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Abstra
t

We prove the �niteness of the total s
attering 
ross-se
tion for ion-atom 
ollisions with an initial


hannel given by a simple eigenvalue of the internal Hamiltonian des
ribing the neutral 
luster, i.e. the

atom. Under more restri
tive assumptions, we show that some e�e
tive intera
tion in Born-Oppeheimer

approximation is pre
isely of order O(jxj

�4

) in the distan
e between the mass 
enters of two 
lusters.

We then extra
t the leading term of the s
attering 
ross-se
tion in the Born-Oppenheimer limit.

I Introdu
tion

The s
attering pro
ess for multi-parti
le Coulomb systems with initial two-
luster data has been studied

in physi
s litterature, both experimentally and theoreti
ally. In parti
ular, in the 
ollision of a 
harged


luster with a neutral one ( ion-atom s
attering), it is believed that if the neutral sub-system has no stati


dipole moment, the total 
ross-se
tion would be is �nite. In [ES℄, Enss-Simon put forward as open questions

to prove the �niteness of total 
ross-se
tions in this 
ase and to give expli
it bounds for them. In [CT℄,

Combes-Tips proved the �niteness and analyti
ity of forward s
attering amplitude in ele
tron-atom s
atter-

ing. They indi
ated te
hni
al diÆ
ulties to extend their results to ion-atom 
ollision and suggested to use

Born-Oppenheimer approximation to study the problem.

Re
all that it is well-known in two-body s
attering theory (see, for example, [Y℄ ) that if the potential V

on R

3

has the de
ay

jV (x)j � C < x >

��

; 8x 2 R

3

with � > 2, the total 
ross-se
tion for the s
attering pro
ess des
ribed by ( ��, ��+ V (x)) is �nite, while

if V (x) �

C

jxj

2

as jxj ! 1 for some C 6= 0, the total 
ross-se
tion is in�nite. In the s
attering theory

for multi-parti
le Coulomb systems with initial two-
luster data, the inter
luster intera
tion between the

two 
lusters de
ays like O(jxj

�1

) in general 
ase, like O(jxj

�2

) if one of the 
lusters is neutral ( ion-atom

s
attering ) and like O(jxj

�3

) if the both 
lusters are neutral ( atom-atom s
attering ). Here x 2 R

3

denotes

the relative position of the mass-
enters of the two 
lusters. See Appendix A for more pre
ise statements and

the 
al
ulus. For ion-atom s
attering, the known results in two-body 
ase suggest that without additional

assumption, the total 
ross-se
tion would be in�nite. In this paper, we prove the �niteness of total 
ross-

se
tions under the assumption that the atom is in the fundamental state whi
h implies, by the symmetry

of Coulomb potentials, that there is no stati
 dipole moment for the atom. The quantitive study of the

total 
ross-se
tions in ion-atom s
attering is interesting and non-trivial, sin
e the leading terms in various
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known asymptoti
s for total 
ross-se
tions in N-body s
attering ( [I1℄, [I2℄, [RW℄, [W℄) are not de�ned in the

present 
ase. In this paper, we only study the asymptoti
s in the Born-Oppenheimer approximation, where

the semi
lassi
al parameter, h, is proportional to the ratio of the ele
toni
 to nu
lear mass. Due to the use

of 
luster 
oordinates whi
h is needed to des
ribe many-parti
le s
attering pro
esses, the potentials be
ome

h-dependent. The perturbation by the shift term l(y) = O(h

2

jyj) is singular and the pi
ture of eigenvalues

of the ele
troni
 Hamiltonian P

e

(x; h) de�ned below 
hanges drasti
ally from h = 0 to h 6= 0. Our result

in Born-Oppenheimer approximation is based on the semi
lassi
al resolvent estimates of [KMW2℄ whi
h is

established in terms of the weight in x� l(y), the relative position between the two nu
leus. We then use the

adiabati
 approximation for total 
ross-se
tions and prove that the eigenvalue of the ele
troni
 Hamiltonian

P

e

(x; h) 
onverges suÆ
iently fast as x!1 so that we 
an extra
t the leading term in the limit h! 0.

The plan of this paper is as follows. In Se
tion II we introdu
e the basi
 notation whi
h will be used

throughout the paper and we re
all a few basi
 fa
ts from N-body s
attering theory. We introdu
e the

hypotheses whi
h are relevant for this paper and we state our main results, i.e. Theorem II.2 on the

existen
e of the total s
attering 
ross-se
tion and Theorem II.3, whi
h gives the semi
lassi
al asymptoti
s

of this 
ross-se
tion. In Se
tion III we prove Theorem II.2. The essential point are 
ertain weighted L

2

estimates whi
h show that upon lo
alization in energy in the relevant spe
tral range the e�e
tive intera
tion

de
ays faster than O(jxj

�2

), whi
h is the obvious norm estimate on an ion-atom intera
tion. In Se
tion IV,

we establish the relevant semi
lassi
al estimates on potentials and resolvents, using methods from [KMW2℄

and give a sket
h of the proof of Theorem II.3. In Appendix A we in
lude the relevant expansions for the

Coulomb intera
tion in ion-atom s
attering whi
h are used throughout the paper.

II Notation, assumptions and main results

The Hamiltonian of a diatomi
 mole
ule with N ele
trons 
an be written in the form

P

phys

=

2

X

k=1

1

2m

k

�

��

x

k

�

+

N+2

X

j=3

1

2

�

��

x

j

�

+

Z

1

Z

2

jx

1

� x

2

j

(II.1)

+

2

X

k=1

N+2

X

j=3

e

j

Z

k

jx

j

� x

k

j

+

X

2�l<j�N+2

e

l

e

j

jx

l

� x

j

j

where x

k

2 R

3

, k = 1; 2, denote the position of the two nu
lei with mass m

k

and 
harge Z

k

> 0 and x

j

2 R

3

,

j = 3; : : : ; N + 2, denote the position of N ele
trons with mass 1 and 
harge e

j

2 R (in the physi
al 
ase


harges are equal and negative). Plan
k's 
onstant is taken to be 1 in this formula. The result on the

existen
e of total 
ross-se
tions remains valid for any Coulomb system.

We are interested in s
attering pro
esses where the in
oming s
attering 
hannel is a two-
luster one,

while the out-going s
attering 
hannel 
an be arbitrary. Let a = (a

1

; a

2

) be a two-
luster de
omposition of

f1; : : : ; N + 2g, i.e. a partition (a

1

; a

2

) of the parti
le labels f1; : : : ; N + 2g, where j 2 a

j

, for j = 1; 2.

Adapted to this 
luster de
omposition, we 
hoose so 
alled 
lustered atomi
 
oordinates (x; y) 2 R

3

� R

3N

:

h =

�

1

2M

1

+

1

2M

2

�

1=2

; M

k

= m

k

+ ja

0

k

j ; a

0

k

= a

k

n fkg ; k = 1 ; 2 ; (II.2)

R

k

=

1

M

k

�

m

k

x

k

+

X

j2a

0

k

x

j

�

; k = 1 ; 2 ;

x = R

1

�R

2

; (II.3)

y

j

= x

j

� x

k

; j 2 a

0

k

; k = 1 ; 2 ; (II.4)

l(y) =

1

M

1

X

j2a

0

1

y

j

�

1

M

2

X

j2a

0

2

y

j

: (II.5)

Noti
e that R

k

is the 
enter of mass of the 
luster a

k

, for k = 1; 2, and that x is the relative position of these


enters of mass. These 
oordinates are well adapted to des
ribe two-
luster s
attering of diatomi
 mole
ules
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(see [KMW1℄, [KMW2℄). After removing the mole
ular 
enter of mass motion, the Hamiltonian P

phys

may

be written in this system of 
oordinates as

P = �h

2

�

x

+P

e

(x;h); P

e

(x;h) = P

a

(h) + I

a

(x;h); (II.6)

where the sub-Hamiltonian P

a

(h) is given by

P

a

(h) = P

a

1

(h) + P

a

2

(h) ; (II.7)

with

P

a

k

(h) =

X

j2a

0

k

�

�

1

2

�

y

j

+

Z

k

e

j

jy

j

j

�

�

1

2m

k

�

X

j2a

0

k

�

y

j

�

2

+

X

l;j2a

0

k

l<j

e

l

e

j

jy

l

� y

j

j

;

and the inter-
luster intera
tion I

a

(x;h) by

I

a

(x;h) =

Z

1

Z

2

jx� l(y)j

+

X

k2a

0

1

j2a

0

2

e

k

e

j

jy

k

� y

j

+ x� l(y)j

+

X

j2a

0

1

Z

2

e

j

jy

j

+ x� l(y)j

+

X

j2a

0

2

Z

1

e

j

jx� l(y)� y

j

j

: (II.8)

Finally, we set

P

a

(h) = �h

2

�

x

+P

a

(h): (II.9)

P is 
onsidered as a self-adjoint operator in L

2

(R

3(N+1)

; dxdy). Note that l(y) = O(h

2

jyj) and that the

study of the dependen
e on h of the spe
tra of P

e

(x;h) is te
hni
al. In fa
t, even to prove the terme

Z

1

Z

2

jx�l(y)j

is uniformly ( w.r.t. h ) ��

y

-bounded, the authors of [KMW2℄ used the fa
ts that x 2 R

3

and Z

1

Z

2

> 0.

