
HAL Id: hal-03210438
https://cnrs.hal.science/hal-03210438

Submitted on 5 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

UMI-Gen: A UMI-based read simulator for variant
calling evaluation in paired-end sequencing NGS

libraries
Vincent Sater, Pierre-Julien Viailly, Thierry Lecroq, Philippe Ruminy,

Caroline Bérard, Élise Prieur-Gaston, Fabrice Jardin

To cite this version:
Vincent Sater, Pierre-Julien Viailly, Thierry Lecroq, Philippe Ruminy, Caroline Bérard, et al..
UMI-Gen: A UMI-based read simulator for variant calling evaluation in paired-end sequencing
NGS libraries. Computational and Structural Biotechnology Journal, 2020, 18, pp.2270-2280.
�10.1016/j.csbj.2020.08.011�. �hal-03210438�

https://cnrs.hal.science/hal-03210438
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


UMI-Gen: a UMI-based read simulator for variant

calling evaluation in paired-end sequencing NGS

libraries

Vincent Satera,c,d,e, Pierre-Julien Viaillyb,c,d, Thierry Lecroqa, Philippe
Ruminyb,c, Caroline Bérarda, Élise Prieur-Gastona, Fabrice Jardinb,c

aUniversity of Rouen Normandy UNIROUEN, LITIS EA 4108, 76000 Rouen, France
bDepartment of Pathology, Centre Henri Becquerel, 76000 Rouen, France

cINSERM U1245, University of Rouen Normandy UNIROUEN, 76000 Rouen, France
dThese authors have contributed equally to this work

eTo whom correspondence should be addressed

Abstract

Motivation: With Next Generation Sequencing becoming more affordable
every year, NGS technologies asserted themselves as the fastest and most
reliable way to detect Single Nucleotide Variants (SNV) and Copy Number
Variations (CNV) in cancer patients. These technologies can be used to se-
quence DNA at very high depths thus allowing to detect abnormalities in
tumor cells with very low frequencies. Multiple variant callers are publicly
available and are usually efficient at calling out variants. However, when fre-
quencies begin to drop under 1%, the specificity of these tools suffers greatly
as true variants at very low frequencies can be easily confused with sequenc-
ing or PCR artifacts. The recent use of Unique Molecular Identifiers (UMI)
in NGS experiments has offered a way to accurately separate true variants
from artifacts. UMI-based variant callers are slowly replacing raw-read based
variant callers as the standard method for an accurate detection of variants
at very low frequencies. However, benchmarking done in the tools publica-
tion are usually realized on real biological data in which real variants are not
known, making it difficult to assess their accuracy.
Results: We present UMI-Gen, a UMI-based read simulator for targeted se-
quencing paired-end data. UMI-Gen generates reference reads covering the
targeted regions at a user customizable depth. After that, using a number
of control files, it estimates the background error rate at each position and
then modifies the generated reads to mimic real biological data. Finally, it

Preprint submitted to Journal Name July 30, 2020

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2001037020303640
Manuscript_2109d2a6f661588c9a5b5472df45c0d1

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2001037020303640
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2001037020303640


will insert real variants in the reads from a list provided by the user.
Availability: The entire pipeline is available at https://gitlab.com/vincent-
sater/umigen under MIT license.
Contact: vincent.sater@gmail.com

Keywords: Sequence Analysis, UMI, Simulator, Variant Calling, NGS

1. Introduction1

Nowadays, next generation sequencers such as Thermo Fisher or Illumina2

have become the standard go-to method for DNA sequencing. Prior to se-3

quencing, DNA must be extracted and amplified by PCR in order to generate4

enough fragments to cover the wanted amplicons. After amplification, the5

sequencer handles the obtained fragments and generates their sequences in6

form of reads. In most applications, especially ones that handle variant de-7

tection, the obtained reads must then be aligned to a reference genome in8

order to be used effectively. Today, cancer diagnosis is a very active area of9

research and one of its most important applications is the detection of Single10

Nucleotide Variants (SNV) in tumor cells. In fact, each cancer type has a11

specific profile of genetic mutations in specific genes. Therefore, establishing12

a precise profile of variants in a cancer patient allows to better understand the13

cancer evolution and customize the treatment according to the established14

profile.15

Detecting and calling out variants in the aligned reads is done through a16

variant calling analysis. Generally, variant calling tools can detect mutational17

events such as substitutions, insertions and deletions very efficiently. How-18

ever, at very low variant allele frequencies (VAFs) (under 1%), it becomes19

very challenging for raw-read-based variant callers to accurately call variants.20

