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Abstract

Recently there has been a renewed interest in the chemical physics literature of fac-
torization of the position representation eigenfunctions {Φ} of the molecular Schrödinger
equation as originally proposed by Hunter in the 1970s. The idea is to represent Φ in the
form ϕχ where χ is purely a function of the nuclear coordinates, while ϕ must depend on
both electron and nuclear position variables in the problem. This is a generalization of
the approximate factorization originally proposed by Born and Oppenheimer, the hope
being that an ‘exact’ representation of Φ can be achieved in this form with ϕ and χ
interpretable as ‘electronic’ and ‘nuclear’ wavefunctions respectively. We offer a mathe-
matical analysis of these proposals that identifies ambiguities stemming mainly from the
singularities in the Coulomb potential energy.

1 Introduction

In the Born-Oppenheimer (BO) model an eigenfunction Φ of the molecular Hamiltonian is
often approximated by a simple product of ‘electronic’ and ‘nuclear’ wavefunctions

Φ(r,R) ≈ ϕ(r,R)χ(R), 〈ϕ|ϕ〉r = 1 for all R (1)

where ϕ is an eigenfunction of the clamped-nuclei electronic Hamiltonian, and χ is a vibration-
rotation wavefunction for the nuclear motion on the potential energy surface (PES) associated
with ϕ. r and R stand collectively for the electronic and nuclear coordinates respectively.
This is probably the most important approximation in the quantum theory of molecules,
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2 Introduction

and it has been subject to exhaustive mathematical analysis[1]. It should be noted that the
BO approximation is a singular perturbation problem based on the limit of infinite nuclear
mass[1, 2, 3], and it is plausible that the product form, when valid, is a direct consequence of
the limit. Nevertheless there has recently been renewed interest[4, 5, 6, 7, 8] in the question
as to whether the ≈ symbol in (1) can be replaced by = with suitably redefined ‘electronic’
and ‘nuclear’ functions ϕ and χ, a so-called ‘exact’ factorization of an eigenfunction Φ. The
present work offers a mathematical analysis of this factorization.

The earliest attempt that we know of to write an exact wavefunction Φ(r,R) of the
Coulomb Hamiltonian H for a neutral system of electrons and nuclei in a factorized form was
made by Hunter[9]. His analysis was made in terms of conditional and marginal probability
amplitudes; the wavefunction Φ, assumed normalized, is written in the product form

Φ(r,R) = f(R)φ(r,R) (2)

with the nuclear function f(R) defined as a marginal by means of

|f(R)|2 =

∫
Φ(r,R)∗Φ(r,R) dr. (3)

This fixes f(R) to within a phase factor,

eiθ(R) (4)

where θ(R) is a real function of the nuclear coordinates. In the absence of a criterion to
choose it, Hunter suggested taking simply

f(R) = − |f(R)| or f(R) = |f(R)|. (5)

The associated function, φ, is then defined to be the quotient

φ(r,R) =
Φ(r,R)

f(R)
(6)

and it satisfies the normalization condition∫
φ(r,R)∗φ(r,R) dr = 1

for all R. Obviously this construction would be problematic if either f(R) has zeroes for finite
R or Φ(r,R)/f(R) is too irregular at infinity. The construction, if applicable, is available
for any wavefunction Φi and so the nuclear functions {f(R)i} are required generally to be
quite different from the usual approximate nuclear wavefunctions for vibrationally excited
states which do have nodes [10]. Equally, it is evident that every wavefunction Φi has its
own distinct electronic factor, φi; this is to be contrasted with the BO description (1) where
whole groups of approximate eigenfunctions {Φα} share one electronic state ϕ which supports
a vibration-rotation manifold of states.

More recently, attempts at factorization have been made by Gross and co-workers[4, 5, 6]
using both time-independent and time-dependent formulations which are a development of
Hunter’s approach and, reverting to the time-independent form, Cederbaum has proposed a
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3 Introduction

related factorization scheme[7] (see also the subsequent Erratum[8]); it is these more recent
proposals we analyse here though we point out the connection between Hunter’s early work[9]
and the more recent work of Gross et al..

For a freely moving system it is always possible to separate completely the centre-of-mass
dynamics (free motion) from the internal motions of the molecule. It is not essential for an
account of factorization to remove the centre-of-mass motion (and to do so complicates the
form of the internal Hamiltonian somewhat - see below) but if one does not, the description of
the bound-states of the molecule is more involved. If we denote the position coordinate of the
centre-of-mass by R, and introduce a set of independent internal position variables, straight-
forward calculation[11] yields the Hamiltonian H in Schrödinger representation separated into
internal and centre-of-mass contributions

H = H′ − ~2

2MT
∇2

R , H′ = Hel + Tn. (7)

Here MT is the total molecular mass and Hel, which only differentiates in the electronic
variables, and Tn are defined explicitly in Section 2. The spectrum of the Hamiltonian H
is purely continuous and the description of the molecular bound-states requires a rather
complicated mathematical formulation. Indeed, H has no eigenfunctions. On the other hand
the eigenfunctions of the internal molecular Hamiltonian H′, (17), are square integrable and
have (distributional) derivatives up to second-order that are also square integrable; they
belong to the Sobolev space H2. These are the true bound-states {Ψi} associated with
discrete energies {Ei} that describe the internal motions of the molecule. The regularity
properties of the bound-state wavefunctions turn out to be important for a precise account of
factorization, and it is advantageous to frame the discussion directly in terms of the internal
Hamiltonian.

The paper is organized as follows; in Section 2 we review some features of the Schrödinger
equation for the Coulomb Hamiltonian which are pertinent here. We emphasize the oc-
currence of singularities in the Coulomb potential energy operator which require that the
molecular Schrödinger equation (in position representation) be interpreted in a more general
setting than a classical partial differential equation. Factorization of an eigenfunction of the
Coulomb Hamiltonian evidently must take account of this mathematical setting, but it also
brings in new problems which this paper aims to characterize. In the following we shall iden-
tify some ambiguities in the recent discussions of factorization and describe a mathematical
framework where the ambiguities are removed. Some remaining uncertainties are reported. A
common feature of the proposed factorization schemes is that the factors (ϕ, χ) are solutions
of a system of non-linear equations. In Section 3 we study the formal computation that gives
rise to these equations, paying close attention to the regularity properties required to give
it a precise meaning. In Section 4 we discuss a variational calculation that is related to the
system of non-linear equations.

Two particular facts are important for any proposed factorization. Firstly, even if one
can find factors (ϕ, χ) both of which belong to the appropriate H2 Sobolev spaces, in the r
and R variables respectively, it does not follow automatically that their product (2) belongs
to H2 (in all variables r,R). Secondly it is possible that an electronic function φ(r,R)
defined in the manner of Hunter, (6), does not belong to the Sobolev space H2(r) and so
cannot be interpreted as a bound-state electronic wavefunction. We give a model example
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4 The Coulomb Hamiltonian

in Appendix 8.4. Thus both approaches involve technical difficulties that must be overcome
and both require a supplementary check that the product ϕχ is actually an eigenfunction of
the Schrödinger equation.

An alternative to Hunter’s interpretation of the quotient φ(r,R), which we will also explore
here, is to regard it as a molecular wavefunction required to belong to the Sobolev space
H2(r,R). An example of such a factorization which largely avoids the troublesome technical
details is given in Section 5. Although it lacks the direct physical interpretation of Hunter’s
approach it does incorporate precise information about the behaviour of eigenfunctions at
infinity. In Section 6 we discuss the normalization of the factors proposed in [4, 5, 7, 8, 9] in
the light of the previous results, and correct the modified computation in[8]; the relationship
between the ‘electronic’ and ‘molecular’ wavefunction interpretations of φ, equation(6), is
discussed here. Finally we try to draw together our findings in Section 7. An Appendix
reviews some key mathematical notions in an informal way.