For an arbitrary 
luster de
omposition 
 = (


1

; : : : ; 


k

) of f1; : : : ; N+2g, i.e. 


1

[� � �[


k

= f1; : : : ; N+2g

and 


j

\ 


k

= ;, for j 6= k, we 
an also 
hoose adapted 
oordinates (x




; y




). We 
all P




the sub-Hamiltonian,

x




2 R

3(k�1)

the inter-
luster 
oordinates, y




the intra-
luster 
oordinates, and I




(x




; y




) the inter-
luster

intera
tion. By D

x




(resp. D

y




) and by ��

x




(resp. ��

y




), we denote �i times the gradient and the

Lapla
ian in the inter-
luster (resp. intra-
luster) 
oordinates. It is well known (see e.g. [DG℄) that, for this

S
hr�odinger operator P, the modi�ed wave operators




�;


= s� lim

t!�1

e

itP

e

�it

�

��

x




+

R

t

0

I




(sD

x




;0)ds+E




�

J




(II.10)

exist for any s
attering 
hannel 
 = (
; E




; �




), where 
 is an arbitrary 
luster de
omposition, �




is an

eigenfun
tion of P




with eigenvalue E




: P




�




= E




�




, and where J




denotes the identi�
ation operator,

whi
h is de�ned for any L

2

-fun
tion f of the variable x




by

(J




f)(x




; y




) = f(x




)�




(y




): (II.11)

Furthermore, the family of wave operators f


�;


;8
g is asymptoti
ally 
omplete. It is equally well known

(see [Ra℄) that, if a = (a

1

; a

2

) is a two-
luster de
omposition with one neutral 
luster (an atom), say a

1

, i.e.

X

j2a

0

1

e

j

= �Z

1

; (II.12)

then, for any 
hannel � = (a;E

�

; �

�

) with E

�

outside the thresholds of P

a

, one 
an de�ne the wave operators

without modi�er, namely by




0

�;�

= s� lim

t!�1

e

itP

e

�it

�

��

x

a

+E

�

�

J

�

: (II.13)

In this 
ase, 


�;�

= 


0

�;�

e

i (D

x

a

)

, where  is a real fun
tion. Therefore the result on asymptoti
 
omplete-

ness remains true if we repla
e 


�;�

by 


0

�;�

when the latter exists. So we just set 


�;


= 


0

�;


if they
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exist. For any two s
attering 
hannels 
; �, we then de�ne the asso
iated s
attering operator from 
hannel


 to 
hannel Æ by

S

�


= 


�

+;�




�;


; T

Æ


= S

�


� Æ

�


; (II.14)

where Æ

�


= 1 if 
 = � and 0 otherwise.

Let us now de�ne the total s
attering 
ross-se
tions in many-parti
le s
attering. Sin
e few is known

about the s
attering amplitudes in many-body s
attering theory (see [V℄ for results in this subje
t), we

de�ne the total s
attering 
ross-se
tions a

ording to the philosophy of [ES℄. For � � E

�

(h), we introdu
e

the magnitude of the momentum asso
iated with the kineti
 energy of the relative motion of the two 
lusters

in the s
attering 
hannel � via

n

�

(�;h) := �

1=2

�

(h); �

�

(h) := ��E

�

(h): (II.15)

For g 2 C

1

0

(I

�

; C ), I

�

=℄E

�

(h); +1[, and ! 2 S

2

, we 
onsider the wave pa
ket

R

3

3 x 7! g

!

(x) = ~g(! � x) (II.16)

where

~g(�) =

1

2

p

�h

Z

R

e

ih

�1

n

�

(�;h)�

g(�)

n

�

(�;h)

1=2

d�:

The normalization is 
hosen su
h that

kgk

L

2

(R)

= k~gk

L

2

(R)

:

Denoting by C the set of all 
hannels, we want to apply, for Æ 2 C, T

Æ�

to g

!

(x)�

�

(y;h). Sin
e this fun
tion

does not belong to L

2

(R

3(N+1)

) - it de
ays rapidly only in the dire
tion de�ned by ! - we regularize it by

multipli
ation with a fun
tion h

R;!

2 L

1

(R

3

), depending only on the variable x � (! � x)! transversal to

the dire
tion ! of the in
ident wave pa
ket g

!

(x), su
h that pointwisely

lim

R!1

h

R;!

= 1 : (II.17)

For the purpose of this paper we shall spe
ify this 
ut-o� fun
tion to be a Gaussian, i.e. we take

h

R;!

(x) = e

�(x�(!�x)!)

2

=R

(II.18)

De�nition. For � 2 I

�

and ! 2 S

2

, we shall say that the total 
ross-se
tion �

�

(�; !) with the in
oming


hannel � exists at the energy � with the in
ident dire
tion !, if the following limit is �nite and well de�ned:

�

�

(�; !) := lim

n!1

lim

R!1

X

Æ2C

kT

Æ�

h

R;!

g

n;!

�

�

k

2

; (II.19)

where g

n;!

is de�ned as in (II.16) with g repla
ed by g

n

:

g

n

(�) = n

�1=2

h((�� �)=n)

and h is any C

1

0

(R)-fun
tion normalized by

R

R

jh(�)j

2

d� = 1.

Re
all that in [ES℄ and [W℄, the total 
ross-se
tion is de�ned as distribution in � 2 I

�

by

Z

+1

E

�

(h)

�

�

(�; !)jg(�)j

2

d� = lim

R!1

X

Æ2C

kT

Æ�

h

R;!

g

!

�

�

k

2

; (II.20)

for all g 2 C

1

0

(I

�

; C ). Sin
e jg

n

(�)j

2


onverges to Æ

�

(�), the Dira
 measure at �, as n ! 1, the de�nitions

(II.19) and (II.20) 
oin
ide if the distribution de�ned in (II.20) 
an be identi�ed with a 
ontinuous fun
tion

in a neighbourhood of �, whi
h is true in the 
ase when one knows to prove the existen
e in the sense of

4



distributions ( see [RW, W℄ ). For physi
al ba
kground of this de�nition and its equivalen
e to the usual

one in two-body 
ase, see [ES℄, [RW℄, [W℄, [Je
℄. For some 
hannels 
; Æ and some in
ident dire
tion !, total

s
attering 
ross-se
tions may not exist on any interval I (see [W℄). Usually it is required that the intera
tions

de
ay quite rapidly to ensure their existen
e. In the present situation with Coulomb intera
tions, whi
h a

priori do not de
ay suÆ
iently fast, we shall show the existen
e, i.e. �niteness, of �

�

only for some spe
ial


hannel � des
ribing ion-atom s
attering, for all in
ident dire
tions ! 2 S

2

. The 
onditions on � are 
olle
ted

in the following hypothesis.

Hypothesis 1. Let � = (a;E

�

; �

�

) be a 
hannel with E

�

2 �

dis


(P

a

) and 
luster de
omposition a = (a

1

; a

2

)

su
h that ea
h 
luster 
ontains a nu
leus and su
h that a

1

is neutral (an atom), that is

X

j2a

0

1

e

j

+ Z

1

= 0 : (II.21)

Assume that

E

�

= E

�;1

+ E

�;2

with E

�;j

2 �

dis


(P

a

j

) ; j = 1; 2 ; (II.22)

where P

a

j

stands for the internal Hamiltonian of 
luster a

j

and E

�;1

(the eigenvalue of the neutral 
luster)

is non-degenerate.

Remark II.1. Write y = (y

0

; y

00

) for the ele
troni
 
oordinates in the 
lusters a

1

; a

2

and put

�

�

(y) = �

�;1

�

y

0

�

�

�;2

�

y

00

�

; 8y 2 R

3N

; (II.23)

with P

a

j

�

�;j

= E

�;j

�

�;j

:

By the spheri
al symmetry of Coulomb potential and the non-degenera
y of E

�;1

, it 
an be dedu
ed that

j�

�;1

�

�y

0

�

j = j�

�;1

�

y

0

�

j. Therefore,

Z

R

3ja

0

1

j

y

j

j�

�;1

�

y

0

�

j

2

dy

0

= 0; 8j 2 a

0

1

:

Sin
e a

1

is neutral, an elementary 
al
ulus using the Taylor expansion of I

a

in y shows that

< I

a

(x; h)�

�

; �

�

>

y

= O(jxj

�3

):

< �; � >

y

denotes the s
alar produ
t in L

2

(R

3N

y

; dy).

