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Polygon shortening makes (most) quadrilaterals
circular.

by Th. Jecko and J.C. Léger
09-10-00

Abstract: We show that an analog of the Gage-Grayson-Hamilton The-
orem for curves moving according to their mean curvature holds for the

motion of quadrilaterals according to their Menger curvature.
1

1 Introduction

The Gage-Grayson-Hamilton Theorem (see [Gag84], [Gra87] and [GHS86])
states that if CY : S — C is a C? Jordan curve in the plane then there exists
a family C : S' x [0, T*[— C of smooth Jordan curves in the plane such that
C(-,0) = C°(-), C(-,t) tends to a constant function as ¢ — T* and

oC 02C
o o (1)

Moreover, if we rescale the curves so that the enclosed areas are equal to m,
we have that the rescaled curves tend (for example in the Hausdorff sense)
to a circle of radius 1.

Notice that the right hand side of equation (1) is the curvature vector
of the curve C(t) (s is the arc-length parameter on the curve C(¢): it is not
independent with the variable ¢). A family of curves C' depending on time
t satisfying equation (1) is said to be moving by its mean curvature.

A question (among others) this theorem raises is whether one can find
a discrete version of the motion by mean curvature which preserves this
theorem: this should be a test for a measuring how good a discretization
process for this motion is.

In this short note, we shall present a proposition for a possible good
discretization and show that at least for quadrilaterals an analog of the
Gage-Grayson-Hamilton Theorem exists.

LAMS classification (2000): 34D05, 53A15, 53C44. Keywords: Menger curvature,
evolution, cocyclicality, discretization, Gage-Grayson-Hamilton theorem.



For an ordered triple (z,y,z) of distinct points in C, let us call the
Menger curvature of the triple the number

o) = (E=2 - =) = )

rT—y z—-y)r—2

This quantity will be our analog for polygons of the usual curvature for
smooth curves. Observe that this is a natural quantity to have a look at.
The fact is that c¢(z,y, z) is zero if and only if the points z, y and z are
colinear, |c(z,y,z)| is the inverse of the radius of the circumcircle of the
triangle zyz and y + ﬁ is the center of that circumcircle. Observe as
well that this quantity has already been used for finding discrete analogs of
well known curvature related theorems for Jordan curves (see for instance
the introduction of [Sed97] and the references therein for a variant of the
four-vertex Theorem). Another beautiful use of it is related to boundedness
properties of singular integral operators on subsets of C (see [MMV96] for
instance).

For an integer n > 3 let us call a n-gon a map y : Z/nZ — C such that,
for all ¢ € Z/nZ, the points y;_1,;,y;+1 are distinct and let us define its
Menger curvature ¢ by

ci = c(Yi-1,Yi,Yiv1), Vi€ Z/n. (3)

Remark that we have

Z (yi-1 — yit1)ei = 0. (4)

i€Z/nZ

For an interval I C R, we will say that the family of n-gons y : Z/nZ x
I — C is moving by its Menger curvature if it satisfies the following differ-
ential system

Vi € Z/nZ, y, = %

This kind of motion shares many common features with the classical
motion by mean curvature, the first being that it preserves the shape of
polygons which are cocyclical or colinear (i.e. the vertices lie on a single
circle or a single line).

Another common property is the one of length shrinking. For an n-gon
y, put its length L = Ziez/nz\yiﬂ — yi|. We have then, for a family y(¢)
of m-gons moving by their Menger curvature that L(t) is a nonincreasing
function (see Lemma 1). Moreover, we have

lcil* + Jeia|?
D s ) (6)
i€Z/nZ

= c(Yi-1,Yi, Yi+1) = 6. (5)



a formula which should be compared with formula (5) in [Gag84] used
for the usual motion by mean curvature.

In this note we will be interested by the case n = 4, that is the motion
of quadrilaterals (4-gons). In this case, as was already noted for general n’s,
cocyclical polygons keep their shapes. It turns out that parallelograms keep
their shapes in the motion as well.