2 The Coulomb Hamiltonian

A molecule considered as a quantum mechanical collection of electrons and nuclei is custom-
arily described by the usual Coulomb Hamiltonian H acting on an Euclidean configuration
space defined by the particle coordinates with Schrödinger equation

HΦ = EΦ. (8)

More explicitly, for a system of Ne electrons and Nn atomic nuclei we have

H =

Nn∑
g=1

p2
g

2mg
+

e2

8πεo

Nn∑
g,h=1

′ZgZh
rnngh

+

Ne∑
i=1

 p2
i

2m
− e2

4πεo

Nn∑
g=1

Zg
renig

+
e2

8πεo

Ne∑
i,j=1

′ 1

rnnij
. (9)

The configuration space is R3Nn+3Ne , where R denotes the set of real numbers. The interpar-
ticle distances are: rnngh = |xng − xnh|, renig = |xei − xng |, and reeij = |xei − xej | in terms of particle
coordinates {xei ,xng} in a laboratory frame. Here and elsewhere we use (i, j) and (g, h) as
indices for electrons and nuclei respectively.

The primes on the summation symbols mean that terms with identical indices (‘self-
interactions’) are to be omitted. We define the set Σn of nuclear collisions as the set of those
configurations such that rnngh = 0 for some g, h. Similarly, the set Σ of all collisions is the
set of those configurations such that rnngh = 0 for some g, h, or renih = 0 for some i, h, or
reeij = 0 for some i, j. Collisions have important consequences for the analytical properties
of the eigenfunctions which seem to have been first considered by Kato[12]. In particular, it
is expected that cusps appear in the wavefunction at collisions if the wavefunction does not
vanish; it is also possible for an exact eigenfunction to have a node at the singularity[13, 14].
Whether the inclusion of such cusps by means of trial wavefunctions involving reeij in electronic
structure calculations could improve their accuracy has been quite widely studied; an example
can be found in [15]. We shall consider the matter further from a mathematical standpoint[16]
when examining the proposed factorisations.
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5 The Coulomb Hamiltonian

For discussions of molecules where one wants to focus on the approximate separability of
electronic and nuclear motions, it proves convenient to make a specific choice of the internal
coordinates. The nuclear position variables {Rn} can be chosen as a set of Nn − 1 trans-
lationally invariant variables, defined in terms of the original nuclear position coordinates,
such that one of the new variables is the position coordinate for the nuclear centre-of-mass
X. The electronic coordinates {re} are a set of Ne variables defined in terms of the original
electronic coordinates by[11]

xei = rei + X. (10)

With this choice of coordinates the translationally invariant Coulomb Hamiltonian takes
the form,

H′ → He(re) + Hn(Rn) + Hen(Rn, re). (11)

The part of the Hamiltonian which can be associated with electronic motion is

He(re) = − ~2

2m

Ne∑
i=1

∇2(rei )−
~2

2MN

Ne∑
i,j=1

~∇(rei ) · ~∇(rej)

+
e2

8πε0

Ne∑
i,j=1

′ 1

|rej − rei |
(12)

where

MN =

Nn∑
g=1

mg. (13)

The part that can be associated with nuclear motion is

Hn(Rn) =− ~2

2

Nn−1∑
g,h=1

1

µngh

~∇(Rn
g ) · ~∇(Rn

h)

+
e2

8πε0

Nn∑
g,h=1

′ ZgZh
rnngh (Rn)

(14)

where rnngh (Rn) is the internuclear separation distance expressed in terms of the {Rn} and
the inverse mass matrix 1/µngh is in standard form[11].

The electronic and nuclear motions are coupled only via a potential term,

Hen(Rn, re) = − e2

4πε0

Nn∑
g=1

Ne∑
j=1

Zg
renjg (re,Rn)

(15)

where the electron-nucleus distance expression |xej − xng | ≡ renjg is again expressed in terms of
the internal coordinates. In the following it will be convenient to write {re} as r, and {Rn}
as R for simplicity, and denote the gradient operator on nuclear coordinates as ∇n. The first
(sum) term in (14) is the kinetic energy operator Tn in (7); we write it in this shorthand
notation as

Tn =
~2

2µ
∇n · ∇n. (16)
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6 The Coulomb Hamiltonian

The Schrödinger equation for H′ defined by (11) - (15) is formally an elliptic partial
differential equation (PDE) in the coordinates (r,R),

H′Ψ = EΨ, (17)

on the reduced configuration space X = R3Nn+3Ne−3. The occurrence of the Coulomb singu-
larities in H′ and the physical interpretation of Ψ require that (17) must be placed in a more
general mathematical setting involving the notion of distributional derivatives if it is to be
given a precise meaning; we refer to Appendix 8.1 for details on distributional derivatives.
One has to view (17) in the following way.

Let us denote by L2(X ) the set of square integrable functions on X . We define the Sobolev
space H2(X ) as the space of L2(X )-functions such that their distributional derivatives up to
second order all belong to L2(X ). For Ψ ∈ H2(X ), each term in (17) makes sense as a
L2(X )-function and the equality takes place in this space L2(X ). For instance, the term TnΨ
is a L2(X )-function that satisfies, for all smooth functions h on X with bounded support,

〈TnΨ|h〉L2(X ) = 〈Ψ|Tnh〉L2(X ), (18)

where Tnh is now computed in the usual sense. One can see an eigenfunction Ψ ∈ L2(X )
as a distributional solution to (17). This means that for all smooth functions h on X with
bounded support,

〈Ψ|H′h〉L2(X ) = E〈Ψ|h〉L2(X ). (19)

Essentially what is done here is the differentiations in H′ are transferred to suitably smooth
functions h, using integration by parts, as required. Note this point of view is already
necessary in the simplest case: the Hydrogen atom. After removal of the centre-of-mass
motion, the internal Coulomb Hamiltonian involves the electron-proton relative coordinate
r. The groundstate is given by Ψ0 = c exp(−|r|), in appropriate units. This function is
continuous everywhere, and differentiable outside the collision at 0. But it is not differentiable
at 0 and so (17) cannot be understood in the usual way. Now if the potential energy terms
were smooth functions, for example Hooke’s Law for coupled oscillators, the reformulation
just described would yield (smooth) solutions everywhere that were solutions of the PDE
(17) in the usual sense. It is the occurrence of the singularities in the Coulomb potential that
cause the main difficulties (to be discussed below) for the idea of an ‘exact factorization’ of
a molecular wavefunction. For future reference we denote H2(R3Nn−3) as the Sobolev space
for wavefunctions depending on only the Nn − 1 nuclear coordinates; it is contained in the
corresponding space L2(R3Nn−3).

The best known regularity of an eigenfunction Ψ of the Coulomb Hamiltonian H′ is only
that its first distributional derivatives are bounded[12, 16]; in particular, we do not know if
one can differentiate Ψ everywhere in the usual sense. Fortunately, we have some further
information on Ψ; we know by elliptic regularity[17] (see Appendix 8.7), that the following
two statements are valid:

Ψ is a real analytic function outside the set Σ. (20)

Ψ has at most isolated zeroes outside Σ. (21)
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7 Eigenvalue equation versus non-linear system

If we replace the Coulomb interaction by some smooth potential, then elliptic regularity shows
that Ψ is smooth everywhere. This explains why the derivatives in (17) can be computed in
the usual sense in such a case.