We denote by R(z;h) the resolvent of P(h) and re
all that its boundary value R(�� i0;h) : L

2;s

! L

2;�s

is well de�ned outside the set T of the thresholds and the eigenvalues of P(h) as an operator between the

weighted L

2

spa
es, for any s > 1=2.

Our �rst main result 
on
erns the existen
e of �

�

and gives a useful formula for it.

Theorem II.2. Let � = (a;E

�

(h); �

�

(h)) be a s
attering 
hannel satisfying Hypothesis 1. We set

F (z; !;h) =

D

R(z; h) I

a

e

�

; I

a

e

�

E

; Imz 6= 0; (II.24)

where

e

�

(x; y) = e

ih

�1

n

�

(�;h)!�x

�

�

(y;h):

Let T be the set of thresholds and eigenvalues of P. Then, for any energy � 2 I

�

n T and any in
ident

dire
tion ! 2 S

2

, the limit

F (�+ i0; !;h) = lim

�!0

+

F (� + i�; !;h) (II.25)

exists and de�nes a 
ontinuous fun
tion in �. The total s
attering 
ross-se
tion �

�

(�; !) exists for any

energy � 2 I

�

n T and any in
ident dire
tion ! 2 S

2

and one has the opti
al formula

�

�

(�; !) =

1

hn

�

(�;h)

ImF (� + i0; !;h) : (II.26)
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Sin
e I

a

e

�

does not belong to L

2;s

, for some s > 1=2, this result is not trivial. Its proof - given in Se
tion

III - depends 
ru
ially on the de
ay of some appropriate e�e
tive potentials, 
ombined with phase spa
e

analysis, i.e. an appropriate lo
alization in the relative kineti
 energy of the two 
lusters.

Next we are interested in the Born-Oppenheimer approximation (h! 0) of �

�

. We restri
t ourselves to

the groundstate energy of P

a

and demand some stability property w.r.t. x and h.

Hypothesis 2. Let h

0

> 0 be small enough. Let E

�

(h), satisfying Hypthesis 1, be the bottom of the spe
trum

of P

a

(h), 0 � h � h

0

. Let �

0

> E

�

(0). From (II.7), we see that, for some Æ > 0, �

0

�Æ > E

�

(h), 0 < h � h

0

.

Let �

1

(x;h) be the bottom of the spe
trum of P

e

(x;h). We assume that for x in a neighborhood O

�

0

of the

non-
ompa
t set

fx 2 R

3

; �

1

(x; 0) � �

0

g ;

�

1

(x;h) is a simple eigenvalue and is the unique eigenvalue of P

e

(x;h) that tends to E

�

(h) as jxj ! 1, and

the unique eigenvalue of P

e

(x;h) that tends to �

1

(x; 0) as h! 0. Furthermore, we demand that

�

1

(x;h) ! E

�

(h) as jxj ! 1 ; uniformly w.r.t. h � h

0

; (II.27)

�

1

(x;h) ! �

1

(x; 0) as h ! 0 ; uniformly w.r.t. x 2 O

�

0

: (II.28)

Note that there exists Æ

0

> 0, su
h that, for h

0

small enough and 0 � h � h

0

,

fx 2 R

3

; �

1

(x;h) � �

0

+ Æ

0

g � O

�

0

:

We also impose that for 0 � h � h

0

,

inf

x2O

�

0

�

�

�

P

e

(x;h)

�

n f�

1

(x;h)g

�

> �

0

+ 2Æ

0

; (II.29)

where �(P

e

(x;h)) denotes the spe
trum of P

e

(x;h).

For x 2 O

�

0

, let  

e

(x;h) be a normalized eigenfun
tion of P

e

(x;h) asso
iated to �

1

(x;h). As in [KMW2℄,

we 
an extend it to a smooth, normalized fun
tion �

e

(x;h) of x su
h that, for some Æ

1

> 0,




P

e

(x;h)�

e

(x;h) ; �

e

(x;h)

�

� �

0

+ Æ

1

; (II.30)

for all 0 � h � h

0

and for all x in some 
ompa
t neighborhood K of the 
omplement of O

�

0

, satisfying

K � fx 2 R

3

;�

1

(x;h) > �

0

; 0 � h � h

0

g :

We denote the orthogonal proje
tion on the one-dimensional spa
e generated by �

e

(x;h) in L

2

(R

3N

y

) by

�(x; h). It indu
es a proje
tion �(h) on L

2

(R

3(N+1)

). The orthogonal proje
tion �

0

(h) onto �

�

(h) (intro-

du
ed in Hypothesis 1) also indu
es a proje
tion on L

2

(R

3(N+1)

), whi
h we still denote by �

0

(h). We then

de�ne the adiabati
 operator asso
iated with the spe
tral proje
tion �(h) by

P

AD

(h) := �(h)P�(h):

We denote by R

AD

(z;h) its resolvent and set

^

�(h) = 1��(h) and

^

�

0

(h) = 1��

0

(h).

We 
onsider an energy range J �℄E

�

(0);�

0

[. Let  

t

be the Hamiltonian 
ow of the e�e
tive Hamiltonian

fun
tion

H

e�

(x; �) = j�j

2

+ �

1

(x; 0)�E

�

(0): (II.31)

An energy � 2 R is non-trapping for H

e�

if, for all (x; �) belonging to the energy surfa
e of H

e�

of energy �,

the point  

t

(x; �) goes to in�nity as t and �t go to +1.

Hypothesis 3. Let J an open interval of R su
h that J is non-trapping for the e�e
tive Hamiltonian

fun
tion H

e�

, i.e. � is a non-trapping energy for H

e�

for all � 2 J .
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Note that su
h an interval J is 
ontained in I

�

n T , for h small enough. Thus Theorem II.2 holds on J .

In our 
ontext we need su
h a hypothesis to obtain a semi
lassi
al estimate on the resolvent.

Under the previous hypotheses, we shall derive in Proposition IV.1 semi
lassi
al estimates on R(� � i0)

and R

AD

(� � i0), for � 2 J , using arguments developed in [KMW2℄. Finally we introdu
e the e�e
tive

potentials whi
h govern the leading terms of �

�

. Denoting by C

2

the ele
troni
 
harge of a

2

, that is

C

2

=

X

j2a

0

2

e

j

; (II.32)

we de�ne the fun
tion

C(x̂; y) =

�

C

2

+ Z

2

�

X

l2a

0

1

e

l

x̂ � y

l

; (II.33)

where x̂ = x=jxj and where � denotes the standard s
alar produ
t in R

3

. Physi
ally, this fun
tion des
ribes

the intera
tion of the dipoles formed by the ele
trons in 
luster a

1

with the e�e
tive 
harge of 
luster a

2

.

De�ne

^

R

a

(h) = (P

a

(h)

^

�

0

(h)�E

�

(h))

�1

^

�

0

(h): (II.34)

The e�e
tive potential in the 
ontext of the Born-Oppenheimer approximation is given by

I

e�

(x) := �

1

(x; 0) � E

�

(0): (II.35)

While the intuitive e�e
tive term < I

a

(x; 0)�

�

(0); �

a

(0) >

y

may de
ay exponentially, we shall prove that

I

e�

(x) is exa
tly of the order O(jxj

�4

). In fa
t, we prove in Lemma IV.2 that

jI

e�

(x) �

^

I

e�

(x)j = O(jxj

�5

); as jxj ! 1 (II.36)

where

^

I

e�

(x) := �2




^

R

a

(0)

^

�

0

(0)C(x̂; y)�

�

(0);

^

�

0

(0)C(x̂; y)�

�

(0)

�

L

2

(R

3N

y

)

jxj

�4

; (II.37)

is everywhere negative if C

2

+Z

2

6= 0. It is essentially this fa
t whi
h allows to extra
t the leading order of

the total s
attering 
ross-se
tion in equation (II.39) below. Now we 
an state our se
ond main result, whi
h

gives the semi
lassi
al asymptoti
s of �

�

.

Theorem II.3. Let � = (a;E

�

(h); �

�

(h)) be a s
attering 
hannel satisfying Hypothesis 1 and Hypothesis 2.

Let J be a real interval satisfying Hypothesis 3. Then we have

�

�

(�; !) = O

�

h

�2=3

�

; (II.38)

lo
ally uniformly w.r.t. � 2 J and ! 2 S

2

. We set n

�

(�; 0) = (� � E

�

(0))

1=2

and we denote by H

!

the

hyperplane orthogonal to !. Then there exists some �

0

> 0 su
h that, for either 
hoi
e of e�e
tive potential,

i.e. for I = I

e�

and I =

^

I

e�

, we have

�

�

(�; !) = 4

Z

H

!

sin

2

�

1

4hn

�

(�; 0)

Z

R

I(u+ s!)ds

�

du + O

�

h

�2=3+�

0

�

; (II.39)

lo
ally uniformly w.r.t. � 2 J and ! 2 S

2

. If a

2

is not neutral (i.e. the ele
troni
 
harge C

2

of a

2

satis�es

C

2

6= �Z

2

), the leading term (II.39) with I =

^

I

e�

is exa
tly of order h

�2=3

and thus is �

�

.

