
HAL Id: hal-03217319
https://cnrs.hal.science/hal-03217319

Submitted on 4 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polygon shortening makes (most) quadrilaterals circular.
Thierry Jecko, Jean-Christophe Léger

To cite this version:
Thierry Jecko, Jean-Christophe Léger. Polygon shortening makes (most) quadrilaterals circular..
Bulletin of the Korean Mathematical Society, 2002, �10.4134/BKMS.2002.39.1.097�. �hal-03217319�

https://cnrs.hal.science/hal-03217319
https://hal.archives-ouvertes.fr


Polygon shortening makes (most) quadrilaterals
ir
ular.by Th. Je
ko and J.C. L�eger09-10-00Abstra
t: We show that an analog of the Gage-Grayson-Hamilton The-orem for 
urves moving a

ording to their mean 
urvature holds for themotion of quadrilaterals a

ording to their Menger 
urvature.11 Introdu
tionThe Gage-Grayson-Hamilton Theorem (see [Gag84℄, [Gra87℄ and [GH86℄)states that if C0 : S1 ! C is a C2 Jordan 
urve in the plane then there existsa family C : S1� [0; T �[! C of smooth Jordan 
urves in the plane su
h thatC(�; 0) = C0(�), C(�; t) tends to a 
onstant fun
tion as t! T � and�C�t = �2C�s2 : (1)Moreover, if we res
ale the 
urves so that the en
losed areas are equal to �,we have that the res
aled 
urves tend (for example in the Hausdor� sense)to a 
ir
le of radius 1.Noti
e that the right hand side of equation (1) is the 
urvature ve
torof the 
urve C(t) (s is the ar
-length parameter on the 
urve C(t): it is notindependent with the variable t). A family of 
urves C depending on timet satisfying equation (1) is said to be moving by its mean 
urvature.A question (among others) this theorem raises is whether one 
an �nda dis
rete version of the motion by mean 
urvature whi
h preserves thistheorem: this should be a test for a measuring how good a dis
retizationpro
ess for this motion is.In this short note, we shall present a proposition for a possible gooddis
retization and show that at least for quadrilaterals an analog of theGage-Grayson-Hamilton Theorem exists.1AMS 
lassi�
ation (2000): 34D05, 53A15, 53C44. Keywords: Menger 
urvature,evolution, 
o
y
li
ality, dis
retization, Gage-Grayson-Hamilton theorem.1



For an ordered triple (x; y; z) of distin
t points in C , let us 
all theMenger 
urvature of the triple the number
(x; y; z) = �x� yx� y � z � yz � y� 1x� z : (2)This quantity will be our analog for polygons of the usual 
urvature forsmooth 
urves. Observe that this is a natural quantity to have a look at.The fa
t is that 
(x; y; z) is zero if and only if the points x, y and z are
olinear, j
(x; y; z)j is the inverse of the radius of the 
ir
um
ir
le of thetriangle xyz and y + 
j
j2 is the 
enter of that 
ir
um
ir
le. Observe aswell that this quantity has already been used for �nding dis
rete analogs ofwell known 
urvature related theorems for Jordan 
urves (see for instan
ethe introdu
tion of [Sed97℄ and the referen
es therein for a variant of thefour-vertex Theorem). Another beautiful use of it is related to boundednessproperties of singular integral operators on subsets of C (see [MMV96℄ forinstan
e).For an integer n � 3 let us 
all a n-gon a map y : Z=nZ! C su
h that,for all i 2 Z=nZ, the points yi�1; yi; yi+1 are distin
t and let us de�ne itsMenger 
urvature 
 by
i := 
(yi�1; yi; yi+1); 8i 2 Z=nZ: (3)Remark that we have Xi2Z=nZ(yi�1 � yi+1)
i = 0: (4)For an interval I � R, we will say that the family of n-gons y : Z=nZ�I ! C is moving by its Menger 
urvature if it satis�es the following di�er-ential system 8i 2 Z=nZ; y0i := dyidt = 
(yi�1; yi; yi+1) = 
i: (5)This kind of motion shares many 
ommon features with the 
lassi
almotion by mean 
urvature, the �rst being that it preserves the shape ofpolygons whi
h are 
o
y
li
al or 
olinear (i.e. the verti
es lie on a single
ir
le or a single line).Another 
ommon property is the one of length shrinking. For an n-gony, put its length L = Pi2Z=nZjyi+1 � yij. We have then, for a family y(t)of n-gons moving by their Menger 
urvature that L(t) is a nonin
reasingfun
tion (see Lemma 1). Moreover, we haveL0 = � Xi2Z=nZ j
ij2 + j
i+1j22 jyi+1 � yij; (6)2