In fact, PCR amplification and the sequencing step can introduce errors in21

the final reads. These errors are called artifacts and occur at very low VAFs22

which can lead to the confusion between them and true low-frequency vari-23

ants. Multiple studies [1, 2, 3, 4, 5] have shown the effectiveness of using24

Unique Molecular Identifiers as a way to filter out PCR and sequencing arti-25

facts. UMIs are short arbitrary oligonucleotide sequences that are attached26

to DNA fragments by ligation before the PCR amplification. By definition,27

the UMI tags must be random sequences so each fragment can have a unique28

short oligonucleotide sequence attached to it, giving each fragment a unique29

2



sequence tag. During the amplification, the UMI tags are amplified with30

their respective fragments. After sequencing, each UMI tag can be figured31

out from the reads. The idea behind using UMI tags in NGS experiments32

to filter out artifacts is explained in Figure 1. In fact, if a variant is a true33

mutation, it means that it must have been present on the initial DNA frag-34

ment so when we tag the DNA fragment with a UMI, we are also tagging the35

mutation. The fragments that result from the amplification of that mutated36

DNA fragment must all be tagged by the same UMI tag and carry the same37

mutation (Figure 1A). On the other hand, if the variant is a sequencing error,38

it means that the initial DNA fragment did not have the mutation in the first39

place and that it appeared later in the sequencing step. Therefore, during40

the amplification step, all the fragments resulting from the amplification of41

that DNA fragment should theoretically be tagged with the same UMI and42

should not present the mutation. The mutation will be produced later on,43

in the sequencing step, affecting only some reads and not all of them, thus44

creating discrepancies in the same UMI group (Figure 1B).45

With the growing number of variant calling tools, it has become hard to46

choose the right tool adapted to a certain experiment. Data simulation can47

play an important role for testing different tools on a dataset that we have48

control on, a control that we do not have on real biological data. At the49

moment, many short read simulators exist such as IntSIM [6] that can simu-50

late somatic variants using HMM models trained on real sequencing genomes51

and SVSR [7] that is specifically designed to simulate datasets with structural52

variations and is compatible with multiple sequencing platforms. These tools53

are publicly available for researchers and allow them to test their algorithms54

on a simulated dataset in which variants are inserted at different frequencies55

and at different positions. The usage of the read simulators enable having a56

very accurate benchmarking of each variant calling tool ability. Surprisingly,57

no simulation software exists at the moment that let users generate reads58

with UMI tags. In this article, we present UMI-Gen, a UMI-based read sim-59

ulator that can be used not only to test raw-read based variant callers but60

most importantly, UMI-based ones. UMI-Gen uses multiple real biological61

samples to estimate background error rate and base quality scores at each62

position. Then, it will introduce real variants in the final reads. To test our63

tool, we used 6 control samples and show exactly how our algorithm estimate64

the background error rate at each position. Then we give it a list of 15 vari-65

ants at different positions and at different frequencies to introduce them in66

the final reads. Finally, we used 2 raw-read-based variant callers: SiNVICT67

3



Figure 1: The difference between a true variant and an artifact from a UMI perspective.
(A) A true variant is present on the DNA fragment so when the UMI tag 1 is added, it
tags the fragment and the mutation as well. After amplification, all the fragments tagged
with the UMI tag 1 carry the same mutation. (B) An artifact is not present on the DNA
fragment but rather appears at the steps that follow the UMI introduction. That is why
not all fragments with the same UMI tag 2 carry the same artifact.