Theorem II.3 shows that the Born-Oppenheimer approximation 
orre
tly des
ribes the asymptoti
s of

the total s
attering 
ross-se
tion in the situation 
onsidered in this paper, as expe
ted in [CT℄.
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III Existen
e of the total s
attering 
ross-se
tion

In this se
tion we shall prove the existen
e of the total s
attering 
ross-se
tion as stated in Theorem II.2.

The parameter h plays no role in this se
tion and will be set to 1. We shall assume throughout this se
tion

that the initial 
hannel � is asso
iated to a two-
luster de
omposition a = (a

1

; a

2

) with a

1

a neutral 
luster,

that is, (II.21) holds for a

1

. As a �rst step, we establish the following representation formula. Here we use

the fun
tion u

R;!

= g

!

h

R;!

, where g

!

; h

R;!

are de�ned in (II.16) and (II.18).

Lemma III.1. For g 2 C

1

0

(I

�

; C ), I

�

:=℄E

�

; +1[, one has

X

�2C

kT

��

u

R;!

�

�

k

2

= 4�

Z

I

�

ImhR(�+ i0)I

a

�

�

u

R;!

(�); I

a

�

�

u

R;!

(�)id� (III.1)

where

u

R;!

(�; x) =

R

8

�

n

�

(�)

�

�

3=2

Z

S

2

+

e

in

�

(�)x���

R

4

�

�

(�

2

2

+�

2

3

)

p

�

1

g(�

�

�

2

1

+E

�

)d�; (III.2)

where �

1

= � � !; the 
omponents �

2

; �

3

denote the dire
tions orthogonal to ! 2 S

2

and S

2

+

denotes the half

sphere �

1

> 0; � 2 S

2

.

The proof is the same as in [RW, W℄ and is omitted here. Remark that the asymptoti
 
ompleteness of

wave operators plays an essential role in the proof.

Writing �

0

= (�

2

; �

3

), setting B

�;R

= f�

0

2 R

2

; j�

0

j � R

�(1��)=2

g and using d� = (1� �

0

2

)

�1=2

d�

0

on S

2

+

,

we note that equation (III.2) implies

u

R;!

(�; x) =

R

8

�

n

�

(�)

�

�

3=2

Z

B

�;R

e

in

�

(�)(x

1

p

1��

0

2

+x

0

��

0

)

e

�

R

4

�

�

�

0

2

(1� �

0

2

)

�1=4

g(�� �

�

�

0

2

)d�

0

+O

�

(jR�

�

j

�1

); (III.3)

uniformly in x 2 R

3

. For j�

0

j � R

�(1��)=2

we 
hange variables via � =

p

R�

0

and, 
onsidering separately the

regions jxj > R

�=2

and jxj < R

�=2

, we observe that, for � suÆ
iently small,

hxi

��

je

in

�

(�)(x

1

p

1��

2

=R+

�

p

R

�x

0

)

� e

in

�

(�)x

1

j � Cn

�

(�)(1 + �

2

)R

��=2

:

Taylor expansion of the integrand in equation (III.3) 
ombined with the evaluation of the Gaussian integral

Z

R

2

e

�

R

4

�

�

�

0

2

d�

0

=

4�

R�

�

gives

Lemma III.2. For any � > 0; N 2 N there exists C > 0 su
h that

ju

R;!

(x; �) �

1

2

�

1

�n

�

(�)

�

1=2

g(�)e

in

�

(�)x�!

j � Chxi

�

R

��=2

jn

�

(�)j

�N

(III.4)

uniformly in x 2 R

3

; R � 1 and n

�

(�) � 
 > 0:

We shall now derive Theorem II.2 as an easy 
onsequen
e of

Theorem III.3. Let � 2 C

1

0

(R) be equal to 1 on [�Æ=2; Æ=2℄ with supp � � (�Æ; Æ): Assuming Hypothesis

1, there exists Æ > 0 su
h that for any � 2 I

�

n T and for u; v 2 L

1

(R

3

x

) with

�(��

x

� �

�

)u = u; �(��

x

� �

�

)v = v (III.5)

one has

jhR(�+ i�)I

a

�

�

u; I

a

�

�

vij � C

s

jjhxi

�s

ujj

L

1

jjhxi

�s

vjj

L

1

(III.6)
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where 0 � s < 1=2 and C

s

is independent of � in any 
ompa
t subset of I

�

n T and � 2℄0; 1℄. The weak limit

hR(�+ i0)I

a

�

�

u; I

a

�

�

vi := lim

�!0

+

hR(�+ i�)I

a

�

�

u; I

a

�

�

vi (III.7)

exists and de�nes a 
ontinuous fun
tion of � in I

�

n T .

Proof of Theorem II.2: It is well known that the map

(I

�

n T ) 3 � 7! h(x; y)i

�s

R(�+ i0)h(x; y)i

�s

is 
ontinuous for any s > 1=2: From Theorem III.3, we see that the fun
tion

F (�+ i0; !) := hR(�+ i0)I

a

�

�

e

in

�

(�)x�!

; I

a

�

�

e

in

�

(�)x�!

i (III.8)

is well de�ned and 
ontinuous for � 2 I

�

n T : Let u

R;!

(�) be the fun
tion de�ned in Lemma III.1. Then

u

R;!

(�) and e

in

�

(�)x�!

are L

1

�fun
tions satisfying the 
ondition (III.5) in Theorem III.3. Therefore, 
om-

bining Lemma III.2 with the de�nition of f

�

and u

R;!

(�), we �nd that for some 0 < s < 1=2

�

�

�

�

hR(�+ i0)I

a

�

�

u

R;!

(�); I

a

�

�

u

R;!

(�)i �

jg(�)j

2

4�n

�

(�)

F (�; !)

�

�

�

�

� C













hxi

�s

�

u

R;!

(�)�

g(�)

2(�n

�

(�))

1=2

e

in

�

(�)x�!

�













L

1

� C

M

R

�s=2

jn

�

(�)j

�M

; (III.9)

for all M; jn

�

(�)j � 
 > 0. This estimate proves that for any g 2 C

1

0

(I

�

n T ); the limit

lim

R!1

X

�2C

kT

��

h

R;!

g

!

�

�

k

2

exists and is equal to

Z

ImF (�+ i0; !)

jg(�)j

2

n

�

(�)

d�

Now we repla
e g by g

n

in the above formula and take the limit n!1. Sin
e F (�+ i0; !) is 
ontinuous in

� 2 I

�

n T , we obtain from the de�nition of total 
ross se
tion that �

�

(�; !) exists and

�

�

(�; !) =

1

n

�

(�)

ImF (� + i0; !) (III.10)

for � 2 I

�

n T and ! 2 S

2

.

The remaining part of this se
tion is devoted to proving Theorem III.3. This is divided into several steps

whi
h shall be stated as distin
t Lemmata. Here we are inspired by the weighted L

2

estimates and the phase

spa
e de
omposition in [CT℄.

Lemma III.4. If u 2 L

1

(R

3

x

) satis�es �(��

x

� �

�

)u = u, with � as in Theorem III.3, then

(1� �(��

x

� �

�

)) I

a

�

�

u 2 L

2;s

(R

3(N+1)

)

for any s < 3=2 and

jj (1� �(��

x

� �

�

)) I

a

�

�

ujj

L

2;s

(R

3(N+1)

)

� C

s;s

0

jjhxi

�s

0

ujj

L

1

(III.11)

for any s; s

0

with s+ s

0

< 3=2.
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Proof: Let � be the set of all possible 
ollisions between nu
lei and ele
trons, des
ribed in the 
oordinates

(x; y). We 
hoose a 
ut-o� fun
tion ~� 2 C

1

0

(R

3(N+1)

) with 0 � ~� � 1, whi
h is equal to 1 in a small 
oni


neighborhood of � and vanishes outside a slightly bigger 
oni
 neighborhood. Then

~�I

a

�

�

u 2 L

2;s

(R

3(N+1)

) and (1� �(��

x

� �

�

)) ~�I

a

�

�

u 2 L

2;s

(R

3(N+1)

); 8s > 0

On the support of 1� ~�; the intera
tion potential I

a

is smooth, and sin
e the 
luster a

1

is neutral, we have

for

~

I

a

= (1� ~�)I

a

~

I

a

(x; y)�

�

= O(jxj

�2

); �

x

~

I

a

(x; y)�

�

= O(jxj

�3

) in L

2;s

(R

3N

y

); 8s > 0:

Next we rewrite

(1� �(��

x

� �

�

)) (

~

I

a

�

�

u) = �[�(��

x

� �

�

);

~

I

a

℄(�

�

u)

The kernel of the 
ommutator �[�(��

x

� �

�

);

~

I

a

℄ is given by

K(x; x

0

) =

1

(2�)

3

Z

�

~

I

a

(x; y)�

~

I

a

(x

0

; y)

�

e

i��(x�x

0

)

�(�

2

� �

�

)d�

=

i

(2�)

3

Z

e

ih

�1

��(x�x

0

)

Z

1

0

�

2� � �

x

~

I

a

�

(x

0

+ t(x� x

0

); y)dt �

0

(�

2

� �

�

)d� (III.12)

An easy analysis shows that

[�(��

x

� �

�

);

~

I

a

℄(�

�

u) = O(jxj

�3

) in L

2;s

(R

3N

y

);8s > 0:

This implies the �rst statement of the Lemma. The asserted norm estimate (III.11) is evident from the

above proof.