These facts about a Coulomb eigenfunction already yield some useful information about
its putative factors. Thus, for example, if Ψ can be written as χ(R)ϕ(r,R), then neither χ
nor ‖ϕ‖2r := 〈ϕ,ϕ〉r can vanish outside Σn. Indeed, if χ or ‖ϕ‖2r vanishes at some R0 then
so does Ψ on {(r,R);R = R0}. If R0 6∈ Σn, then this set contains at least a segment outside
Σ. This contradicts the fact, (21), that Ψ has isolated zeroes outside Σ. On the other hand
since we do not know if Ψ has usual derivatives everywhere we cannot reasonably assume
that the factors ϕ and χ are everywhere regular. This information is directly relevant to our
consideration of a system of equations that provide a formal definition of factors ϕ and χ.

3 Eigenvalue equation versus non-linear system

In this Section we study the factorisation of eigenfunctions and the associated non-linear
problem solved by the factors that were presented by Cederbaum[7, 8] and in the contributions
of Gross et al.[4, 5]. We also review Hunter’s factorisation[9]. To begin with we follow
Cederbaum’s arguments applied to an eigenfunction of H′.

Firstly recall that Hunter started not from an assumption of ‘nuclear’ and ‘electronic’
factors but from an exact wavefunction for the molecular system, which he then analysed
in terms of conditional and marginal probability amplitudes to yield a factorization. Ceder-
baum’s approach is rather different. In his equation (7a) it is assumed [7] that a product
form ϕ(r,R)χ(R), where these functions are the putative solutions of a pair of coupled equa-
tions, can represent an exact wavefunction Ψ, rather than that the exact wavefunction can
be written in product form; equation (7a) thus needs an existence proof.

Starting from a normalized solution Ψ of H′Ψ = EΨ and making the ansatz that Ψ(r,R)
factorises into ϕ(r,R)χ(R), one can try to follow Cederbaum’s discussion (§IIA[7]), disre-
garding for the moment the question of normalization that will be studied later in Section 6.
Cederbaum’s formal computation[18] can be summarized as follows:

0 = (H′ − E)ϕχ

0 = ϕ(Tnχ)− ~2

µ
∇nχ · ∇nϕ+ χ(H′ − E)ϕ (22)

0 = χ
(
χ−1(Tnχ)ϕ− ~2

µ
χ−1∇nχ · ∇nϕ

+ (H′ − E)ϕ
)

(23)

0 =
(
H′ − ~2

2µ
χ−1∇nχ · ∇n − Eel(R)

)
ϕ (24)

with
Eel(R) = −χ−1(Tnχ) + E. (25)

We can rewrite (24) as
Helϕ = Eel(R)ϕ (26)
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8 Eigenvalue equation versus non-linear system

with

Hel = H′ − ~2

2µχ
∇nχ · ∇n . (27)

Multiplying (26) by ϕ∗ and integrating over the electronic variables, we get

Eel(R)‖ϕ‖2r = 〈ϕ|Helϕ〉r . (28)

From (25) and (28), we derive

Tnχ =
(
E − 〈ϕ|Helϕ〉r

‖ϕ‖2r

)
χ . (29)

Now, if (ϕ, χ) solves the coupled, non-linear equations (26) and (29), then, reversing the
above computation, we get (22) and ϕχ is a solution of (H′ − E)ϕχ = 0.

The present paper does not offer a detailed investigation of the non-linear equations
(26) and (29) but studies their relationship with the factorization. What is required is a
framework in which the above computation can actually be realized. A natural assumption
to make would be that ϕ ∈ H2(X ) and χ ∈ H2(R3Nn−3), since one wants to interpret
them as wavefunctions. Furthermore their product is to be an eigenfunction, ϕχ = Ψ, and
Ψ ∈ H2(X ) is therefore essential. Since the latter property is not guaranteed by ϕ ∈ H2(X )
and χ ∈ H2(R3Nn−3) (see Appendix 8.2) one could try to study the non-linear equations in
a subspace H0 of H2(X )

H0 = {(ϕ, χ) ∈ H2(X )×H2(R3Nn−3);ϕχ ∈ H2(X )}. (30)

On the other hand it is not at all obvious that all of the steps (22) - (29) in the computation
are valid in the setting (30).

First of all, since χ may have zeroes, the meaning of the division by χ in the above
formulae requires explanation. This is actually a delicate issue; to see this, let us take an
example. Let f be a smooth function on X with support in the region {|r| ≤ 1; |R| ≤ 1} and
such that f = 1 for (r,R) close to 0. Let g be a smooth function on R3Nn−3 with bounded
support such that g(R) = 1 for |R| ≤ 2. Consider the smooth function χ(R) = g(R)|R|2m,
for some integer m. Away from R = 0, f/χ is a smooth function (given by f(r,R)|R|−2m)
but it is a quite nasty function near R = 0 if m is large enough[19]. In particular, it does not
belong to L2(X ) and it is not clear how to interpret it as a distribution.

Thus we must consider how we might give a definite meaning to the computation (22)-
(29). In our first approach which is a local treatment, we avoid the set Σ, that is we restrict
the values {r,R} to lie outwith Σ. In view of (20) it would be natural to assume that the
factors ϕ and χ have at least conventional derivatives up to second order in this region. Since
both χ and ||ϕ||r are non-zero outside Σn the calculations make sense pointwise at any point
(r,R) 6∈ Σ; all derivatives can be taken in the usual sense. If we can find such factors[20] ϕ
and χ in H0 with the further properties that neither χ nor ||ϕ||r vanish outside Σn, and that
equations (26) and (29) are satisfied away from Σ, then following the computation backwards
we obtain (22) outside Σ. Then H′ϕχ−Eϕχ belongs to L2(X ), and we have shown that it is
zero outside Σ, and so simply zero since Σ has zero volume (is a set of zero measure). Thus
ϕχ ≡ Ψ is an eigenfunction of H′.
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9 Eigenvalue equation versus non-linear system

Let us now try a global treatment of the computation. In (22), we used the Leibniz rule
for derivatives. We do not know if it is valid here since it is possible that one factor contains
a singular part (a non L2(X )-part) which is compensated in another term. We would not be
able to separate the terms but this is precisely what we must do in (26)-(27). Assume that
(22) is valid with each term in L2(X ), possibly after restricting (ϕ, χ) to a smaller subset H′
of H0, (30). Now, we face the division problem in (23). Since ϕ ∈ H2(X ), (H′ −E)ϕ is well-
defined as a L2(X )-function. So we should see an equality between L2(X )-functions in (24).
Let us only consider χ−1∇nχ · ∇nϕ; if one views ∇nϕ as a distribution, there is the problem
that the product of distributions is not generally defined, if one can identify χ−1∇nχ with
a distribution. Instead, we might view ∇nχ and ∇nϕ as square integrable functions. Then
∇nχ · ∇nϕ is an integrable function in the R variable. But the multiplication by χ−1 may
destroy this integrability property. Another try could be to see χ−1∇nχ · ∇n as a differential
operator but, since χ may vanish, it would be a singular one. Again, the result of its action
on ϕ may be outside L2(X ). Anyway, we see that one already has difficulties even to give a
meaning to (23).

In Hunter’s formulation[9], the first step of the computation (22) - (29) is performed for
a special choice of χ, given by (3). The full computation is followed in the papers by Gross
et al.[4, 5, 6]. They do not require the nuclear wavefunction to be square integrable and so
the removal of the centre-of-mass motion is not performed. However it is perfectly possible,
and convenient, to discuss their method in the framework set out here. The nuclear function
χ is chosen as

χ(R) = eiS(R)
(∫
|Ψ(r,R)|2 dr

)1/2
, (31)

where S is an arbitrary real-valued function (cf (4)) and Ψ is a normalized solution of (17).
Then, ϕ is defined by Ψ/χ and one derives equations for ϕ and χ as above. Recall that
they interpret ϕ as a R-dependent electronic wavefunction. The meaning of (22) already
requires some information on the regularity of the factors. One can adapt the arguments in
[16, 21, 22, 23] to show that the function

R 7→
∫
|Ψ(r,R)|2 dr

is actually real analytic outside Σn. Since it does not vanish there, its square root is also real
analytic and so is χ in (31), if S is chosen real analytic. Away from Σ, the function ϕ defined
by Ψ/χ is therefore real analytic, by virtue of (20). Thus we can follow our ‘local’ treatment
performed above but, this time, we get a stronger result. The problem of factorisation of an
eigenfunction of H′ is equivalent to finding a solution (ϕ, χ) of (26) and (29) away from Σ
such that ϕχ belongs to H2(X ) and such that neither χ nor ‖ϕ‖r vanish outside Σn.