[8] and OutLyzer [9] and two UMI-based variant callers: DeepSNVMiner68

[10] and UMI-VarCal [11] in order to compare the 4 tools performance and69

demonstrate that UMI-Gen correctly inserts the given variants at their re-70

spective positions and at the correct frequencies in a dataset that mimics71

perfectly what is seen in biological samples.72

2. Materials and methods73

2.1. Software input74

UMI-Gen requires a minimum of three parameters at execution: a list75

of control BAM/SAM samples, the BED file with the coordinates of the76

targeted genomic regions and a reference genome FASTA file with BWA77

index files. In fact UMI-Gen is designed to work on targeted sequencing78

data only thus a BED file is always required. UMI-Gen can also accept a79

fourth optional file under the PILEUP format. In fact, when running UMI-80

Gen on control samples, a PILEUP file is automatically produced. This file81

4



contains the A, C, G and T average counts at each position for all the control82

samples. This file can be given to UMI-Gen at execution time and will allow83

the software to reload the pileup generated during the last analysis instead84

of regenerating it. This will allow the user to gain some significant time since85

the pileup generation is the most time-consuming step.86

2.1.1. Control samples87

Control samples are BAM/SAM files that are obtained by sequencing88

healthy individuals and normally should not contain any somatic variant.89

UMI-Gen can accept input files in BAM and SAM formats. A pileup is90

performed on each sample and a final average pileup is generated from the91

counts of all control samples.92

2.1.2. Variant file93

This file contains a list of the variants the user wishes to insert in the94

simulated reads. These are the only variants that should be reported in the95

variant callers VCF file during variant calling benchmarks. The variant file96

is a Comma Separated Values (CSV) file that contains 2 columns: the first97

column contains the variant ID with the HGVS nomenclature and the second98

column being the variant’s desired frequency. UMI-Gen will then go to each99

position and insert these variants in order to produce final reads.100

2.2. Generating the final pileup101

2.2.1. Pileup102

The first step of the workflow (Figure 2) consists of generating the final103

pileup. For each control sample, our pileup algorithm will count the occur-104

rences of each A, C, G and T. The counts will be stored for each position105

of the BED file as well as the average quality of the position and its depth.106

This is basically the same algorithm that is used by UMI-based variant caller107

UMI-VarCal that is been reintegrated in this tool for its high efficiency in108

treating reads with UMI tags. When all the pileups for all the control sam-109

ples are ready, they will be merged in a final pileup that contains the average110

statistics (counts, depth and quality score) at each position based on the111

observations on all control samples (Figure 2A). When the average pileup is112

complete and ready, it will be automatically dumped as a PILEUP file that113

contains all the calculated information on the set of control samples. If the114

user wishes to generate simulated data based on the same BED file and the115

same set of control samples, the dumped pileup can be used directly which116

5



Figure 2: Background error estimation workflow. (A) The first step runs over every
position in all control samples and counts the total occurrences of every A, C, G and T. It
also stores the average base quality score for each position. (B) The second step’s goal is to
remove any suspected variant from the pileup as our objective is to estimate background
error noise only. (C) In this step, the counts are converted to probabilities by dividing
them by the depth for each position. (D) The final step consists of converting the base
quality score of each position to the corresponding ASCII + 33 character.

allows the program to skip the pileup generation step and go directly to the117

variant calling step, saving the user much significant time.118

2.2.2. Variant calling119

Even though the control samples are theoretically variant-free, SNP and120

undetected mutations could still be present in the files. These potential121

variants must be removed so they would not be present in the final reads. To122

do so, we used the same variant calling method implemented in UMI-VarCal123

to call out potential variants and remove them from the pileup. This step124

will produce what we call a filtered pileup (Figure 2B).125

2.2.3. Background noise estimation126

The background noise estimation step consists of calculating the fre-127

quency of observing an A/C/G/T at each position. Without the background128

errors, at each position the reference base should have a frequency of 1 while129