Lemma III.5. Let �

�

be a normalized eigenfun
tion of P

a

: P

a

�

�

= E

�

�

b

with eigenvalue E

�

� E

�

: Then

hI

a

�

�

; �

�

i

y

2 L

2;s

(R

3

x

) 8s < 1=2; (III.13)

and in the 
ase E

�

= E

�

we have the improved estimate

hI

a

�

�

; �

�

i

y

2 L

2;s

(R

3

x

) 8s < 3=2: (III.14)

Proof: We use an expli
it 
omputation to 
he
k the 
ase E

�

= E

�

: In this 
ase, Hypothesis 1 implies

that

�

�

(y) = �

�;1

(y

1

)�

�;2

(y

2

)

where

P

a

2

�

�;2

= E

�;2

�

�;2

; jj�

�;2

jj = 1

Setting x̂ =

x

jxj

, we have modulo a term in L

2;s

(R

3

x

); for any s < 3=2 and for jxj > 1;

hI

a

�

�

; �

�

i

y

=

1

jxj

2

((C

1

+ Z

1

)�

2;�

(x̂)� (C

2

+ Z

2

)�

1;�

(x̂)) (III.15)

where

C

j

=

X

k2a

0

j

e

k

; j = 1; 2

and

�

j;�

(x̂) =

X

k2a

0

j

e

k

Z

x̂ � y

k

�

�

(y)�

�

(y)dy

=

X

k2a

0

j

e

k

Z

x̂ � y

k

j�

�;1

(y

1

)j

2

�

�;2

(y

2

)�

�;2

(y

2

)dy; y = (y

1

; y

2

)
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Sin
e C

1

= �Z

1

, one has, modulo a term in L

2;s

(R

3

x

); for any s < 3=2,

hI

a

�

�

; �

�

i

y

= �

1

jxj

2

(C

2

+ Z

2

)�

1;�

(x̂)

Using Hypothesis 1 (see the remark following it), we see that

y

0

7!

X

k2a

0

1

e

k

x̂ � y

k

j�

�;1

(y

0

)j

2

is an odd fun
tion of y

0

, where y

0

= (y

k

; k 2 a

0

1

). Thus its integral vanishes and �

1;�

(x̂) = 0; 8x̂; whi
h

proves (III.14). The proof of (III.13) is similar.

We shall now lo
alize in energy using the spe
tral proje
tions for P

a

. We set 2Æ := dist (E

�

; �(P

a

) n

fE

�

g) > 0 and denote by �

1

the spe
tral proje
tion of P

a

asso
iated with E

�

and by �

2

;�

3

the spe
tral

proje
tions asso
iated with the intervals ℄�1; E

�

[ and ℄E

�

;1[. The proje
tions �

j

are regarded as operators

in L

2

(R

3(N+1)

): It is then possible to estimate on the range of the spe
tral proje
tions �

2

;�

3

the resolvent

R

a

(z) = (P

a

� z)

�1

of the Hamiltonian P

a

des
ribing the free motion of the 
lusters, whi
h was de�ned in

(II.9). One �nds

Lemma III.6. Let � 2 C

1

0

(℄ � Æ; Æ[) and u 2 L

1

(R

3

x

): For j = 2; 3, R

a

(�)�

j

�(��

x

� �

a

) are bounded

operators and we have the weighted estimate

jjhyi

s

hxi

s

0

R

a

(�)�

j

�(��

x

� �

a

)(I

a

�

�

u)jj � Cjjhxi

�s

00

ujj

L

1

for all s > 0 and for all s

0

; s

00

satisfying s

0

+ s

00

< 1=2:

Proof: Setting  = I

a

�

a

u, we have �

2

 =

P

E

�

<E

�

h ; �

�

i

L

2

(R

3N

y

)

�

�

; where f�

�

g is an orthonormal set

of eigenfun
tions of P

a

with eigenvalue E

�

< E

�

. By de�nition of Æ, if j�

2

� �

�

j < Æ; then

�

2

+E

�

� � = �

2

� �

�

+E

�

�E

�

is invertible. Thus, using the support properties of �, the fun
tion g

�

(�; �) = �(�

2

� �

�

)(�

2

+E

�

� �)

�1

is

bounded and smooth, for E

�

as above. Furthermore

R

a

(�)�(��

x

� �

�

)�

2

 =

X

E

�

<E

�

g

�

(D

x

; �)h ; �

�

i

L

2

(R

3N

y

)

�

�

: (III.16)

Using de
ay of �

�

in the variable y one 
an apply Lemma III.5 with s = s

0

+ s

00

< 1=2 to get the asserted

estimate for j = 2: For j = 3, we have P

a

3

:= �

3

P

a

�

3

� (E

�

+ 2Æ)�

3

: Applying the Fourier transformation

with respe
t to the x-variable, we see as above that

R

a

(�)�(��

x

� �

�

)�

3

= (P

a

3

��

x

� �)

�1

�(��

x

� �

�

)�

3

(III.17)

is well de�ned as a bounded operator on L

2

(R

3(N+1)

): Applying the method of 
ommutators, one 
an verify

by indu
tion that










hyi

s

hxi

s

0

(P

a

3

��

x

� �)

�1

�(��

x

� �

�

)�

3

hyi

�s

hxi

�s

0










L(L

2

)

� C

for any s; s

0

2 R: Granted this, the estimate for j = 3 follows from the following weighted estimate on  










hyi

s

hxi

s

0

I

a

�

�

u










� Ckuk

L

1

;

for any s > 0; s

0

< 1=2; whi
h is an easy 
onsequen
e of de
ay of �

�

in y and fall-o� proportional to jxj

�2

of kI

a

�

�

k

y

.

Pie
ing together the results of these Lemmata, we are now ready to give the
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Proof of Theorem III.3: Let Æ > 0 be given as above and let � 2 I

�

nJ . We then de
ompose  = I

a

�

�

u

into 4 pie
es via

 =

3

X

j=0

 

j

;  

0

= (1� �(D

2

x

� �

�

)) ;  

j

= �

j

�(��

x

� �

�

) ; j = 1; 2; 3: (III.18)

Similarly, for v 2 L

1

(R

3

x

), with u; v satisfying equation (III.5), we de
ompose � := I

a

�

�

v :=

P

3

j=0

�

j

: This

gives

hR(�+ i�) ; �i =

3

X

j;k=0

hR(�+ i�) 

j

; �

k

i: (III.19)

For j = 0; 1; we get from Lemma III.4 and III.5 that  

j

; �

j

2 L

2;s

(R

3(N+1)

); 8s < 3=2: This gives for

j; k = 0; 1, using the weighted estimate for the resolvent,

jhR(�+ i�) 

j

; �

k

ij � Ckh(x; y)i

s

 

j

kkh(x; y)i

s

�

k

k

� C

1

khxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; (III.20)

for any s > 1=2; 0 < s

0

< 3=2� s: This estimate and those below are all uniform in � 2 [�1; 0[[℄0; 1℄. In the


ase j = 0; 1, but k = 2; 3, we de
ompose further using the resolvent equation

R(�+ i�) = R

a

(�+ i�)�R

a

(�+ i�)I

a

R(�+ i�):

This gives

jhR(�+ i�) 

j

; �

k

ij � C

�

khxi

s

 

j

kkhxi

�s

R

a

(�� i�)�

k

k+ kh(x; y)i

s

 

j

kkhxi

�1+s

R

a

(�� i�)�

k

k

�

� C

1

khxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; (III.21)

for any s > 1=2; 0 < s

0

< 3=2� s. Here we have used the weighted estimate on the resolvent R(�� i�) and

on  

j

; for j = 0; 1, - as explained after equation (III.19) - to estimate the 
ontribution of  

j

and we have

used Lemma III.6 to estimate the 
ontribution of �

k

. Inter
hanging j; k we obtain the same estimates for

the other 
ross terms j = 2; 3 and k = 0; 1.