The difficulties described above in the global approach also appear in the work of Gross
et al.[4, 5, 6] as we now show. Of course, we have Ψ = ϕχ but, since the integral in (31)
may vanish we have to be more precise in the definition of ϕ. In view of (21) and repeating
the argument at the end of Section 2, we see that the integral in (31) can vanish only in Σn;
thus ϕ is well-defined outside Σn. This would be sufficient to define ϕ everywhere as Ψ/χ if
it were in L2(X ). But the latter property is not certain since we do not know the behaviour
of Ψ/χ at the collisions, nor do we know if it is small enough at infinity for ϕ to be square
integrable. The same remarks apply to its derivatives of course.
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10 Variational method

If one replaces the Coulomb interaction by a real analytic potential, then one can show
by elliptic regularity that Ψ is real analytic everywhere and the above discussion is valid with
an empty set Σ. So the computation outside Σ is actually the global one. Nevertheless, one
would still have to characterize the behaviour at infinity of the product ϕχ, since it must
belong to H2(X ) if it is to be an eigenfunction of H′.

4 Variational method

A classical way to find solutions of a partial differential equation is to introduce an appropriate
functional such that its critical points are precisely the solutions of the given equation. Then
one tries to find local extrema of the functional. Cederbaum proposed to follow this strategy
and introduced a functional on functions ϕ(r,R) and χ(R) and on two real parameters, having
in mind that the product ϕχ for a critical point should give a normalized eigenfunction of
H[7]. Cederbaum’s arguments do not prove the existence of such factorised eigenfunctions
since he does not prove the existence of critical points. There are important difficulties that
make the search for critical points a delicate matter as we now describe. In the following
we investigate the variational approach to the factorization of eigenfunctions of the internal
Hamiltonian H′.

Let E be the set of the eigenvalues of H′. Recall thatH2(X ) is the space of wavefunctions Ψ
(with centre-of-mass removed) ofNn nuclei andNe electrons such that Ψ and its distributional
derivatives up to second order are all square integrable. We recall (cf (30)) that H0 is the set
of couples, (ϕ, χ) where ϕ ∈ H2(X ), and χ ∈ H2(R3Nn−3) is a nuclear wavefunction, and such
that the product ϕ(r,R)χ(R) belongs to H2(X ). Consider the functional τ : H0 × R2 → R
specified by[7] (

(ϕ, χ); (λ, µ)
)
7→〈ϕχ|H′(ϕχ)〉+ λ

(
1− ||ϕχ||2

)
+µ
(
1− ||χ||2R

)
. (32)

LetH1 be a subset ofH0 such that τ is differentiable onH1×R2, and (ϕ, χ) ∈ H1, (λ, µ) ∈ R2.
Then the following computations are valid

dτ

dϕ
= 2χ∗(H′ − λ)ϕχ ,

dτ

dχ
= 2χ

(
〈ϕ|(H′ − λ)ϕχ〉r − µ

)
. (33)

((ϕ, χ); (λ, µ)) is a critical point precisely when both terms in (33) are zero and

||ϕχ|| = 1 , ||χ||R = 1 . (34)

In such a case,
µ|χ|2 = χ∗〈ϕ|(H′ − λ)ϕχ〉r = 〈ϕ|χ∗(H′ − λ)ϕχ〉r = 0.

Since χ is not identically zero, µ = 0.
Let Rχ = {(r,R);χ(R) 6= 0}. Denote by Zχ the complement, that is the set of zeroes of

χ. By the second equation in (34), Zχ cannot be the whole space X . Inside Zχ, the product
ϕχ is zero so that (H′ − λ)ϕ χ = 0 there. On the region Rχ, (H′ − λ)ϕχ = 0, since we
consider a critical point. If we assume that the boundary of Zχ (or Rχ) has zero volume we
can show that ϕχ is an eigenfunction of H′ as follows. We know that it belongs to H2(X ).

10



11 A special factorization

Thus (H′ − λ)ϕχ is well-defined and belongs to L2(X ). The latter is zero on Rχ and on
Zχ. Given that the boundary of Zχ has a zero volume, (H′ − λ)ϕχ = 0 holds true in L2(X )
and, thanks to the second equation in (34), ϕχ is an eigenfunction of H′ and λ ∈ E . Using
again elliptic regularity, ϕχ must be real analytic away from Σ. As already pointed out, this
implies that Zχ ⊂ Σn, which has a zero volume. We thus have shown that, if we have a
critical point ((ϕ, χ); (λ, 0)) of τ such that the boundary of Zχ has zero volume, then ϕχ is
an eigenfunction of H′ with energy λ.

This variational method is related to the system (26) and (29). Let ((ϕ, χ); (λ, 0)) be a
critical point of τ . We assume further that Zχ ⊂ Σn and that χ is smooth outside Σn. We
know that (H′ − λ)ϕχ = 0 and rewrite this away from Σ as

0 = ϕ(Tnχ) + χHelϕ− λϕ χ. (35)

Defining Eel by λ − (χ)−1(Tnχ) away from Σn, we get (26) outside Σ. Multiplying (35) by
ϕ∗, integrating over the electronic variables, and dividing by χ, we recover (29) away from
Σ. Using again the definition of Eel, we arrive at (29), outside Σ.

An obvious difficulty for the present variational method is the determination of the space
H1, where the critical points of τ live. As discussed in Appendix 8.3, we think that H1 is
strictly included in the space H0, which is already not easy to describe. Another difficulty
is related to our assumption that the boundary of the set Zχ has zero volume. Without this
assumption, we do not see how to justify that, for a critical point, the corresponding product
ϕχ is an eigenfunction of H′. We can only hope that an appropriate study of the critical
points or the solutions of the system (26) and (29) justifies this assumption.

5 A special factorization

In the paper by Gross et al.[4] the factorisation (31) is chosen as the starting point; we saw
in Section 3 that it could produce singularities similar to those in Cederbaum’s approach.
Here we present another factorization based on an important result by Agmon[24, 25], that
does not have this drawback.

Let Ψ be an eigenfunction of H′ with energy E which is isolated in the spectrum (this
energy condition is satisfied for relevant situations in Chemistry). Then, one can deduce from
Theorem 4.13 in Agmon[24] that there exists c > 0 such that the function exp(c|(r,R)|)Ψ(r,R)
belongs to L2(X ). Here |(r,R)| denotes the norm of the vector (r,R), that is, (|r|2 + |R|2)1/2.
Setting 〈R〉 = (1 + |R|2)1/2, we choose the nuclear factor in the form

χ(R) = a exp(−c′〈R〉) with a > 0 and c ≥ c′
√

2 > 0. (36)

Then χ ∈ H2(R3(Nn−1)), χ is smooth, real valued and positive everywhere. Choosing a
appropriately, we can ensure that ‖χ‖R = 1. Now we define ϕ = Ψ/χ. Since we have
pointwise 〈R〉 ≤

√
2|R| ≤

√
2|(r,R)| then

exp(c′〈R〉)|Ψ(r,R)| ≤ exp(c|(r,R)|)|Ψ(r,R)|

and ϕ belongs to L2(X ). If Ω is a bounded subset of X , then ϕ actually belongs to H2(Ω).
But we do not know if ϕ ∈ H2(X ). In other words, the (distributional) derivatives of ϕ

11



12 Normalization

up to second order are locally square integrable but we do not have enough control of their
behaviour at infinity to ensure that they are globally square integrable.