Here is now a rough idea of the main result (cf. Theorem 1 and Propo-
sition 2) of this note. If we are given an initial quadrilateral, the Cauchy-
Lipschitz Theorem ensures the short-time existence and uniqueness of a
family of quadrilaterals evolving by their Menger curvature and starting
with this quadrilateral.

It turns out that for “most” starting quadrilaterals, the maximal interval
of existence [0, T*[ is bounded and, as ¢ — T, the family collapses to a point
whereas the limiting shape is a cocyclical quadrilateral.

We would like to stress on the fact that given a quadrilateral to start
with, we have a simple test (see section 4) to see if the limiting shape in
the evolution is cocyclical: we do not put any restrictions (such as convexity
or no self-crossing) on the type of quadrilaterals we are looking at. The
evolution in the singular cases is also described: the limiting shape is then
a parallelogram or a colinear quadrilateral.

In the general situation (n > 4), we are able to show that, if n # 0 mod-
ulo 4, the only invariant shapes are the cocyclical or colinear ones whereas,
if n = 0 modulo 4, there is another invariant shape, namely a parallelogram
described n/4 times (see Proposition 1).

Open Problems: We do not know what happens in the case n > 4, except
the previous description of invariant shapes, and this may be an interesting
subject of further investigation.

Another path of investigation is to find out if the motion of polygons
by Menger curvature really approximates the usual motion of curves by
curvature and if so, in which sense.

2 General facts and first result

In this section, y : Z/nZ x I — C will be a family of n-gons evolving by
their Menger curvature. We collect some general facts about such a family.
Most proofs are elementary computations.

Lemma 1 (i) For any triple (u,v,w) of distinct points in C, we have

2Re (c(u,v,w)m) = |e(u, v, w)|*|u — v|>.



(11) For alli € Z/nZ, allt € 1,

d|Yiv1 — Yi ¢il? + Cit1 2
ol el e,

In particular, (6) holds true.
(113) If n is even, there exist some constant by > 0 such that for all t € I,
ly1 —yallys —wal - [Yn—1 = yal = bolyn —willy2 —ysl -~ |lyn—2 = yn-1l.
Proof. For (i), we have, as v+ # is the center of the circle passing through

u, v and w of radius 1/|c|, that

U—v— —5
LT

It remains to expand the above formula to get (i).
For (ii), it is enough to compute the derivative of |y;;1 — 1;|? and apply

(i) to the triples (yi—1,¥i, Yi+1) and (Ys, Yit1, Yit2)-
Finally, (iii) follows from

c 2= 1
5

]

1 d
—3 Y lal? = alnlm—yzl\ya—yzil---lynfl—yn\
iEZ/nZ
| , d
—5 Yoo al = £1n|yn—y1|\y2—y3|"'\yn—2—yn—1\- o
i€Z /0T

It is straightforward to prove the

Lemma 2 (i) If at time tq € I, y(to) is a polygon whose vertices lie on
a single line, then for allt € I, y(t) = y(to).

(1) If at time tg € I, y(to) s a polygon whose vertices lie on a single circle
with center xo and radius Ry then for all t € I, for all i € Z/nZ,

RZ—2(t — 1)
Ry
Lemma 2 gives two invariant shapes under the considered evolution. Is

there some other invariant shape? The following proposition answer this
question.

yi(t) = o + M) (yi(to) — o) = 20 +

(yi(to) — mo).

Proposition 1 Assume that the shape of y(to) is preserved under the evo-
lution, that is, there are two complex valued, differentiable functions defined
on I, a and b, a being non-vanishing, such that,

vtel, Vi€Z/nZ, y(t)=a(t)yi(te)+ b(t),
then,



(i) either y(to) is a colinear or cocyclical polygon,

(ii) or, n =0 modulo 4, y;ya = y; for all i € Z/nZ and y1,y2,y3,ya form
a parallelogram (i.e. y1 — ya = Ys — y3)-

Proof. Since the shape is preserved,

_ 4 |yt — il
dt |yit2 — Yit1|
Using Lemma 1, (ii), we get |¢;12(t)| = |ci(t)|. Now, using (2) and (5), we
obtain, for any i € Z/nZ,

ci(t) = 2 (tyyilto) + 20 (1) and i) = a(t)es(r),

so that, for any i € Z/nZ,

da db

ci(to) = a(t)ﬁ(t)yi(to)er(t)%(t)-

From now on, we consider only the quadrilateral y(¢y) so we drop the
reference to the time .