Finally, to treat the 
ase j; k = 2; 3, we iterate the resolvent equation on
e more:

R(�+ i�) = R

a

(�+ i�)�R

a

(�+ i�)I

a

R

a

(�+ i�) +R

a

(�+ i�)I

a

R(�+ i�)I

a

R

a

(�+ i�): (III.22)

The �rst 2 terms on the rhs of this equation are easily handled by Lemma III.6 and give

jhR

a

(�+ i�) 

j

; �

k

ij � Ckhxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; 8s

0

< 1=2

jhR

a

(�+ i�)I

a

R

a

(�+ i�) 

j

; �

k

ij � Ckhxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; 8s

0

< 1: (III.23)

For the third term on the rhs of equation III.22 we obtain, again via Lemma III.6,

jhR

a

(�+ i�)I

a

R(�+ i�)I

a

R

a

(�+ i�) 

j

; �

k

ij � Ckhxi

�1+s

R

a

(�+ i�) 

j

kkhxi

�1+s

R

a

(�� i�)�

k

k

� Ckhxi

�s

0

uk

L

1

khxi

�s

0

vk

L

1

; (III.24)

for any s > 1=2; 0 < s

0

< 3=2� s: Choosing s arbitrarily 
lose to 1=2 and adding equations (III.20), (III.21),

(III.23) and (III.24) proves the uniform boundedness in Theorem III.3. To see the existen
e of the weak

limit, we use the same de
ompositions. The desired result follows from Lemma III.5, Lemma III.6 and the

existen
e of the boudary values R(�� i0) as operator from L

2;s

to L

2;�s

for s > 1=2.
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IV Born-Oppenheimer approximation of �

�

This se
tion is devoted to a sket
h of the proof of Theorem II.3. Within this se
tion, we shall always assume

Hypotheses 1,2 and 3 and we reinsert the parameter h whi
h is de�ned in (II.2).

To study �

�

given by (II.26), we need various approximations and estimates for the boundary value of

the resolvent and for the fun
tion I

a

e

�

, whi
h are 
olle
ted in the following

Proposition IV.1. Let � be the h-dependent set of all possible 
ollisions (de�ned in A.5) and let � be an

h-dependent smooth fun
tion on R

3(N+1)

, equal to one on some 
oni
 neighborhood of �, and equal to zero

on some bigger 
oni
 neighborhood. For any s � 0, we have, uniformly w.r.t. h,

�I

a

�

�

2 L

2

s

�

R

3(N+1)

�

; (IV.1)

k(1� �)I

a

�

�

k

y

= O

�

hxi

�2

�

; (IV.2)

where k � k

y

denotes the norm on L

2

(R

3N

y

). For jxj > 1, uniformly w.r.t. h,

k�(x;h) I

a

(x; �;h)�

�

k

y

= O

�

jxj

�4

�

; (IV.3)

I

e�

(x) := �

1

(x; 0)�E

�

(0) = O

�

jxj

�4

�

; (IV.4)

k�(x;h)

�

I

a

(x; �;h)� I

e�

(x)

�

�

�

k

y

= O

�

h

2

jxj

�4

�

+O

�

jxj

�5

�

; (IV.5)

k�(x;h)

�

I

a

(x; �;h)�

^

I

e�

(x)

�

�

�

k

y

= O

�

h

2

jxj

�4

�

+O

�

jxj

�5

�

; (IV.6)

Furthermore, the smooth fun
tion R

3

n f0g 3 x 7! �(x;h) has the following properties. There exists � > 0

su
h that, uniformly w.r.t. x and h,

X

j�j�2

hxi

4+j�j










e

�hyi

�(x;h)�

�

x

�

�(x;h)��

0

(h)

�

�

0

(h)










L(L

2

(R

3N

y

))

= O(1) : (IV.7)

Note that (IV.7) remains true if the �rst proje
tor �(x;h) is repla
ed by �

0

(h). The resolvents satisfy, for

all s > 1=2 and lo
ally uniformly for � 2 J ,







hx� l(y)i

�s

R(� � i0)hx� l(y)i

�s







+







hxi

�s

R

AD

(�� i0;h)hxi

�s







= O(h

�1

) ; (IV.8)







hx� l(y)i

�s

R(�� i0;h)

^

�







= O(1) ; (IV.9)










hxi

�s

�

�

R(� � i0)� R

AD

(�� i0;h)

�

�hxi

�s










= O(1) : (IV.10)

uniformly in h 2℄0; h

0

℄.

Proof: (IV.1) follows from the exponential de
ay of the eigenfun
tions �

�

(h), whi
h is uniform w.r.t. h.

A

ording to Appendix A, equation (IV.2) holds for jxj > 1 and uniformly w.r.t. h, and







�

�

0

(h) + �

0

(0)

��

I

a

(x;h) + I

a

(x; 0)

��

�

0

(h) + �

0

(0)

�







y

=

A(x̂;h)

jxj

5

+ O

�

jxj

�6

�

; (IV.11)

where x̂ = x=jxj and A(x̂;h) is uniformly bounded as h ! 0. Furthermore, the operator hxi

2

I

a

(x;h)�

0

(h)

is uniformly bounded. Using this fa
t, we 
an show, as in [KMW2℄, that

X

j�j�2

hxi

2+j�j










e

�hyi

�

�

x

�

�(x;h)��

0

(h)

�










y

= O(1) : (IV.12)

Using (IV.12) and (IV.11), we obtain

�(x;h)I

a

(x;h)�

0

(h) =

�

�(x;h) ��

0

(h)

�

I

a

(x;h)�

0

(h) + �

0

(h)I

a

(x;h)�

0

(h)

= O

�

jxj

�4

�

: (IV.13)

Next, we show that

�

1

(x;h)�E

�

(h) =

^

I

e�

(x) + O

�

h

2

jxj

�4

�

+ O

�

jxj

�5

�

: (IV.14)
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Using (IV.12), we �rst note that, sin
e the eigenfun
tion �

�

(h) is normalized,

k�(x;h)�

�

(h)k

2

y

= 1 + O

�

jxj

�2

�

:

Thus, a

ording to (IV.11), for jxj large enough and writing h�; �i

y

for the s
alar produ
t in L

2

(R

3N

y

), we

have

�

1

(x;h)�E

�

(h) =




�(x;h)�

�

(h) ; I

a

(x;h)�(x;h)�

�

(h)

�

y

= k�(x;h)�

�

(h)k

2

y

=




�(x;h)�

�

(h) ; I

a

(x;h)�(x;h)�

�

(h)

�

y

+ O

�

jxj

�6

�

= 2<


�

�(x;h)��

0

(h)

�

�

�

(h) ; I

a

(x;h)�(x;h)�

�

(h)

�

y

+ O

�

jxj

�5

�

= 2<


�

�(x;h)��

0

(h)

�

�

�

(h) ; I

a

(x;h)�

�

(h)

�

y

+ O

�

jxj

�5

�

(IV.15)

Next, we use the following lemma, whi
h will be proved after the present proof.

Lemma IV.2. Setting

^

R

a

(z; h) = (P

a

(h)

^

�

0

(h) � z)

�1

^

�

0

(h) and

^

R

a

(h) =

^

R

a

(E

�

(h); h) (as in equation

(II.34)), we have, for jxj large enough and uniformly w.r.t. h,

2<


�

�(x;h) ��

0

(h)

�

�

�

(h) ; I

a

(x;h)�

�

(h)

�

y

= �2




^

R

a

(h)

^

�

0

(h)C(x̂; y)�

�

(h) ;

^

�

0

(h)C(x̂; y)�

�

(h)

�

y

� jxj

�4

+ O

�

jxj

�5

�

: (IV.16)

In parti
ular, the two forms of the e�e
tive potential satisfy equation (II.36), i.e.

jI

e�

(x)�

^

I

e�

(x)j = O(jxj

�5

); as jxj ! 1:

Furthermore, the �rst term on the rhs of (IV.16) is negative, for all x 6= 0, if the 
luster a

2

is not neutral.

Using Lemma IV.2, we obtain (IV.14). By a Taylor expansion w.r.t. h and using the previous estimates,

�(x;h)I

a

(x;h)�

0

(h) = �(x;h)I

a

(x; 0)�

0

(h) + O

�

hjxj

�6

�

= �(x; 0)I

a

(x; 0)�

0

(0) + O

�

h

2

jxj

�5

�

+ O

�

jxj

�6

�

= �(x; 0)

�

�(x; 0)�E

�

(0)

�

�

0

(0) + O

�

h

2

jxj

�5

�

+ O

�

jxj

�6

�

= �(x;h)

�

�(x; 0)�E

�

(0)

�

�

0

(h) + O

�

h

2

jxj

�5

�

+ O

�

jxj

�6

�

:

We then have proved (IV.5). Using (IV.15), we derive (IV.6) from (IV.5).

