Theorem A.4. Letp(x)=1,letr 2 N, and Ietc%V(x) exist and be piecewise continuous.
Then ,m+1 and 2m+2 both satisfy

w1
p__ Ak 1 1
_(m+l)h+k—1 (m+1)khk+o m'+2 hr+2 to m'+lhr 2

where theAy are independent ofn and involveq(x) and its derivatives up to order 1.
In particular,
1 z 1 z
Ar= = V()dx , A;=0 and Az= ;- V2(x)dx A2 (A.17)
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Proof. We consider; = V in (A.11). Then 1, = 5 and the caser = 1 corresponds
simply to (A.16). To deal withr 2 we reconsider (A.15), which is now
Z Z
1p 1 Vx)

2(m+1) = — V(x)dx =

h 2 Wsin(Z h(X; ))dx (A.18)

and is om+1 OF 2m+2. By (A.11), with V; = V, the second integral on the right in
(A.18) is

Z
hVO(X) Ofy. 1 Vlo(x) : . ; )
W hx; )+ 4V1(X)Ism(2 h(X; ) sin(2 n(x; ))dx
— D EL)?) COS(2 h(X; )) dx (A.lg)
2 . dx( v(x):
L L")de h LX)SCOS(M(X; )) dx
8 ( V(): 8 ( V():

after integrating by parts. The rst term on the right here is h : by Lemma A.2, the

lastiso h 3 for the same reason and the central oneds h 3 . This, together with

the binomial expansion o? V(x) in the rst term on the right of (A.18) gives
R ! !
z V (x) dx V2(x) dx 1 h
2(m+1) = —2 T 3 +0 = +0 — (A.20)
h 2h 2 gh 2 h 2 z

To solve (A.20) for > in terms ofm, we write it as

1

1 1 3 2 1
=M+ A+ Az A9+ - 4+ _—
2=M 2Aq 2(As N+ O 515 o] 3 (A.21)

whereM = h(m +1). Then, taking the reciprocals we obtain
=M 11  :AM +0Mh m% =M 1 M 3A;+ O(h 5m 5): (A.22)

And thus, .
2=M 3+ 0O(h °m ®): (A.23)
Substituting (A.22) and (A.23) into (A.21) give the result for = 2.
To deal withr = 3, we introduce {x; ) into the integrals in (A.19) involvingos(2 h(X; ))
and cos(4 n(x; )), exactly as we did for (A.18). Then, iggV(x) exists andpis piecewise

continuous, we can integrate by parts as before. The binomial expansio@s of V(x)
and(  V(x)) 2 extend (A20)too h?> 3 +0O h ! 3 giving the result for = 3.

The process can be continued as longgd®) is su ciently di erentiable for the integration
by parts to be carried out, and the theorem is proved. O
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Remark A.5. We can intend Theorem A.4 as the result of analytic perturbation theory of

h?(p(x)yYx)) *+ y(x) = 0

(derived from(A.6)) in terms of the parametei/;(x)= . As a consequence we gaby = 0
for allk 2 N.
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(a) CasezZ, =2.

(b) CaseZ, = 2.

Figure 7.1:Solutions of (6.18) withz =0, h=0:01, n=0;:::;4, m=1;:::;250Q
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(Z+:Z )=(2:4) (Z+;Z2 )=( 2/4)

(Z+:Z2 )=(4:2) (Z+;Z2 )=( 42

(a) Resonances ih . .

(Z+:;Z2 )=(2:4) (Z+;Z2 )=( 2/4)

(Z+;Z2 )=(4:2) (Z+;Z2 )=( 472

(b) Resonances . .

Figure 7.2:Resonances fdn = 0:05and C = 10.
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@ (Z+;Z )=(2;4),C=4,m=400;:::;430 b) (Z+;Z )=( 2,4),C=7,m=700;:::;730

© (Z+;Z )=(4;2),C=4,m=400;:::;430 d (Z+;Z2 Y=( 4,2),C=7,m=700;:::;730

Figure 7.3:Comparison of the resonanceslin for h = 0:001 (plot above) and their projection on
the bifurcation diagram (plot below).
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(a) Plot for forE 2 L. .

(b) PlotforE 2 S, .

Figure 7.4:Renormalised resonancds="(<(E)) with parametersh = 0:001, C = 9 andm =
9000 :::;9010
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