These properties are however sufficient to allow us to repeat the arguments of Section 3
on any bounded subset Ω of X , starting from Ψ = ϕχ, for then all terms are in L2(Ω). The
nuclear wavefunction χ is smooth, and so the explicit function Eel(R) given by (25) is also
smooth, and bounded, and (26) even makes sense globally in X , in the sense of distributions,
and takes the form

(
H′ +

~2c′R

2µ〈R〉
· ∇n

)
ϕ =

(
E +

~2c′

2µ〈R〉3
(
|R|2(c′〈R〉+ 1)

−3Nn〈R〉2
))
ϕ . (37)

Note also that, this time, the multiplication by χ(R) preserves the space H2(X ). So, if we
can find a nonzero solution ϕ of (37), such that ϕ ∈ H2(X ), we can reverse the computation
in Section 3 to show that ϕχ is an eigenfunction of H′ with energy E.

We can also modify the variational method presented in Section 4 in the following way.
Setting χ(R) as in (36) above, we consider the functional τ ′ defined on H2(X )× R by

(ϕ, λ) 7→ 〈ϕχ|H′(ϕχ)〉+ λ
(
1− ||ϕχ||2

)
. (38)

In contrast to the functional τ , τ ′ can be differentiated everywhere and

dτ ′

dϕ
= 2χ∗(H′ − λ)ϕχ ,

dτ ′

dλ
= 1− ||ϕχ||2 . (39)

Now, since χ does not vanish, at a critical point (ϕ, λ), the product (H′ − λ)ϕχ = 0. Since
(H′ − λ)ϕχ ∈ L2(X ) this shows that ϕχ is a normalized eigenfunction of H′ with energy λ,
and that λ ∈ E . As above, we can redo the computation of Section 3 to get (37). We can also
look for a local extremum of τ ′ at (ϕ, λ), since it must be a critical point. Thanks to the fact
that χ is smooth and non-vanishing, we avoid the difficulties encountered in Sections 3 and 4.
Indeed, we may forget about the collision set Σ (although it reappears in the regularity
properties of the solution of (37)), and the computations are (almost) elementary. In the
variational approach based on τ ′, (38), we avoid completely the obscure spaces H0 and H1

and the troublesome assumption about the boundary of Zχ.
Note that, in the above description, we have a relatively free parameter, namely c′, that

occurs in the definition of χ in (36). We could try to let τ ′ depend on c′ as well in the
variational approach. We do not know if this option facilitates the search for critical points.

6 Normalization

In this section, we discuss the normalization used in Gross et al.[4] and in Cederbaum[7]. In
particular, we rectify a modification proposed in Cederbaum’s Erratum[8]. In the framework
of Section 3, let us assume that Ψ(r,R) = ϕ(r,R)χ(R). Cederbaum’s normalization requires,
for all R, that

‖ϕ‖2r =

∫
|ϕ(r,R)|2 dr = 1 . (40)

12



13 Discussion

This implies that, for all R, ∫
|Ψ(r,R)|2 dr = |χ(R)|2 .

Thus (31) is satisfied and the factorisation is the same as in Gross et al.[4]. Conversely, if
we start with the latter, we have already pointed out that ϕ may be very irregular near
the nuclear collisions. Fortunately, as seen at the end of Section 3, χ can only vanish at the
nuclear collisions, that is, in a small region (a set of measure zero). Thus ϕ can be defined and
we deduce that (40) holds true outside the nuclear collisions Σn. Note further that ϕ 6∈ L2(X )
so it cannot be interpreted as a molecular wavefunction; instead it should be viewed as a R-
dependent electronic wavefunction as in the BO approximation. The normalization (40) does
not essentially change our discussion on global computations in Section 3. Now assume, as in
our discussion outside the collisions set Σ, that we have found a solution (ϕ, χ) of (26) and
(29) away from Σ such that ϕχ belongs to H2(X ) and such that neither χ nor ‖ϕ‖r vanishes
outside Σn. Then Ψ = ϕχ but (40) might be false. The factorisation

Ψ(r,R) =
ϕ(r,R)

‖ϕ‖r(R)
· ‖ϕ‖r(R)χ(R) (41)

does satisfy the normalization condition but now the function ϕ(r,R)/‖ϕ‖r(R) might be very
irregular near Σ. Thus, it is not clear that the normalization (40) can be satisfied.

Assuming that (ϕ, χ), just as above, solves the system (26) and (29) outside Σ, we can
derive the non-linear system that the factors in (41) should satisfy, correcting in this way
the corresponding computation in [8]. We define ϕ = ϕ/‖ϕ‖r and χ = χ‖ϕ‖r (instead of
ϕ = ϕ‖ϕ‖r and χ = χ/‖ϕ‖r in [8]). Away from Σ, ‖ϕ‖r = 1 and we know that (H′−E)ϕχ = 0,
thus (H′−E)ϕχ = 0, since ϕχ = ϕχ. By the computation (22) - (29), we arrive, still outside
Σ, at

Kelϕ = Eel(R)ϕ (42)

where

Eel(R) = −χ−1(Tnχ) + E and Kel = H′ − ~2

2µχ
∇nχ · ∇n ,

and
Tnχ =

(
E − 〈ϕ|Kelϕ〉r

)
χ . (43)

7 Discussion

In the previous sections, we have reviewed two schemes for the factorization of eigenfunctions
of the molecular Hamiltonian, that were described in the papers[4, 5, 6, 7, 8, 9]. We have seen
that many ambiguities appear not only in the computations but also in the meaning of the
results. Based on mathematical results (well-known in the mathematical physics community),
we have extracted the main ideas of these methods and implemented them in a coherent
framework, giving in this way a precise meaning to the statements and partially justifying
the computations. We also have provided in §5 a new factorisation by using the methods in
a different way.

13
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The main results can be summed up as follows, starting with the first method. If an
eigenfunction Ψ of (17) can be factored into ϕ(r,R)χ(R) with sufficiently regular factors,
then the latter must satisfy the non-linear system of equations (26) and (29), outside the set
of collisions Σ. If one prescribes χ to be a marginal of Ψ (see (31)), one is led to the same
conclusion, the factors being automatically regular enough. Conversely, if one has a solution
(ϕ, χ) of the non-linear system away from the collisions that satisfies some further conditions,
the product ϕ(r,R)χ(R) is an eigenfunction. If one chooses at the outset χ as in equation
(36) one essentially gets the previous results without caring about the collisions.

The second method is of variational nature. Having in mind to factorize an eigenfunction
Ψ as ϕ(r,R)χ(R) one introduces a functional, acting on functions ϕ and χ, that is defined on
an appropriate but quite complicated space. The functional is chosen such that its critical
points produce an eigenfunction Ψ in the desired product form provided they satisfy some
regularity condition. Furthermore, one can relate this approach to the previous non-linear
system outside the collisions. In order to progress one must better understand the functional
τ and the complicated sets H0 and H1. In Appendix 8.3 we show that H1 is not empty and is
probably strictly included in H0. A demonstration that the functional τ actually has critical
points is a delicate matter. Furthermore we need an unpleasant assumption on the zero set
of χ to construct an eigenfunction from a critical point. When the factor χ is chosen as (36)
one can also follow a similar variational method on a quite natural, simple space.