Finally, we follow the arguments in [KMW2℄ to derive (IV.7) from (IV.13). Still following [KMW2℄, we

obtain resolvent estimates with the weight hx� l(y)i. As already remarked in [KMW2℄, hxi

�s

�(x)hx� l(y)i

s

is uniformly bounded. Thus we may repla
e this weight by hxi if � is present. We do this for the se
ond

term in (IV.8) and in (IV.10).

Proof of Lemma IV.2: Equation(II.36) simply follows from (IV.15) and(IV.16), for h = 0. To prove

(IV.16), we write the proje
tions as 
ontour integrals. Let � a 
omplex 
ontour en
losing E

�

(h) and �

1

(x;h)

for h suÆ
iently small and jxj suÆ
iently large. For brevity, we shall now notationally suppress the depen-

den
e on h. We rewrite the lhs of equation (IV.16) as

lhs (IV.16) = 2<

D

�

(P

e

(x)� �z)� (P

a

� �z)

�

�

�

;

1

2i�

I

�

�

(P

e

(x)� z)

�1

� (P

a

(x)� z)

�1

�

dz �

�

E

y

= �2<

1

2i�

I

�

dz

�

(E

�

� z)




(P

e

(x)� z)

�1

�

�

; �

�

�

y

+ (E

�

� z)

�1




I

a

(x)�

�

; �

�

�

y

�

= �2<

1

2i�

I

�

dz (E

�

� z)




(P

e

(x) � z)

�1

�

�

; �

�

�

y

+ O

�

jxj

�5

�

; (IV.17)

by (IV.11). So we need to 
ompute �

0

R

e

(z)�

0

, where R

e

(z) = (P

e

(x) � z)

�1

. To this end, we use the

resolvent equation

R

e

(z) = R

a

(z)�R

a

(z)I

a

R

a

(z) +R

a

(z)I

a

(z)R

e

(z)I

a

R

a

(z) (IV.18)
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whi
h gives

�

0

R

e

(z)�

0

= R

a

(z)�

0

+R

a

(z)�

0

I

a

^

�

0

R

e

(z)

^

�

0

I

a

�

0

R

a

(z) +O(jxj

�5

) (IV.19)

Inserting these estimates into (IV.17) and using Appendix C and (IV.11) again, we arrive at (IV.16) with

^

R

a

(h) repla
ed by

^

�

0

R

e

(E

�

(h))

^

�

0

. But

k

^

�

0

(R

e

(E

�

)�R

a

(E

�

))

^

�

0

C(x̂; y)�

�

k

y

= O(jxj

�2

); (IV.20)

uniformly w.r.t. h. This follows from a Neumann expansion of R

e

(z), exponential de
ay of �

�

, uniform

boundedness of the weighted redu
ed resolvent hyi

M

^

R

a

hyi

�M

, for anyM � 0, 
ombined with kI

a

hyi

�M

k

y

=

O(jxj

�2

): This proves equation (IV.20) and thus (IV.16).

Sin
e

^

R

a

(E

�

(h)) � b > 0, uniformly w.r.t. h, the �rst term on the rhs of (IV.16) is bounded above by

�bk

^

�

0

C(x̂; y)�

�

(h)k

2

=jxj

4

. Sin
e

k�

0

C(x̂; �)�

�

(h)k

2

y

= 0

by the rotational invarian
e of �

�;1

(see Appendix A), we have

k

^

�

0

C(x̂; y)�

�

(h)k

2

y

= kC(x̂; y)�

�

(h)k

2

y

> 0 : (IV.21)

Re
all from (II.26) that

�

�

(�; !;h) =

h

�1

n

�

(�;h)

Im




R(�+ i0;h)I

a

e

�

; I

a

e

�

�

:

In view of the adiabati
 approximation of the resolvent, we introdu
e

�

ad

(�; !;h) :=

h

�1

n

�

(�;h)

Im




�R

AD

(� + i0;h)� I

a

e

�

; I

a

e

�

�

: (IV.22)

�

ad

is almost the total 
ross-se
tion for the s
attering pro
ess of the pair of operators (P

AD

(h);�(h)(�h

2

�

x

+

E

�

(h))�(h)), as shown in [Je
℄. It thus should be a good approximation for �

�

. Indeed, we 
laim that

Proposition IV.3. For all � > 0 small enough, there exists some C

>

0 su
h that, for all h > 0 suÆ
iently

small and lo
ally uniformly in (�; !) 2 J � S

2

,

�

�

(�; !;h) = �

ad

(�; !;h) +O(h

�2=3+(1=2��)

): (IV.23)

With the estimates given in Proposition IV.1, the proof of Proposition IV.3 follows the same arguments

as in [Je
℄.

The adiabati
 operator P

AD

(h) is equal to �(h)(�h

2

�

x

+ �

1

(x; h))�(h) in O

�

0

whi
h looks like a two-

body S
hr�odinger operator with operator-valued potential. We 
an use the methods of [RT℄ and [Je
℄ to

prove that

�

ad

(�; !;h) = O(h

�2=3

)

and that

�

ad

(�; !;h) = 4

Z

H

!

sin

2

�

1

4n

�

(�; 0)h

Z

+1

�1

I

e�

(x

!

+ u!)du

�

dx

!

+ O

�

h

�2=3+�

0

�

; (IV.24)

whi
h, a

ording to Proposition IV.3, gives (II.39) for I = I

e�

. Sin
e the potential

^

I

e�

has the same properties

as I

e�

and

^

I

e�

� I

e�

= O(jxj

�5

) (see Proposition IV.1), we 
an show that (IV.24) still holds with I

e�

repla
ed

by

^

I

e�

. We thus obtain the formula (IV.24) with

^

I

e�

, whi
h is (II.39) for I =

^

I

e�

.

Now we assume that C

2

+Z

2

6= 0. To show that �

ad

(and thus �

�

) is exa
tly of order h

�2=3

, we estimate

as in [Je
℄ the integral in (II.39) for I =

^

I

e�

. Re
all that

^

I

e�

(x) is of the form A(x̂; 0)jxj

�4

(see (II.37)) and
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that A(x̂; 0) is everywhere negative by Lemma IV.2 sin
e C

2

+ Z

2

6= 0. Thanks to this form, one 
an show

as in [Y℄ that, for some h-independent 
onstant b 6= 0,

4

Z

H

!

sin

2

�

1

4n

�

(�; 0)h

Z

+1

�1

^

I

e�

(x

!

+ u!)du

�

dx

!

= b h

�2=3

Z

S

1

!

�

�


(!; �)

�

�

2=3

d� ; (IV.25)

where S

1

!

is the unit sphere in H

!

and where 
 is given by


(!; �) =

Z

�

0

^

I

e�

(
os � ! + sin � �) sin

2

� d� (IV.26)

for � 2 S

1

!

. By Lemma IV.2 we know that the integrand - and thus 
 - is negative everywhere. Thus the

rhs of (IV.25) is exa
tly of order h

�2=3

.

A Expansion of the potentials

In this se
tion we 
olle
t the relevant expansions of the Coulomb intera
tions for atom-ion s
attering, whi
h

involve the e�e
tive dipole moments and quadrupole moments of the two 
lusters a

1

; a

2

. They are 
ertainly

well known in the physi
s literature. For the sake of the reader, we state them as

Lemma A.1. Let � = (a;E

�

(h); �

�

(h)) be a s
attering 
hannel satisfying Hypothesis 1. Then

kI

a

(x; h)�

�

(h)k

y

= O(hxi

�2

); (A.1)













�

I

a

�

C(x̂; �)

jxj

2

�

�

�

(h)













y

= O(hxi

�3

); C(x̂; y) =

�

C

2

+ Z

2

�

X

l2a

0

1

e

l

x̂ � y

l

; (A.2)

h�

�

(h); I

a

(x;h)�

�

(h)i

y

= O(hxi

�3

); (A.3)

uniformly w.r.t. h, for 0 � h � h

0

. Assuming in addition that � satis�es Hypothesis 2, we even have the

stronger estimate

h�

�

(h); I

a

(x;h)�

�

(h)i

y

= O(hxi

�5

); (A.4)

uniformly w.r.t. h, for 0 � h � h

0

.