a formula whi
h should be 
ompared with formula (5) in [Gag84℄ usedfor the usual motion by mean 
urvature.In this note we will be interested by the 
ase n = 4, that is the motionof quadrilaterals (4-gons). In this 
ase, as was already noted for general n's,
o
y
li
al polygons keep their shapes. It turns out that parallelograms keeptheir shapes in the motion as well.Here is now a rough idea of the main result (
f. Theorem 1 and Propo-sition 2) of this note. If we are given an initial quadrilateral, the Cau
hy-Lips
hitz Theorem ensures the short-time existen
e and uniqueness of afamily of quadrilaterals evolving by their Menger 
urvature and startingwith this quadrilateral.It turns out that for \most" starting quadrilaterals, the maximal intervalof existen
e [0; T �[ is bounded and, as t! T �, the family 
ollapses to a pointwhereas the limiting shape is a 
o
y
li
al quadrilateral.We would like to stress on the fa
t that given a quadrilateral to startwith, we have a simple test (see se
tion 4) to see if the limiting shape inthe evolution is 
o
y
li
al: we do not put any restri
tions (su
h as 
onvexityor no self-
rossing) on the type of quadrilaterals we are looking at. Theevolution in the singular 
ases is also des
ribed: the limiting shape is thena parallelogram or a 
olinear quadrilateral.In the general situation (n � 4), we are able to show that, if n 6= 0 mod-ulo 4, the only invariant shapes are the 
o
y
li
al or 
olinear ones whereas,if n = 0 modulo 4, there is another invariant shape, namely a parallelogramdes
ribed n=4 times (see Proposition 1).Open Problems: We do not know what happens in the 
ase n > 4, ex
eptthe previous des
ription of invariant shapes, and this may be an interestingsubje
t of further investigation.Another path of investigation is to �nd out if the motion of polygonsby Menger 
urvature really approximates the usual motion of 
urves by
urvature and if so, in whi
h sense.2 General fa
ts and �rst resultIn this se
tion, y : Z=nZ� I ! C will be a family of n-gons evolving bytheir Menger 
urvature. We 
olle
t some general fa
ts about su
h a family.Most proofs are elementary 
omputations.Lemma 1 (i) For any triple (u; v; w) of distin
t points in C , we have2Re�
(u; v; w)(u � v)� = j
(u; v; w)j2 ju� vj2:
3