For both approaches the results are quite limited. In the factorisation with χ(R) given
by a marginal, the other factor ϕ is smooth away from the collisions but we cannot, as yet,
exclude an irregular behaviour near the collisions, which would not be compatible with an
interpretation of their product as a wavefunction. Starting from a solution of the non-linear
system, we do not know if the conditions required to prove that the product is indeed an
eigenfunction are satisfied. In the variational method, we do not know if the functional has
critical points; we even have difficulties to describe the space where we have to look for them.
If we have such a critical point, we still need to check further properties to ensure that the
product of factors is indeed an eigenfunction.

The situation is a bit better when one requires χ to be specified by (36). In this case, the
non-linear system reduces to a linear equation for the other factor ϕ (see (37)) and we just
have to find a solution of this equation in a natural space (i.e. H2(X )). In this framework,
the variational method is also easier to work with. We know that the functional has critical
points but we do not know how to compute them.

In the previous sections, we have seen that the set of collisions Σ plays an important rôle.
This is due to the fact that the Coulomb interactions have singularities precisely on this set.
These collisions are responsible for most of the difficulties we encountered. If we regularize
each Coulomb singularity, that is, make the replacement of each x−1

kl in the operator H′ by
a real analytic function, then an eigenfunction Ψ is everywhere analytic. If we assume that
Ψ(r,R) = χ(R)ϕ(r,R) or if we write this factorisation with χ defined by (31), we can show as
above that χ never vanishes. All the previous difficulties related to the behaviour of ϕ near
Σ and those of χ(R) near Σn disappear after the regularization. Therefore the regularized
model presented in Gross et al.[4] and the exactly solvable one chosen by Cederbaum[7] are
not capable of giving insight into the actual molecular case, because an essential ingredient
is lacking from the proposed models.

Given a factorization of a particular eigenfunction Ψ(r,R)i = f(R)iφ(r,R)i, a ‘non-
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adiabatic energy surface’ for the nuclei can be defined formally by integrating out the elec-
tronic variables in the expectation value of the internal Hamiltonian in the state φi, (cf (28))

U(R)i =

∫
φ(r,R)∗iH

′(r,R)φ(r,R)i dr (44)

where H′ is the molecular Hamiltonian with the centre-of-mass contribution removed (see (7)).
Hunter showed that one can derive a ‘reduced Schrödinger equation’ for the nuclear function
f(R)i that partners φ(r,R)i in which U(R)i appears as a potential energy contribution.

However it is important to note that this is not a refinement of the conventional Schrödinger
equation for nuclear motion on a PES, because here the energy E is fixed (it is the eigenvalue
of the specified eigenfunction Ψi). One can require f(R)i to vanish at the collisions (R = 0),
but the behaviour at ∞ is not a priori assured. In the conventional adiabatic BO treatment
E along with the nuclear wavefunctions are unknowns, and one finds in the well-known way
that satisfying the boundary conditions at R = 0, R =∞ to assure square integrability is only
possible for certain discrete values of E, the molecular vibration-rotation levels associated
with the PES.

The pseudo-potential U defined in (44) as introduced by Hunter[9], and studied compu-
tationally by Czub and Wolniewicz[27], is only defined in a purely formal sense since, as we
have seen (Section 3), the function φ may be so irregular that the application of H′ to it could
be ill-defined. It would be sufficient however that, for fixed R, φ lies in the Sobolev space
H2 in the r variables, but we do not see what would guarantee such a property a priori.
Our analysis shows that, outside the collisions, φ is analytic though that is not enough to
control the behaviour at large r. However, making use again of arguments in [16, 21, 22, 23],
one might hope to show that, for fixed R away from the nuclear collisions, φ does have the
regularity H2 in the r variables, so giving a meaning to (44), and also that U is analytic in
this region.

Hunter thought it unlikely that a nuclear function f(R)i would have zeroes in view of
his interpretation of it as a marginal probability amplitude function for the nuclear coordi-
nates, but originally based his claim on an analysis of the Schrödinger equation for coupled
harmonic oscillators[28]. That problem is no real guide to the properties of the solution
of the Schrödinger equation for the Coulomb Hamiltonian not least because the oscillator
Hamiltonian is separable, has purely discrete spectrum and is well-behaved at collisions.

Nevertheless, in the chemical physics literature on factorization of molecular wavefunc-
tions it has been argued in more general terms that a nuclear wavefunction defined as a
marginal probability amplitude for an exact eigenfunction, Ψ, as in (3) or (31), is necessarily
nodeless. The argument rests on the statement that there exists a set of orthonormal func-
tions {σn(r,R)} that is ‘complete in the adiabatic electronic space’; for definiteness, assume
the {σn} are the eigenfunctions of the clamped-nuclei Hamiltonian,

H′ − Tn → Hcn

in which the nuclear positions {R} are treated as classical parameters,

Hcn(r : R)σn(r,R) = en(R)σn(r,R)

Then one writes an exact eigenfunction (of H′) as in the Born-Huang theory[26]

Ψ(r,R) =
∑
n

χn(R)σn(r,R) (45)
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and the nodeless property of the {χn} follows[6, 10, 27].
By contrast we are unable to exclude the possibility of nodes in the χ(R) functions for

R values associated with the collisions. Why the difference ? The essential point is that
an expansion such as (45) relies on the set of eigenfunctions {σn} providing a resolution of
the identity, and this is only valid in the case of a purely discrete spectrum; in other words,
{σn} must be true eigenfunctions associated with (discrete) eigenvalues. When an operator
also (or only) has a continuous portion of spectrum the matrix notion of diagonalization
providing a complete set of states breaks down, and the resolution of the identity must
instead be developed from the spectral theorem and the idea of spectral projection. One of
us has explored this idea[1] in detail in the context of the BO approximation; we refer to that
discussion which shows that an exact representation of Ψ is much more complicated than
(45), and does not lead us to such a definite conclusion about the nodal properties of χ.

So far, nothing has been said about spin statistics. Consider a collision involving two
identical nuclei (1,2). Under a permutation P12 an exact eigenfunction Ψ will either be
symmetric (boson statistics) or antisymmetric (fermion statistics). In the later case the
eigenfunction vanishes at the collision R12 = 0, and a χ factor calculated according to (3)
will also vanish. Direct examination of the Schrödinger differential equation in the vicinity
of R12 = 0 shows that the spatial part of the wavefunction may vanish in any case[13, 14].

Based on the present knowledge, we have the following impression of these methods. The
system (26) and (29) is non-linear and has a priori singularities. This is already a difficult
problem, but here we have the unusual situation in the case of (26) where the singularities of
the equation depend on an unknown function. Concerning the variational method, the space
on which we can apply it is difficult to describe. This comes precisely from the fact that
the functional contains products of the variables, which are a priori less regular functions.
When one requires that the factor χ or χ is given by an appropriate exponential function,
as in Section 5, the situation is a bit better but we do not see a real improvement in (37)
compared to the original equation (17). We do not see a natural physical interpretation for
the factors in this setting and judge the factorisation artificial. For these reasons, we are not
convinced of the efficiency of the methods to produce eigenfunctions. It would seem that the
equation systems suggested in these proposals are so difficult to handle that a direct approach
to constructing eigenfunctions treating the electrons and nuclei on the same footing might be
no more challenging; after all, the equations for the ‘electronic’ factor ϕ (or ϕ) still contain
the full internal molecular Hamiltonian H′ and all the electronic and nuclear variables of the
problem.
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17 Appendix

8 Appendix

In this Appendix we explain some notions and results used in the main text.