If a is constant, the ¢;’s are equal. Assume they are nonzero. Denote
the centers of the circumcircles by z; := y; +¢;/|c;|?. Thus the (z; —y;)’s are
equal. Since ;41 lies on the circle centered on z; containing y; and y; lies
on the circle centered on z;y; containing ¥; 1, this implies y; = y; 11, which
is excluded. Therefore the ¢;’s are equal to 0, which means that the y;’s lie
on the same line.

If a is not constant, each g; is the image of ¢; by some i-independent
similitude

Vi € Z/nZ, vy;=ac+p (7)

for some complex numbers « # 0 and . Let us denote by rq (resp. r1) the
common modulus of the co;’s (resp. co11’s). If rg = r1 then rq > 0 and (7)
shows that the y;’s lie on the same circle. Assume rg # 1. This implies that
n is even. From (7) and (i) in Lemma 1, we derive that, for all i € Z/nZ,

2Re(coir(cair — 2i)) = |a|?rd|cait1 — cail?, (8)

2Re(cair10(cai — eaig1)) = |af’rileains — cail. (9)
On one hand, the sum (8)+(9) leads to
“2Re(a) = (12 + 12 of? (10)
and on the other hand, the difference gives, thanks to (10),

2sin(f) sin(fy;) = (rg — r?)|a cos(fa;), (11)



where o = |a|exp(if) and 0; €] — 7; 7| denotes a mesure of the oriented
angle (¢;,0,¢;11). In the same way for the points ¢o; and ¢o;_1, we obtain

2sin(6) sin(—0z; 1) = (15 — r3)|a] cos(—0y;_1). (12)

Since yo; 1 # Y2it1, C2i-1 7 C2i+1 by (7) and 6a; # —62; 1 because [cy; 1| =
|c2i+1]. The equations (11) and (12) say that 6; and —6;_1 satisfy an
i-independent equation, which solutions are equal modulo w. This yields
that co;—1 and c9;41 are symetric w.r.t. the origine. Similarly cy; and co;49
are also symetric w.r.t. the origine. Therefore the 6y;’s (resp. 62;_1’s) are
equal. This means that the quadrilaterals (co;_1, c9;, €2i41, C2it2) form the
same parallelogramm. This is possible only for n = 0 modulo 4. Using (7)
again, we get the result. o

3 Specific facts for quadrilaterals

We now specialize to the case of quadrilaterals or 4-gons (i.e. n = 4).

Lemma 3 (i) There exists a constant A € C* such that for allt € I,
Ya — Y2 = A(ys — y1).
(1) There exists a constant by > 0 such that for allt € I,

Y1 = w2llys — yal = bolyr — yallys — val-
Proof. For (i), we just observe that (5) and (4) imply that

Y1 (ya — y2) + yo(y1 — y3) + ys(y2 — va) + yi4(ys —y1) =0

so that
(y3 —y1)(ys —v2)" = (y3 — y1) (4 — y2) = 0.

(ii) is just a rewriting of (iii) of Lemma 1. o

Among the invariant shapes (see Proposition 1), we have already de-
scribed the evolution of two of them in the general case (see Lemma 2).
Before treating the third one for n = 4, we want to stress on the fact that
the following lemma also gives the evolution of the periodic parallelogram
(i.e. the form (ii) in Proposition 1) in the general case.

Lemma 4 If for tg € 1, y(to) is a nonflat parallelogram with center zq then
for any t € 1, y(t) is a similar parallelogram with center xo given by

yl(t) = $0+>\(t—t0)/2,

yg(t) = xU—A(t—to)/Q, (13)
Ya(t) = zo+ ANt —10)/2,

y4(t) = X —A)\(t—to)/2.