6



the remaining three bases should be at 0. The total of the four frequen-130

cies must be equal to 1. However, we know that artifacts exist in our control131

samples and these artifacts represents the background noise that we normally132

encounter in a normal NGS experiment. Since our aim is to simulate reads133

that are highly similar to those produced with real sequencing experiments,134

UMI-Gen calculates the real base frequencies from the control samples at135

each position. The frequencies will then be used as a probability matrix136

when producing the final reads. When this step is complete, a probability137

pileup is generated (Figure 2C). Insertions and deletions are not considered138

during the background noise estimation and thus, are not present in the final139

pileup as their occurrence has a much lower rate (∼1000 times lower) than140

that of substitutions) especially in second and third generation sequencers141

[12]. Therefore, we judge that their inclusion is not worth complicating the142

algorithm for.143

2.2.4. Quality scores estimation144

Our tool was developed on sequencing files produced by an Illumina se-145

quencer. In the FASTQ files produced by Illumina sequencers, quality scores146

are encoded into a compact form, which uses only 1 byte per quality value147

[13, 14]. The full table of encoding is available in Table S1. UMI-Gen is there-148

fore only compatible with sequencers that use the same encoding. UMI-Gen149

calculates the average quality score for each position based on the qualities in150

all control samples and then converts the quality score to the corresponding151

ASCII character to be inserted in the final FASTQ file. This is the final step152

of the pileup generation workflow and will produce the final pileup (Figure153

2D). Moreover, UMI-Gen also models the base quality scores per position in154

read on the control samples and introduces the estimation in the final reads.155

Based on all the reads in the control samples, our tool will calculate a median156

base quality score for each position in the reads to produce a quality per po-157

sition matrix. This matrix is then used at the end to recalibrate the quality158

scores according to each base’s position in the read. For example, this allows159

UMI-Gen to mimic the loss of quality at the end of the reads when present.160

2.3. Producing the reads161

The main objective of UMI-Gen is to generate paired-end reads that162

mimic reads obtained from real life experiments. To do so, it starts exactly163

the way a real-life sequencing experiment starts: getting the DNA fragments.164

At the beginning, our tool will generate a number of initial sequences that165

7



Figure 3: The difference between adding a true variant and adding an artifact in generated
reads. (A) Adding an artifact is relatively easy as all the tool has to do is to modify the
base at the wanted position without touching the read’s UMI tag. (B) On the other hand,
in order to add a true variant, the software must change the base at the wanted position
on a set of reads. Then it will create a new UMI tag (UMI tag 3) and change the UMI
tag of all the affected reads to UMI tag 3.

only present the reference base at each position. The user can explicitly166

specify the desired length for all the reads at execution. It should be noted167

that the algorithm will only create reads that will exactly align on the speci-168

fied positions from the BED file so off-target amplification is not considered.169

Then, a UMI tag is attached to each initial sequence. Depending on the170

amplification factor and the desired depth chosen by the user, the algorithm171

will keep amplifying the initial sequences until the desired depth is reached at172

all positions. In fact, at this step, default values for the amplification factor173

and initial DNA fragments are automatically calculated in order to ensure174

optimal performance of the tool. We do so by analyzing the depth chosen175

by the user and the VAFs of the variants that he wishes to introduce. Using176

these numbers, we calculate the minimum number of initial DNA fragments177

needed for the true variant insertion. Even though this will ensure optimal178

performance, the user is free to change these parameters as long as they179

are mathematically allowed. Once we have the reference reads, the second180

8



step consists of adding the background noise (refer to section 2.2.3) to these181

reads (Figure 3A). Using the probability matrix calculated before, UMI-Gen182

modifies the reads at each position for them to match the calculated prob-183

abilities. These modifications are done without changing the reads’ UMI184

so they mimic PCR and sequencing artifacts: they are false positives and185

should not be called by variant callers. Finally, UMI-Gen parses the variant186

file provided by the user in order to insert true mutations in the final reads.187

The algorithm will go to each position, change the probability of the variant188

to the corresponding frequency from the variant file. In this step, since UMI-189