(ii) For all i 2 Z=nZ, all t 2 I,djyi+1 � yijdt = �j
ij2 + j
i+1j22 jyi+1 � yij:In parti
ular, (6) holds true.(iii) If n is even, there exist some 
onstant b0 > 0 su
h that for all t 2 I,jy1�y2jjy3�y4j � � � jyn�1�ynj = b0jyn�y1jjy2�y3j � � � jyn�2�yn�1j:Proof. For (i), we have, as v+ 
j
j2 is the 
enter of the 
ir
le passing throughu, v and w of radius 1=j
j, thatju� v � 
j
j2 j2 = 1j
j2 :It remains to expand the above formula to get (i).For (ii), it is enough to 
ompute the derivative of jyi+1 � yij2 and apply(i) to the triples (yi�1; yi; yi+1) and (yi; yi+1; yi+2).Finally, (iii) follows from�12 Xi2Z=nZj
ij2 = ddt ln jy1 � y2jjy3 � y4j � � � jyn�1 � ynj�12 Xi2Z=nZj
ij2 = ddt ln jyn � y1jjy2 � y3j � � � jyn�2 � yn�1j: �It is straightforward to prove theLemma 2 (i) If at time t0 2 I, y(t0) is a polygon whose verti
es lie ona single line, then for all t 2 I, y(t) = y(t0).(ii) If at time t0 2 I, y(t0) is a polygon whose verti
es lie on a single 
ir
lewith 
enter x0 and radius R0 then for all t 2 I, for all i 2 Z=nZ,yi(t) = x0 + �(t)(yi(t0)� x0) = x0 + pR20 � 2(t� t0)R0 (yi(t0)� x0):Lemma 2 gives two invariant shapes under the 
onsidered evolution. Isthere some other invariant shape? The following proposition answer thisquestion.Proposition 1 Assume that the shape of y(t0) is preserved under the evo-lution, that is, there are two 
omplex valued, di�erentiable fun
tions de�nedon I, a and b, a being non-vanishing, su
h that,8t 2 I; 8i 2 Z=nZ; yi(t) = a(t)yi(t0) + b(t);then, 4



(i) either y(t0) is a 
olinear or 
o
y
li
al polygon,(ii) or, n = 0 modulo 4, yi+4 = yi for all i 2 Z=nZ and y1; y2; y3; y4 forma parallelogram (i.e. y1 � y2 = y4 � y3).Proof. Sin
e the shape is preserved,0 = ddt jyi+1 � yijjyi+2 � yi+1j :Using Lemma 1, (ii), we get j
i+2(t)j = j
i(t)j. Now, using (2) and (5), weobtain, for any i 2 Z=nZ,
i(t) = dadt (t)yi(t0) + dbdt (t) and 
i(t0) = �a(t)
i(t);so that, for any i 2 Z=nZ,
i(t0) = �a(t)dadt (t)yi(t0) + �a(t)dbdt (t):From now on, we 
onsider only the quadrilateral y(t0) so we drop thereferen
e to the time t0.If a is 
onstant, the 
i's are equal. Assume they are nonzero. Denotethe 
enters of the 
ir
um
ir
les by zi := yi+ 
i=j
ij2. Thus the (zi�yi)'s areequal. Sin
e yi+1 lies on the 
ir
le 
entered on zi 
ontaining yi and yi lieson the 
ir
le 
entered on zi+1 
ontaining yi+1, this implies yi = yi+1, whi
his ex
luded. Therefore the 
i's are equal to 0, whi
h means that the yi's lieon the same line.If a is not 
onstant, ea
h yi is the image of 
i by some i-independentsimilitude 8i 2 Z=nZ; yi = �
i + � (7)for some 
omplex numbers � 6= 0 and �. Let us denote by r0 (resp. r1) the
ommon modulus of the 
2i's (resp. 
2i+1's). If r0 = r1 then r0 > 0 and (7)shows that the yi's lie on the same 
ir
le. Assume r0 6= r1. This implies thatn is even. From (7) and (i) in Lemma 1, we derive that, for all i 2 Z=nZ,2Re(
2i�(
2i+1 � 
2i)) = j�j2r20j
2i+1 � 
2ij2; (8)2Re(
2i+1�(
2i � 
2i+1)) = j�j2r21j
2i+1 � 
2ij2: (9)On one hand, the sum (8)+(9) leads to�2Re(�) = (r20 + r21)j�j2 (10)and on the other hand, the di�eren
e gives, thanks to (10),2 sin(�) sin(�2i) = (r20 � r21)j�j 
os(�2i); (11)5