Here, we have put

2701
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Proof. Because of the uniqueness in the Cauchy-Lipschitz Theorem, it
suffices to check that (13) is a solution of the differential system (5). o

What ought to be said about this formula is that a nonflat parallelogram
such that |A| # 1 (that is, not a rectangle) evolving according to its Menger
curvature shrinks to its center in finite time and that, while shrinking, it
rotates more and more rapidly around that point. This is a very strong
contrast with the evolution of a cocyclical quadrilateral which shrinks to
the center of the circle in finite time but does not rotate at all.

As we are interested in the property of being cocyclical, it is natural to
introduce the cross-ratio of a quadrilateral z. Tt is defined by

(21 — 22) (23 — 24)

Bz - (21 — 24)(23 — 22). (14)

The quantity B, cannot be 0 or 1 because we supposed that the points z;
are distinct. It is well known that the quadrilateral z is cocyclical or colinear
if and only if B, is a real number. An important feature of B, is that it is
a scale and rotation invariant quantity: this is the quantity we will use to
characterize cocyclical shapes.

What is lesser known, although easy, is the following scale and rotation

invariant characterization of parallelograms in terms of A, = 23:2 and B,:
z is a parallelogram if and only if
A, —1\?
B, = . 15
‘ (AZ + 1) (15)

This is due to the following relation

2 (23— 21)° 2 2
((z2 Y 2) = (21 + zg)) e ((AZ 12— B,(A, +1) ) (16)
z

Recall that A = A, is constant during the motion and that B(t) =
By is such that |B(t)| = by is constant as well (see Lemma 3). The next
lemma states that we know quite precisely how B moves on the circle with
center 0 and radius bg.



Lemma 5 (i) B satisfies the following differential equation
y2 +ya) — (y1 +y3)|?

BI _ ‘(
ly2 — y1|%|ys — y3)?

B(B - B). (17)

(11) Unless we are looking at a family of evolving parallelograms or at a
family of cocyclical or colinear quadrilaterals, ReB is a decreasing
function and unless we are looking at a family of cocyclical or colinear
quadrilaterals, ImB is of constant sign.

(11i) Put, for a fized to € I and all t € I,
_ M2t y) — (n + )
’(:[)(t) - _ 2 _ 2
to Y2 — y1l*lys — ysl
Then there exists a constant C' such that for all t € I,
1 — Cetbov®
01+ Cetbov(®)”

Proof. Equation (17) is a straightforward computation. Notice first that
for any ¢ € Z/4AZ,

dr. (18)

ReB(t) = b (19)

9B = (-1 i+1 Yi+1 — Yi—1
9y (it1 — i) (Yi-1 — vi)
so that,

0B
’ — .
B = g cz—ayi
i€Z |AL

= -1 i+1 1 . 1 ) B
ie%:élz( ) <(yi+1 = Yi)(Yi-1 — ¥i) (Yiv1 — vi) (Yi-1 — yi)

_ 2iIm- 1 (yQ_yl_yQ_y1>+
e =2 \wa—y1 y2 — y3

1 — —
n ~ (y4 Y3 Y4 y3>]B
ya—uysl? \v2—y3s  wa—u

— o |1 (yz—yaB_y4—y1§>+
Lly2 — v1]? \va — y3 Ys — Y3

1 — 3 —
N i (y4 Vig » ygBﬂB
\y4 - y3| Y2 — Y1 Y2 — 1

_ 2iIm[ 2(yz—ygBJry4—le>+
2= \ya—ys ya—ys
1 - _
+ 2(y4 le+y2 y3B>]B
ya —y3|* \y2 —u1 Yo — Y1
(y2 + ya) — (y1 + y3)|

= B(B —E). (20)
\y2 - y1\2|y4 - y3|2




Let us call

[(y2 + y4) — (y1 + y3)?
Y2 — y1|?|ys — y3/?