Proof: Be
ause of the Coulomb singularities, we separate the 
ontribution of 
ollisions. Let � be the

(h-dependent ) set of all possible 
ollisions, that is

� :=

�

(x; y) 2 R

3(N+1)

; 9l 2 a

0

1

; 9j 2 a

0

2

;

x = �y

l

+ l(y) or x = y

j

� y

l

+ l(y)

or x = l(y) or x = y

j

+ l(y)

�

: (A.5)

Let � 2 C

1

(R

3(N+1)

) su
h that 0 � � � 1, � equals 1 on a small 
oni
 neighborhood of �, and � equals 0

outside a slightly bigger 
oni
 neighborhood. We also demand that � is even in y. Thanks to the exponential

de
ay (uniformly w.r.t. h) of the eigenfun
tions �

�

(h), we have

k�(x; y;h)hyi

L

I

a

(x;h)�

�

(h)k

y

= O(hxi

�M

); 8L;M 2 N: (A.6)

Thus, we only have to estimate the 
ontribution of the regular part

I

reg

(�) := h�

�

(h);

~

I

a

(x;h)�

�

(h)i

y

;

~

I

a

(x;h) := (1� �(x; y;h))I

a

(x;h): (A.7)

A

ording to (II.8), we want to expand terms of the form

jx+

~

l(y)j

�1

= jxj

�1

�

�

�

x̂+

~

l(y)=jxj

�

�

�1
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for large jxj. To this end, we use a Taylor expansion at zero of the fun
tion f : R 3 r 7! ju + rvj

�1

for

non-zero ve
tors u; v 2 R

3

. More pre
isely, one obtains by Taylor expansion, that for ea
h r 2 R, there

exists some � 2℄0; 1[ su
h that

f(r) =

3

X

k=0

r

k

k!

f

(k)

(0) +

r

4

4!

f

(k)

(�r) (A.8)

We observe that the �rst order term (the term in jxj

�1

) of the expansion of I

reg

(�) vanishes by neutrality of

a

1

(
f. (II.21)). The se
ond order term is given by

�




�

�

(h) ; C(x̂; �)�

�

(h)

�

y

� jxj

�2

; C(x̂; y) = (C

2

+ Z

2

)

X

l2a

0

1

e

l

x̂ � y

l

; (A.9)

where C

2

=

P

l2a

0

2

e

l

is the ele
troni
 
harge of a

2

and where we have used an estimate similar to(A.6) to

get

k�(x; y;h)�

�

(h)C(x̂; �)�

�

(h)k

y

= O(hxi

�M

); 8M 2 N:

By the re
exion symmetry, we see that the se
ond order term also vanishes. The rest of the expansion is

seen to be O(jxj

�3

), uniformly w.r.t. h. In view of equation (A.6), this proves (A.2) and (A.3). The proof of

(A.1) is similar and involves a non-vanishing term of se
ond order. Next we shall prove the estimate (A.4).

It 
ru
ially depends on the full rotational symmetry of the wave fun
tion �

�

= �

�;1

�

�;2

in both 
lusters

(whi
h is a 
onsequen
e of Hypothesis 2). For 
onvenien
e, we 
hoose the 
ut-o� � in su
h a way that the

new 
ut-o� also has the same symmetry properties. To this end, we 
onsider

~

�, de�ned as the union of the

orbits under the a
tion o : y ! o � y = (o � y

1

; � � � ; o � y

N

) of O(3;R) on the y-variables of ea
h point in �

(for h = 0). As before, we 
onstru
t a 
ut-o� ~� 2 C

1

(R

3(N+1)

) su
h that 0 � ~� � 1, ~� equals 1 on a small


oni
 neighborhood of

~

�, and ~� equals 0 outside a slightly bigger 
oni
 neighborhood. Noti
e that, on the

support of ~�, the previous properties are preserved sin
e jxj and jyj are equivalent there. Thus (A.6) holds

in this 
ase also, and it again suÆ
es to estimate the regular part de�ned in (A.7). Obviously, the �rst and

se
ond order term of the expansion are zero. Expanding further, we �nd that the third order term is




�

�

(h) ; F

3

(x̂; y)�

�

(h)

�

� jxj

�3

; (A.10)

where we have estimated the 
ontribution of the region 
ut out by ~� as above and where

F

3

(x̂; y) = �(C

2

+ Z

2

)

X

l2a

0

1

�

e

l

jy

l

j

2

� 3(y

l

� x̂)

2

�

+ 2

X

l2a

0

1

;j2a

0

2

e

l

e

j

(y

l

� y

j

� 3(y

l

� x̂)(y

j

� x̂)) : (A.11)

By the rotation symmetry of Coulomb potentials, we 
an repla
e in (A.10) x̂ by the 
anoni
al basis ve
tors

b

1

; b

2

; b

3

of R

3

. Sin
e

P

k

F

3

(b

k

; y) = 0, it follows that the third order term also vanishes. For the fourth

order term, we get




�

�

(h) ; F

4

(x̂; y)�

�

(h)

�

� jxj

�4

; (A.12)

where the fun
tion F

4

satis�es

F

4

(x̂; y

1

;�y

2

) = �F

4

(x̂; y

1

; y

2

); y = (y

1

; y

2

);

sin
e it is homogeneous of degree 3 in y. By Hypothesis 2 the eigenvalue E

�;2

is simple and �

�;2

is invariant

under the re
e
tion y

2

7! �y

2

. Thus the fourth order term is zero, and a standard appli
ation of Taylor's

theorem (A.8) shows that the remainder of the expansion is O(jxj

�5

), uniformly w.r.t. h.

A
knowledgements. X.P. Wang thanks the organizors of the Bologna APTEX International Conferen
e,

September 1999, for their invitation and hospitality.

17



Referen
es

[A℄ S.Agmon: Le
tures on Exponential De
ay of Solutions of Se
ond-Order Ellipti
 Equations. Prin
eton

University Press, 1982.

[CT℄ J.M.Combes, A.Tip: Properties of the s
attering amplitude for ele
tron-atom 
ollisions. Ann. I.H.P.,

vol. 40, n

Æ

2, 1984, p. 117-139.

[DG℄ J.Derezinsky, C.Gerard: S
attering Theory of Classi
al and Quantum N-Parti
le Systems. Springer,

(1997).

[ES℄ V.Enss, B.Simon: Finite Total Cross-Se
tion in Nonrelativisti
 Quantum Me
hani
s. Commun. Math.

Phys. 76, 177-209 (1980).

[HV℄ W.Hunziker, E.Vo
k: Stability of S
hr�odinger Eigenvalue Problems. Comm. Math. Phys. 83, 281-302,

1982.

[I1℄ H.T.Ito: High-energy behavior of the total s
attering 
ross se
tions for 3-body quantum systems. Publ.

Res. Inst. Math. S
i. 29, No. 5, 803-832 (1993).

[I2℄ H.T.Ito: The semi
lassi
al asymptoti
s of the total 
ross-se
tions for elasti
 s
attering for N-body sys-

tems. J.Math. Kyoto Univ. 33, No. 4, 1143-1164 (1993).

[Je
℄ Th.Je
ko: Approximation de Born-Oppenheimer de se
tions eÆ
a
es totales diatomiques. To appear

in Asymptoti
 Analysis.

[KMW1℄ M.Klein, A.Martinez, X.P.Wang: On the Born-Oppenheimer Approximation of Wave Operators in

Mole
ular S
attering Theory. Commun. Math. Phys. 152, 73-95, 1993.

[KMW2℄ M.Klein, A.Martinez, X.P.Wang: On the Born-Oppenheimer Approximation of Wave Operators

II: Singular Potentials. J. Math. Phys. Vol. 38, No 3, 1373-1396, 1997.

[PSS℄ P.Perry, B.Simon, I.Sigal: Spe
tral analysis of N-body S
hr�odinger operators. Ann. of Math. 114,

519-567, 1981.

[Ra℄ A.Raphaelian: Ion-Atom S
attering within the Born-Oppenheimer framework. Dissertation TU Berlin,

1986.

[RT℄ D.Robert, H.Tamura: Semi
lassi
al estimates for resolvents and asymptoti
s for total 
ross-se
tion.

Ann. IHP 46, 415-442, 1987.

[RW℄ D.Robert, X.P.Wang: Pointwise Semi
lassi
al Asymptoti
s for Total Cross Se
tions in N-body Prob-

lems. In \Spe
tral and S
attering Theory", 181-196, Le
tures Notes in Pure and Applied Mathemati
,

vol. 161, Mar
el Dekker, 1994.

[V℄ A. Vasy: S
attering matri
es in many-body s
attering, Commun. in Math. Phys. 200, 105-124, 1999.

[W℄ X.P.Wang: Total Cross Se
tions in N-body Problems: Finiteness and High Energy Asymptoti
s.

Comm.Math.Phys. 156, 333-354, 1993.

[Y℄ D.R.Yafaev: The eikonal approximation and the asymptoti
s of the total s
attering 
ross-se
tion for the

S
hr�odinger equation. Ann. Inst. Henri Poin
ar, vol. 40(4), 397-425, 1986.

18