where � = j�j exp(i�) and �i 2℄ � �;�℄ denotes a mesure of the orientedangle (
i; 0; 
i+1). In the same way for the points 
2i and 
2i�1, we obtain2 sin(�) sin(��2i�1) = (r20 � r21)j�j 
os(��2i�1): (12)Sin
e y2i�1 6= y2i+1, 
2i�1 6= 
2i+1 by (7) and �2i 6= ��2i�1 be
ause j
2i�1j =j
2i+1j. The equations (11) and (12) say that �2i and ��2i�1 satisfy ani-independent equation, whi
h solutions are equal modulo �. This yieldsthat 
2i�1 and 
2i+1 are symetri
 w.r.t. the origine. Similarly 
2i and 
2i+2are also symetri
 w.r.t. the origine. Therefore the �2i's (resp. �2i�1's) areequal. This means that the quadrilaterals (
2i�1; 
2i; 
2i+1; 
2i+2) form thesame parallelogramm. This is possible only for n = 0 modulo 4. Using (7)again, we get the result. �3 Spe
i�
 fa
ts for quadrilateralsWe now spe
ialize to the 
ase of quadrilaterals or 4-gons (i.e. n = 4).Lemma 3 (i) There exists a 
onstant � 2 C � su
h that for all t 2 I,y4 � y2 = �(y3 � y1):(ii) There exists a 
onstant b0 > 0 su
h that for all t 2 I,jy1 � y2jjy3 � y4j = b0jy1 � y4jjy3 � y2j:Proof. For (i), we just observe that (5) and (4) imply thaty01(y4 � y2) + y02(y1 � y3) + y03(y2 � y4) + y04(y3 � y1) = 0so that (y3 � y1)(y4 � y2)0 � (y3 � y1)0(y4 � y2) = 0:(ii) is just a rewriting of (iii) of Lemma 1. �Among the invariant shapes (see Proposition 1), we have already de-s
ribed the evolution of two of them in the general 
ase (see Lemma 2).Before treating the third one for n = 4, we want to stress on the fa
t thatthe following lemma also gives the evolution of the periodi
 parallelogram(i.e. the form (ii) in Proposition 1) in the general 
ase.Lemma 4 If for t0 2 I, y(t0) is a non
at parallelogram with 
enter x0 thenfor any t 2 I, y(t) is a similar parallelogram with 
enter x0 given by8>><>>: y1(t) = x0 + �(t� t0)=2 ;y3(t) = x0 � �(t� t0)=2 ;y2(t) = x0 +��(t� t0)=2 ;y4(t) = x0 ���(t� t0)=2 : (13)6



Here, we have put� = y4 � y2y3 � y1 (t0) 62 f�1; 1g and �(t) = �(0)s j�(0)j2 � �tj�(0)j2 e�i �� ln���� j�(0)j2��tj�(0)j2 ����;where� = 8 (Im�)2(j�j2 + 1)j�j2j�+ 1j2j�� 1j2 and � = 4(Im�)(Re�)(j�j2 � 1)j�j2j�+ 1j2j�� 1j2 :Proof. Be
ause of the uniqueness in the Cau
hy-Lips
hitz Theorem, itsuÆ
es to 
he
k that (13) is a solution of the di�erential system (5). �What ought to be said about this formula is that a non
at parallelogramsu
h that j�j 6= 1 (that is, not a re
tangle) evolving a

ording to its Menger
urvature shrinks to its 
enter in �nite time and that, while shrinking, itrotates more and more rapidly around that point. This is a very strong
ontrast with the evolution of a 
o
y
li
al quadrilateral whi
h shrinks tothe 
enter of the 
ir
le in �nite time but does not rotate at all.As we are interested in the property of being 
o
y
li
al, it is natural tointrodu
e the 
ross-ratio of a quadrilateral z. It is de�ned byBz = (z1 � z2)(z3 � z4)(z1 � z4)(z3 � z2) : (14)The quantity Bz 
annot be 0 or 1 be
ause we supposed that the points ziare distin
t. It is well known that the quadrilateral z is 
o
y
li
al or 
olinearif and only if Bz is a real number. An important feature of Bz is that it isa s
ale and rotation invariant quantity: this is the quantity we will use to
hara
terize 
o
y
li
al shapes.What is lesser known, although easy, is the following s
ale and rotationinvariant 
hara
terization of parallelograms in terms of �z = z4�z2z3�z1 and Bz:z is a parallelogram if and only ifBz = ��z � 1�z + 1�2 : (15)This is due to the following relation�(z2 + z4)� (z1 + z3)�2 = (z3 � z1)21�Bz �(�z � 1)2 �Bz(�z + 1)2�: (16)Re
all that � = �y(t) is 
onstant during the motion and that B(t) =By(t) is su
h that jB(t)j = b0 is 
onstant as well (see Lemma 3). The nextlemma states that we know quite pre
isely how B moves on the 
ir
le with
enter 0 and radius b0. 7