Equation (20) can be rewritten as

r(t) =

{ReB’ = —2r(t)(ImB)? = —2r(t)(b3 — (ReB)?)
ImB'" = 2r(t)(ImB)(ReB)

We know that B moves on a circle (Lemma 3) and that unless we are looking
at a cocyclical or colinear evolving family, because of uniqueness in the
Cauchy-Lipschitz Theorem, B cannot be real (Lemma 2) so that ImB cannot
be zero. As it is continuous on the interval I, it is of constant sign. Now we
observe that r(¢) vanishes if and only if y(¢) is a parallelogram: this can only
happen if we are looking at an evolving family of parallelograms (Lemma
4). Hence, we have (ii). (iii) follows by solving the differential equation
governing ReB. S

4 The main results

Let us recall that for a quadrilateral 4%, we put A = (39 — 49)/(y9 — 4?).
Observe that we can suppose A® # —1 because if this was the case we could
swap 9 and y4 without changing the geometry of the problem. Let us put
B = B,o defined by (14).

We will say that y° is of type (0) if 4 is a parallelogram or if 4° is cocycli-
cal or colinear. Observe that Lemmas 2 and 4 tell us how such quadrilaterals

evolve.
A0 12

A0 +1

’

We will say that ¢° is of type (I) if |B°| = ‘

A® —1\? A® —1\?
0 0
ImB"” - Im <70+1> > 0 and ReB"” > Re <70+1> .

We will say that y¥ is of type (II) in the other cases. (See figure 1.)

Theorem 1 Let y° be a quadrilateral then there exists an interval I =
[0,T*[ and a unique family y of quadrilaterals defined on I, evolving by
Menger curvature such that y(0) = y°. Moreover,

o Ify° is of type (I) then as t — T*,

B(t) — <227_:>2



Figure 1: If B" is on the arc (I), the quadrilateral is of type (I), if BY is in
zone (IT), the quadrilateral is of type (IT).

—(y3+y1)/2

and, the rescaled quadrilaterals ¥ e tend to the parallelogram

(1 A +1+A0)
2’ 2792 2/

o If y° is of type (II) then as t — T*,
B(t) = —|B|

and, the rescaled quadrilaterals %

colinear quadrilateral

tend to the cocyclical or

(hor-Sbors )

where

=
1+ |BY

1 \/(AU — 1)2+ |BO|(A? +1)2
2

and Vs the analytic continuation of the square root along the arc
described by [(AY — 1)2 — B(A® + 1)?)]/(1 — B) as B describes the

10



small arc between B® and —|B°| and such that

(W +v9) — (W5 +u) _ 1\/(A0 “1)2 = BO(AD 1 1)2
28 —9)) 2 1- B0 '

Proof. Let us suppose that 3/° is not of type (0) and let us use the Cauchy-
Lipschitz Theorem to get an evolving family starting at y° which is a max-
imal solution, defined on the interval [0, T*[, of the differential system (5)
with initial condition y(0) = y°.

By Lemma 5, we know that B(t) has a limit By« as t — T*. To get
the Theorem, we only have to prove that Brs = —|B%| or By = ((A" —
1)/(A +1))2,

The statements about the rescaled quadrilaterals will be just an easy
use of (16) to find the limit of the midpoint of the diagonals of the rescaled
quadrilateral and the fact that A is constant.

Observe also that, because of the way B moves on the circle of center 0
and radius | BY|, if 4 is of type (I) then By« cannot be —|B°| and if 4° is of
type (II) then Br- cannot be ((A° —1)/(A° +1))2.

Let us suppose that
AD 1Y)
Brp- —

then because of (16) and an easy compactness argument, there exists a real
constant K > 1 such that for all ¢ € [0, T*],

K~ ys — 1| < (y2 +y4) — (1 + 93)| < Klys — w1l (21)
Hence, because of the triangle inequality, we have that for any i € Z /47,
1
Wit =il < 51+ K +[A[)ys =l (22)

Hence,
L(t) <2(1+ K + |Af)lys — vl (23)

Moreover, using (6), Lemma 3, and

2

le(u,v,w)| < (24)
u — w)
for any distinct points (u,v,w) in C, we obtain that, for all ¢ € [0,T™],
1
- = 5 > (e + leil)lyirr — vl
i€7 |4,
< K'lys—m|™" (25)

11



This gives us that the function 4 defined in (18) satisfies for all ¢ € [0, T,
on one hand, by (21), (22), and (23),

b(t) = \ yo +y4) — (y1 + y?’)‘er

lya — y1\ ys — y3|?