8.1 Differentiation in the distributional sense and products

Let d be an integer and f be a locally integrable function on Rd. This means that, for any
bounded subset Ω of Rd, f is integrable on Ω. We denote by D(Rd) the space of smooth
(complex-valued) functions on Rd with bounded support. One can identify the function f
with the distribution Tf : D(Rd)→ C (the set of complex numbers) defined by

Tf (g) =

∫
Rd

f(x)g(x) dx

The distributional derivative of f w.r.t. x1 is the corresponding derivative of Tf , which is the
new distribution ∂x1Tf : D(Rd)→ C defined by

∂x1Tf (g) = −
∫
Rd

f(x)∂x1g(x) dx.

Note that, for g ∈ D(Rd), ∂x1g ∈ D(Rd). If h is a smooth function on Rd , then hg ∈ D(Rd),
if g ∈ D(Rd). If T is a distribution on Rd, that is a continuous (in an appropriate sense)
linear map from D(Rd) to C, one defines the product of T by the smooth function h as the
new distribution given by (hT )(g) = T (hg). In particular, hTf = Thf .

Let us take examples that are relevant for the main text. For simplicity, we assume
Ne = Nn = 1. Let χ(R) ∈ L2(R3) and ϕ(r,R) ∈ L2(R6). The distributional derivative of χ
w.r.t. R1 is the linear map

∂̃R1χ : D(R3) 3 g 7→ −
∫
R3

χ(R)∂R1g(R) dR.

We may multiply it by a smooth function. But the product by ϕ(r, ·) (with fixed r) is a
priori undefined since ϕ(r, ·)g ∈ D(R3) could be false. Indeed ϕ(r, ·) could belong to the
set of L2(R3)-functions that are not smooth. So, we have difficulty defining ϕ(r, ·)∂̃R1χ.
However, if ∂̃R1χ = Tf1 , for a function f1 ∈ L2(R3), we may define the product ϕ(r, ·)∂̃R1χ
as the usual product ϕ(r, ·)f1, which is in L1(R3). We could also differentiate this product
in the distributional sense since one can identify a L1(R3)-function with a distribution. If we
would do that, the Leibniz rule

∂̃R1

(
ϕ(r, ·)f1

)
= (∂̃R1ϕ(r, ·))f1 + ϕ(r, ·)(∂̃R1f1)

might be false. Both products on the r.h.s might be undefined. This simple situation illus-
trates some difficulties mentioned in Section 3.

8.2 Products of H2-functions

Here we construct functions ϕ ∈ H2(R3(Ne+Nn−1)) and χ ∈ H2(R3Nn−1) such that ϕχ 6∈
H2(R3(Ne+Nn−1)). Let f and g be smooth functions with bounded support in R3(Ne+Nn−1)
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and R3Nn−1 , respectively, such that both are equal to 1 near 0. Let α and β be real numbers.
We set

ϕ(r,R) = f(r,R) ·
(
|r|2 + |R|2

)α/2
and χ(R) = g(R) · |R|β .

Then ϕ ∈ H2(R3(Ne+Nn−1)) and χ ∈ H2(R3Nn−1) if

α > 2− 3

2
(Ne +Nn−1) and β > 2− 3

2
Nn−1 .

Provided that Ne ≥ 3, one can choose α and β satisfying the above conditions and also α+β ≤
−3Nn−1. The latter implies that ϕχ 6∈ L2(R3(Ne+Nn−1)) and thus ϕχ 6∈ H2(R3(Ne+Nn−1)).

8.3 H1 6= H0 ?

To begin with, if ϕ and χ are smooth functions with bounded support in R3(Ne+Nn) and R3Nn ,
respectively, then (ϕ, χ) ∈ H1. Thus H1 is not empty. By definition, H1 ⊂ H0 but even so we
expect that one can find (ϕ, χ) ∈ H0 at which the functional τ is not continuous (and thus
not differentiable). To motivate this guess, we shall prove it for a simpler functional related
to τ (Section 4). Consider the map τ0 : H0 → R given by

(ϕ, χ) 7→ ||ϕ χ||2 ,

which is a part of the functional τ . Take Nn ≥ 3. Let β = 2−3Nn/2 + 1/8 > 2−3Nn/2. Let
δ = 3Nn/2 + β + 1/8 = 2 + 1/4. In particular, 2 + δ < 3Nn/2. Let f be a non-zero, smooth
function on R3Ne with bounded support. Let g and h be two smooth functions on R3Nn with
bounded disjoint supports such that g = 1 near zero. Since the supports are disjoint, gh is
identically zero. Let

ϕ(r,R) = f(r) · h(R) and χ(R) = g(R) · |R|β .

Thanks to β > 2− 3Nn/2, (ϕ, χ) belongs to H0; obviously ϕχ = 0 identically. For all integer
j, let gj(R) = jδg(jR). Notice that, for j large enough, the support of gj is included in the
region about 0 where g = 1. Let

ϕj(r,R) = f(r) · gj(R) .

Since 2 + δ < 3Nn/2, we see that gj goes to 0 in H2(R3Nn) and thus ϕj goes to 0 in
H2(R3(Nn+Ne)) as j goes to infinity.

If τ0 were continuous at (ϕ, χ) then the difference τ0(ϕ+ϕj , χ)− τ0(ϕ, χ) should go to 0,
as j goes to infinity. This difference is given by

τ0(ϕ+ ϕj , χ)− τ0(ϕ, χ) = ‖ϕjχ‖2 ,

since ϕχ = 0. Now, for j large enough,

‖ϕjχ‖2 = ‖f‖2r ·
∫
R3Nn

|gj(R)|2 · |R|2β dR

= j2δ−3Nn−2β‖f‖2r ·
∫
R3Nn

|g(s)|2 · |s|2β ds

and the r.h.s. blows up as j goes to infinity, since 2δ − 3Nn − 2β = 1/4 > 0. This yields a
contradiction, showing that τ0 is not continuous at (ϕ, χ).
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8.4 φ not necessarily in H2

The point we want to demonstrate here is simply that one must make a check to ensure that
a factor φ(r;R), defined by (6), belongs to the Sobolev space H2(r). This is an essential
property if φ is to be interpreted as a wavefunction for the electrons for fixed R. Here
we propose two model examples that show that Ψ/f is not automatically in H2 (in the r
variables) when Ψ belongs to H2 (in all variables, r,R) and f is defined as a marginal as in
(3). In the first model Ψ/f does not belong to H2 because of irregular behaviour near R = 0;
in the second the irregular behaviour is located at ∞ (in the R variable).

We choose a smooth, nonnegative function τ of one real variable such that

τ(t) =

{
1 if |t| ≤ 1

2
0 if |t| ≥ 1

For simplicity we choose three dimensional variables r and R with r = |r|, R = |R|. The
configuration space Ω = R6. Let

Ψ(r,R) = Rn τ(R) τ(R2m(r − R))

for some integers n > 0,m < 0. One can specify n,m such that this ‘wavefunction’ Ψ belongs
to the Sobolev space H2(Ω) (essentially |n| has to be large compared to |m|).

Following the prescription of Hunter[9] we then have, after integration over the angles
and some simplification, for some c > 0,

f(R) = cRn+1−mτ(R) ·
(∫

R
τ(t)2

(
1 + tR−2m−1

)2
dt

)1
2
.

Note that the vanishing of f at R = 0 is stronger than that of Ψ. Now we define

φ(r;R) =

{
0 if τ(R) = 0 else
Ψ(r,R)
f(R)

.

In particular, we do not define φ on the zero volume region {R = 0}. Using the same changes
of variables as above, we get for some c′ > 0, in the region where τ(R) 6= 0,

φ(r;R) = c′Rm−1τ
(
R2m(r −R)

)
·(∫

R
τ(t)2

(
1 + tR−2m−1

)2
dt

)−1
2

Explicit calculation shows that the ‘electronic’ function φ is square integrable, but that its
first derivative (in the r-variable) is not for |m| large enough, so that it no longer belongs to
H2. Nevertheless there are n values such that Ψ is in H2(Ω) ( n > −7m/2− 2). The reason
for this behaviour comes from the fact that f vanishes more strongly at R = 0 compared to
Ψ.