Lemma 5 (i) B satis�es the following di�erential equationB0 = j(y2 + y4)� (y1 + y3)j2jy2 � y1j2jy4 � y3j2 B(B �B): (17)(ii) Unless we are looking at a family of evolving parallelograms or at afamily of 
o
y
li
al or 
olinear quadrilaterals, ReB is a de
reasingfun
tion and unless we are looking at a family of 
o
y
li
al or 
olinearquadrilaterals, ImB is of 
onstant sign.(iii) Put, for a �xed t0 2 I and all t 2 I, (t) = Z tt0 j(y2 + y4)� (y1 + y3)j2jy2 � y1j2jy4 � y3j2 d�: (18)Then there exists a 
onstant C su
h that for all t 2 I,ReB(t) = b0 1� Ce4b0 (t)1 + Ce4b0 (t) : (19)Proof. Equation (17) is a straightforward 
omputation. Noti
e �rst thatfor any i 2 Z=4Z, �B�yi = (�1)i+1 yi+1 � yi�1(yi+1 � yi)(yi�1 � yi)B;so that,B0 = Xi2Z=4Z
i�B�yi= Xi2Z=4Z(�1)i+1 1(yi+1 � yi)(yi�1 � yi) � 1(yi+1 � yi)(yi�1 � yi)!B= 2iIm � 1jy2 � y1j2 �y2 � y1y4 � y1 � y2 � y1y2 � y3�++ 1jy4 � y3j2 �y4 � y3y2 � y3 � y4 � y3y4 � y1��B= 2iIm � 1jy2 � y1j2 �y2 � y3y4 � y3B � y4 � y1y4 � y3B�++ 1jy4 � y3j2 �y4 � y1y2 � y1B � y2 � y3y2 � y1B��B= 2iIm � 1jy2 � y1j2 �y2 � y3y4 � y3B + y4 � y1y4 � y3B�++ 1jy4 � y3j2 �y4 � y1y2 � y1B + y2 � y3y2 � y1B��B= j(y2 + y4)� (y1 + y3)j2jy2 � y1j2jy4 � y3j2 B(B �B): (20)8



Let us 
all r(t) = j(y2 + y4)� (y1 + y3)j2jy2 � y1j2jy4 � y3j2 :Equation (20) 
an be rewritten as� ReB0 = �2r(t)(ImB)2 = �2r(t)(b20 � (ReB)2)ImB0 = 2r(t)(ImB)(ReB)We know that B moves on a 
ir
le (Lemma 3) and that unless we are lookingat a 
o
y
li
al or 
olinear evolving family, be
ause of uniqueness in theCau
hy-Lips
hitz Theorem, B 
annot be real (Lemma 2) so that ImB 
annotbe zero. As it is 
ontinuous on the interval I, it is of 
onstant sign. Now weobserve that r(t) vanishes if and only if y(t) is a parallelogram: this 
an onlyhappen if we are looking at an evolving family of parallelograms (Lemma4). Hen
e, we have (ii). (iii) follows by solving the di�erential equationgoverning ReB. �4 The main resultsLet us re
all that for a quadrilateral y0, we put �0 = (y04 � y02)=(y03 � y01).Observe that we 
an suppose �0 6= �1 be
ause if this was the 
ase we 
ouldswap y2 and y4 without 
hanging the geometry of the problem. Let us putB0 = By0 de�ned by (14).We will say that y0 is of type (0) if y0 is a parallelogram or if y0 is 
o
y
li-
al or 
olinear. Observe that Lemmas 2 and 4 tell us how su
h quadrilateralsevolve.We will say that y0 is of type (I) if jB0j = �����0 � 1�0 + 1 ����2,ImB0 � Im��0 � 1�0 + 1�2 > 0 and ReB0 > Re��0 � 1�0 + 1�2 :We will say that y0 is of type (II) in the other 
ases. (See �gure 1.)Theorem 1 Let y0 be a quadrilateral then there exists an interval I =[0; T �[ and a unique family y of quadrilaterals de�ned on I, evolving byMenger 
urvature su
h that y(0) = y0. Moreover,� If y0 is of type (I) then as t! T �,B(t)! ��0 � 1�0 + 1�2
9