> K" / 26
= B 20
and, on the other hand, by (21), (22), and (25),

bt > K" / —‘LL'Z;“”
> K"ln%. (27)

Because of Lemma 5, in order to have B(t) — —|B°| as t — T*, it remains
to show that ¢(t) — oo as t — T*.

There are two possibilities, either T* = +o00 or T* < +o0.

If T* = 400 then as % is nondecreasing, inequality (26) gives us the
result.

If T* < 400 and L(t) /& 0 as t — T* then we claim that y(t) — y(T%)
where y(T*) is a quadrilateral. The Cauchy-Lipschitz Theorem allows us to
extend the evolution beyond T™* thus contradicting the maximality of the
family. As L(t) — 0, inequality (27) shows that 1 (f) — oo so that we get
the result.

It remains to show why y(¢) tends to some quadrilateral as ¢ — T* if
L(t) # 0. The lengths of the edges |yi+1 — yi| are nonincreasing (Lemma 1)
and positive functions hence they have limits ;. Because of Lemma 3, the
numbers [; are related by the relation

I3 = |BYlyly.

None of the numbers I; can be zero. If, for example /1 = 0 then either Iy or
l4 is zero. Suppose it is [y then we would have by (23)

L(t) K'ly1 — ys|

<
< K'(ly1 — yo| + |y2 — y3))
— K’(ll—i-lg) =0,

and this is a contradiction with L(¢) 4 0. Now we have that there exists a
constant [y > 0 such that for all 1+ € Z/4Z, for all ¢t € [0, T*],

|Yi+1 — vi] > lo- (28)

12



Thanks to (22), there exists some other constant [ > 0 such that, for all
t e 0,7,

‘y3 - yl\ >1 and \y4 — y2| > 1. (29)
This shows, using (24), that for all i € Z/47Z, for all t € [0, T*],
el < 2
¢l < =.
! l

Coming back to the differential system (5), this shows that the functions y;
are Z-Lipschitz on [0, T*[. Hence they have limits y;(T*) as t — T* and the
map i — y;(T™) is injective by (28) and (29). o

We have seen that if we start with a colinear quadrilateral y° then T* =
oo whereas if 30 is a cocyclical quadrilateral or a parallelogram then T* is
finite (see Lemma 2 and 4). We can observe that the only way to have a
colinear shape in the limit is to have A? real. The following proposition
shows that the situation when A is not real is well understood.

Proposition 2 If A° ¢ R then T* < oo, T* = C.L(0)? where C is a
constant depending only on the shape of y°.

Moreover, as t — T*, L(t) — 0 and there ezists a point x € C such that
y(t) = (z,z,2,2).

Proof. Theorem 1 shows that if A? ¢ R, the rescaled quadrilaterals (y —
(ys+v1)/2)/(ys —y1) tend to a noncolinear quadrilateral. Hence there exists
0 < tg < T* such that for ty < ¢t < T*, the quantities |ys — y1|, |Yi+1 — il
1/|¢i| are comparable within positive multiplicative constants. Because of
Lemma 1, we have that for any ¢ € [to, T,

d| |< —€
@t Y=y

where € is a positive constant. Integrating, we get that

to) — y1(to)[? to) — yi(to)|?
t < ly2(to) — y1(to)| . hence TF< ly2(to) — y1(to)] ‘
€ €

Starting with y° of length L° and rescaling we get a quadrilateral §° of
length 1. A simple homogeneity argument gives us that T* = (L0)2T*.

Just as in the proof of Theorem 1, if L(t) /A 0 as t — T*, we could
contradict the maximality of T by extending the motion beyond T*.

Now, let us observe that by Theorem 1 and Lemma 1, there exists a
time 0 < 9 < T™ and a constant A such that for each i € Z/4Z, for each
to <t <T*,

lyil < —AL'.

Therefore the functions y; are integrable over [0, 77| so that the functions
y; have limits y;(T*) as t — T*, which are equal because L — 0. o

13
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