We can use this idea again to translate the irregular behaviour at R = 0 to R = ∞ .
Taking

Ψ(r,R) = Rn (1− τ(R)) τ(R2m(r − R))

but now for large −n and positive m, we can check that Ψ belongs to the Sobolev space
H2(Ω) (essentially |n| has again to be large compared to |m|). Again we can adjust m such
that the r-gradient of φ is not square integrable.
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8.5 Local Sobolev space on R3(Ne+Nn)

In the text, we defined the Sobolev space H2(R3(Ne+Nn)). Similarly, we can define H2(Ω), for
any bounded open subset Ω of R3(Ne+Nn). The corresponding local Sobolev space, denoted by
H2

loc(R3(Ne+Nn)) is the space of those functions f that belong to H2(Ω), for all bounded open
subsets Ω of R3(Ne+Nn). A function that has usual continuous derivatives up to second order
always belongs to the local Sobolev space H2

loc(R3(Ne+Nn)), but the integral of its modulus
square can be infinite (just think about the constant function equal to one). Therefore the
local and global H2(R3(Ne+Nn))-spaces are different, the latter being included in the former.

8.6 H has no eigenvalue

Let us first give a ‘physical proof’. Since the full molecular system is considered as being
isolated in the universe, its mass centre is freely moving. Thus it cannot be in a bound state.

Now we turn to a mathematical proof. We start with (7) (assuming for simplicity that
~2/2MT = 1) and recall that the internal Hamiltonian H′ is R-independent. Now we view
this formula in the Fourier space of R ∈ R3. Denoting by H1 this representation of H, we
get H1 = H′ + Mf , where Mf is the multiplication operator by the function f(ξ) = |ξ|2 (ξ
being the Fourier variable associated to R). This can be rewritten with the help of a direct
integral (cf. [30], p. 279-287) as

H1 =

∫ ⊕
R3

(
|ξ|2 + H′

)
dξ.

According to [30], p. 284, E is an eigenvalue of H1 (or H) if and only if the 3-dimensional
volume of CE = {ξ ∈ R3;E is an eigenvalue of |ξ|2 + H′} is positive. Note that E is an
eigenvalue of |ξ|2 + H′ if and only if E − |ξ|2 is an eigenvalue of H′. By the Mourre theory
(see [31]), one can show that the set of eigenvalues of H′ is at most countable. This implies
that CE is the union of an at most countable set of spheres. Thus CE has zero volume and
H has no eigenvalue.

8.7 Elliptic regularity

We propose here a short and intuitive introduction to elliptic regularity. For more details,
we refer to [17, 29].

We consider the differential equation ∇2u = f on R2, where the function f is given and
u is the unknown function. Our goal is, knowing the regularity properties of f , to obtain
those of any solution u. In one dimension, the problem is easy, since the second derivative
of u is exactly f . In the present case, it could happen that the derivatives ∂2

xu and ∂2
yu have

singularities that cancel when the sum is performed.
A good way to study the regularity of u is to consider the Fourier transform û of u.

Indeed, regularity properties of u are encoded in the decay properties at infinity of û. This
can be seen from the following (formal) identity:

∇u(x) = (2π)−1

∫
R2

eixp ipû(p) dp .
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If û has a fast enough ‘decay’ in |p| at infinity, it makes the above integral absolutely conver-
gent and u′ is nice.

After Fourier transformation, the equation becomes |p|2û(p) = f̂(p). For |p| ≥ 1, we get
û(p) = |p|−2f̂(p). So the ‘decay’ of û is better than that of f̂ and u is more regular than f .
This is called elliptic regularity.

Now we can also apply this method to the equation ∇2u + V u = f on R2, where V
is a function. For instance, if V and f are smooth, we can write û(p) = |p|−2ĝ(p), where
g = f − V u. Given some regularity for u, we can improve it by the previous formula. The
improved regularity can be plugged into the formula again to get a better regularity, and so
on. If V or f has a limited regularity, so does u.

Sometimes one is forced to view the equation ∇2u+ V u = f in the distributional sense.
In this case, one can still follow the above argument and, when f and V are smooth, so is
also u, and u satisfies the equation ∇2u+ V u = f in the usual sense.

In the main text, we used the elliptic regularity to get the real analyticity of the solution of
an equation. Roughly speaking, a function u on R2 is real analytic if, near any point (x0, y0),
it can be written as a polynomial of infinite degree (i.e. a series in powers (x−x0)i(y− y0)j).
A real analytic function is always smooth but the function (x, y) 7→ xe−1/x, if x > 0, and
(x, y) 7→ 0, if x ≤ 0, is actually smooth but not analytic.

If V and f are analytic, then so is any solution of ∇2u + V u = f . The argument to
see this[17] is more involved than the one above. In the Coulomb case, the potential is real
analytic away from the set Σ of collisions. So the above arguments apply away from Σ. If you
think about the hydrogen atom and set r =

√
x2 + y2 + z2, the function (x, y, z) 7→ e−r/2 is

a solution of ∇2u+ u(1/r − 1/4) = 0. The potential and the solution are real analytic away
from 0 (and the latter has to be since the equation is elliptic) but they both are not even
smooth at 0.

References

[1] T. Jecko, J. Math. Phys. 55, 053504 (2014); doi:10.1063/1.4870855, and references
therein

[2] J.-M. Combes, Proceedings of the International Symposium ’50 years of the Schrödinger
Equation’ Eds. W. Thirring & P. Urban, Acta Phys. Austriaca, Suppl. XVII, 139-159
(1977)

[3] J. M. Combes and R. Seiler, Spectral properties of atomic and molecular systems in
Quantum Dynamics of Molecules, Ed. R. G. Woolley, NATO Adv. Study. Inst., Ser. B:
Physics 57, p. 475, Plenum, New York - London, (1980)

[4] A. Abedi, N. T. Matra, and E. K. U. Gross, Phys. Rev. Letts. 105, 123002-(1-4), (2010)

[5] A. Abedi, N. T. Maitra and E. K. U. Gross, J. Chem. Phys. 137, 22A530 (2012);
doi:10.1063/1.4745836

[6] N. I. Gidopoulos and E. K. U. Gross, Phil. Trans. Roy. Soc. (London), A372:20130059
(2014)

21



22 References

[7] L. S. Cederbaum, J. Chem. Phys. 138, 224110 (2013); doi:10.1063/1.4807115

[8] L. S. Cederbaum, J. Chem. Phys. 141, 029902 (2014); doi:10.1063/1.4890075

[9] G. Hunter, Int. J. Quantum. Chem. 9, 237-242, (1975)

[10] G. Hunter, Int. J. Quantum. Chem. 19, 755-761, (1981)

[11] B. T. Sutcliffe and R. G. Woolley, Phys. Chem. Chem. Phys. 7, 3664-3676, (2005)

[12] T. Kato, Comm. Pure. Appl. Math. 10,151-177, (1957)

[13] R. T. Pack and W. Byers Brown, J. Chem. Phys. 45, 556-559, (1966);
doi:10.1063/1.1727605

[14] C. R. Myers, C. J. Umrigar, J. P. Sethna and J. D. Morgan III, Phys. Rev. A44,
5537-5546, (1991)

[15] D. Prendergast, M. Nolan, C. Fillipi, S. Fahy and J C Greer, J. Chem. Phys, 115,
1626-1634 (2001)

[16] S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Østergaard
Sørensen, Comm. Math. Phys. 255, 183-227, (2005)
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23