��0 � 1�0 + 1�2 (I)
(II)

(II)(0)

Figure 1: If B0 is on the ar
 (I), the quadrilateral is of type (I), if B0 is inzone (II), the quadrilateral is of type (II).and, the res
aled quadrilaterals y�(y3+y1)=2y3�y1 tend to the parallelogram��12 ;��02 ;+12 ;+�02 �:� If y0 is of type (II) then as t! T �,B(t)! �jB0jand, the res
aled quadrilaterals y�(y3+y1)=2y3�y1 tend to the 
o
y
li
al or
olinear quadrilateral��12 ; C0 � �02 ;+12 ; C0 + �02 �;where C0 = 12s(�0 � 1)2 + jB0j(�0 + 1)21 + jB0jand p is the analyti
 
ontinuation of the square root along the ar
des
ribed by [(�0 � 1)2 � B(�0 + 1)2)℄=(1 � B) as B des
ribes the10



small ar
 between B0 and �jB0j and su
h that(y04 + y02)� (y03 + y01)2(y03 � y01) = 12r(�0 � 1)2 �B0(�0 + 1)21�B0 :Proof. Let us suppose that y0 is not of type (0) and let us use the Cau
hy-Lips
hitz Theorem to get an evolving family starting at y0 whi
h is a max-imal solution, de�ned on the interval [0; T �[, of the di�erential system (5)with initial 
ondition y(0) = y0.By Lemma 5, we know that B(t) has a limit BT � as t ! T �. To getthe Theorem, we only have to prove that BT � = �jB0j or BT � = ((�0 �1)=(�0 + 1))2.The statements about the res
aled quadrilaterals will be just an easyuse of (16) to �nd the limit of the midpoint of the diagonals of the res
aledquadrilateral and the fa
t that � is 
onstant.Observe also that, be
ause of the way B moves on the 
ir
le of 
enter 0and radius jB0j, if y0 is of type (I) then BT � 
annot be �jB0j and if y0 is oftype (II) then BT � 
annot be ((�0 � 1)=(�0 + 1))2.Let us suppose that BT � 6= ��0 � 1�0 + 1�2then be
ause of (16) and an easy 
ompa
tness argument, there exists a real
onstant K � 1 su
h that for all t 2 [0; T �[,K�1jy3 � y1j � j(y2 + y4)� (y1 + y3)j � Kjy3 � y1j: (21)Hen
e, be
ause of the triangle inequality, we have that for any i 2 Z=4Z,jyi+1 � yij � 12(1 +K + j�j)jy3 � y1j: (22)Hen
e, L(t) � 2(1 +K + j�j)jy3 � y1j: (23)Moreover, using (6), Lemma 3, andj
(u; v; w)j � 2ju� wj (24)for any distin
t points (u; v; w) in C , we obtain that, for all t 2 [0; T �[,�L0(t) = 12 Xi2Z=4Z(j
i+1j2 + j
ij2)jyi+1 � yij� K 0jy3 � y1j�1: (25)11



This gives us that the fun
tion  de�ned in (18) satis�es for all t 2 [0; T �[,on one hand, by (21), (22), and (23), (t) = Z t0 j(y2 + y4)� (y1 + y3)j2jy2 � y1j2jy4 � y3j2 d�� K 00 Z t0 d�L2(�) (26)and, on the other hand, by (21), (22), and (25), (t) � K 00 Z t0 �L0(�)d�L(�)� K 00 ln L(0)L(t) : (27)Be
ause of Lemma 5, in order to have B(t)! �jB0j as t! T �, it remainsto show that  (t)!1 as t! T �.There are two possibilities, either T � = +1 or T � < +1.If T � = +1 then as 1L2 is nonde
reasing, inequality (26) gives us theresult.If T � < +1 and L(t) 6! 0 as t ! T � then we 
laim that y(t) ! y(T �)where y(T �) is a quadrilateral. The Cau
hy-Lips
hitz Theorem allows us toextend the evolution beyond T � thus 
ontradi
ting the maximality of thefamily. As L(t) ! 0, inequality (27) shows that  (t) ! 1 so that we getthe result.It remains to show why y(t) tends to some quadrilateral as t ! T � ifL(t) 6! 0. The lengths of the edges jyi+1� yij are nonin
reasing (Lemma 1)and positive fun
tions hen
e they have limits li. Be
ause of Lemma 3, thenumbers li are related by the relationl1l3 = jB0jl2l4:None of the numbers li 
an be zero. If, for example l1 = 0 then either l2 orl4 is zero. Suppose it is l2 then we would have by (23)L(t) � K 0jy1 � y3j� K 0(jy1 � y2j+ jy2 � y3j)! K 0(l1 + l2) = 0;and this is a 
ontradi
tion with L(t) 6! 0. Now we have that there exists a
onstant l0 > 0 su
h that for all i 2 Z=4Z, for all t 2 [0; T �[,jyi+1 � yij > l0: (28)12



Thanks to (22), there exists some other 
onstant l > 0 su
h that, for allt 2 [0; T �[, jy3 � y1j > l and jy4 � y2j > l: (29)This shows, using (24), that for all i 2 Z=4Z, for all t 2 [0; T �[,j
ij < 2l :Coming ba
k to the di�erential system (5), this shows that the fun
tions yiare 2l -Lips
hitz on [0; T �[. Hen
e they have limits yi(T �) as t! T � and themap i 7! yi(T �) is inje
tive by (28) and (29). �We have seen that if we start with a 
olinear quadrilateral y0 then T � =1 whereas if y0 is a 
o
y
li
al quadrilateral or a parallelogram then T � is�nite (see Lemma 2 and 4). We 
an observe that the only way to have a
olinear shape in the limit is to have �0 real. The following propositionshows that the situation when �0 is not real is well understood.Proposition 2 If �0 62 R then T � < 1, T � = C:L(0)2 where C is a
onstant depending only on the shape of y0.Moreover, as t! T �, L(t)! 0 and there exists a point x 2 C su
h thaty(t)! (x; x; x; x).Proof. Theorem 1 shows that if �0 62 R, the res
aled quadrilaterals (y �(y3+y1)=2)=(y3�y1) tend to a non
olinear quadrilateral. Hen
e there exists0 < t0 < T � su
h that for t0 < t < T �, the quantities jy3 � y1j, jyi+1 � yij,1=j
ij are 
omparable within positive multipli
ative 
onstants. Be
ause ofLemma 1, we have that for any t 2 [t0; T �[,ddt jy2 � y1j � ��jy2 � y1j ;where � is a positive 
onstant. Integrating, we get thatt < jy2(t0)� y1(t0)j2� ; hen
e T � � jy2(t0)� y1(t0)j2� :Starting with y0 of length L0 and res
aling we get a quadrilateral ~y0 oflength 1. A simple homogeneity argument gives us that T � = (L0)2 ~T �.Just as in the proof of Theorem 1, if L(t) 6! 0 as t ! T �, we 
ould
ontradi
t the maximality of T � by extending the motion beyond T �.Now, let us observe that by Theorem 1 and Lemma 1, there exists atime 0 < t0 < T � and a 
onstant A su
h that for ea
h i 2 Z=4Z, for ea
ht0 < t < T �, jy0ij � �AL0:Therefore the fun
tions y0i are integrable over [0; T �[ so that the fun
tionsyi have limits yi(T �) as t! T �, whi
h are equal be
ause L! 0. �13
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