Gen is adding a true variant, the UMI tags of the modified reads are also190

modified in order to produce concordant UMI tags (Figure 3B). A concor-191

dant UMI tag is a UMI whose all reads carry the exact same mutation. Also,192

since UMI-Gen generates paired-end data, when adding a mutation on one193

read, the variant is automatically added to its mate (since we only generate194

paired reads that always overlap).195

2.4. Software output196

Once all variants are inserted, UMI-Gen will generate the two FASTQ197

files (R1 and R2). It will then call BWA [15] to do the alignment, a step that198

will produce a BAM file. SAMtools [16] is finally called to create the BAM’s199

index file and convert the BAM into SAM. All five files are generated in the200

desired output directory. In addition, UMI-Gen generates a binary PILEUP201

file that corresponds to the dumped average pileup. This file can be used to202

skip the pileup regeneration and load the pileup directly if the analysis was203

already done on the same control samples.204

2.5. Implementation205

Launching UMI-Gen’s workflow (Figure 4) is handled by a main Python206

script that controls many Python3 modules. In order to achieve better over-207

all performance, Cython was used to compile all Python modules. UMI-Gen208

requires for the tools BWA and SAMtools to be installed on the PC/server:209

BWA is called for the alignment step and SAMtools for converting, sorting210

and indexing the generated BAM files. Our tool can be executed through211

a UNIX/Linux command line interface. In total, UMI-Gen can accept 20212

parameters at execution. Managing these parameters allows the user to have213

full control over his simulated data. A list of all the parameters and thresh-214

olds is available in Table S2.215

9



Figure 4: UMI-Gen’s workflow: Control samples are used to create a background noise
frequency matrix and the user provides a CSV file with a list of the wanted variants. Using
the FASTA and the BED files, UMI-Gen creates a first set of UMI-tagged reference reads.
Artifacts are then inserted to mimic the sequencer’s background noise. Finally, the tool
uses the list provided by the user to insert variants at their exact locations.

3. Results216

3.1. Control samples217

A targeted sequencing panel was designed at the Centre Henri Becquerel218

in Rouen (France) to search for specific mutations in the DNA of patients219

suffering from Diffuse Large B cell Lymphoma (DLBCL). This panel of 76,630220

bases is designed to identify genomic abnormalities within a list of 36 genes221

that are most commonly impacted in this type of lymphoma. The panel222

was specifically designed for QIAseq chemistry allowing UMI introduction223

in the DNA fragments during the construction of the library. A list of the224

genes used in the panel and their corresponding number of targeted regions225

is provided in the supplementary Table S3. In order to test our tool’s ability226

to mimic and reproduce average sequencer background noise in the produced227

sample, we randomly selected 6 samples from a very large number of patients228

whose DNA were sequenced at the Centre Henri Becquerel. All six samples229

are liquid biopsies with circulating cell-free DNA that was checked to be230

adequate for sequencing. We preferred the use of liquid biopsies as these231

10



samples usually contain a high number of very low frequency variants and232

artifacts. Using such samples as control samples will produce simulated data233

with a relatively high number of artifacts. This will allow us to have an234

accurate estimate of the specificity of each tested variant caller.235

Sample A C G T
Control 1 0 11 10 874
Control 2 0 1 7 843
Control 3 0 2 2 860
Control 4 0 6 9 965
Control 5 1 2 4 867
Control 6 3 2 2 880

Table 1: The A,C,G and T breakdown at position 2,493,165 of chromosome 1 for the six
control samples.

Table 1 shows the exact counts of A, C, G, T for position 2,493,165236

on chromosome 1 for each control sample. The fist control sample counts237

(0,11,10,874), the second sample has (0,1,7,843), the third one has (0,2,2,860),238

the fourth sample shows (1,6,9,965), the fifth one has (1,2,4,867) and the final239

one counts (3,2,2,880). As explained in section 2.2.3, UMI-Gen will calculate240

an average count for each base and then estimate its probability. In our241

case and for this position, the obtained average count has 4 A, 24 C, 34 G242

and 5289 T with a total count of 5351 bases. To obtain the probabilities243

for this position on this chromosome, we simply divide each base count by244

the total count of the 4 bases, obtaining the final probability vector (0.0007,245

0.0045, 0.0064, 0.9884). If, for example, we wanted to produce a BAM file246

with a depth of 3000x, this position would have 2 A, 14 C, 19 G and 2965 T.247

The probability matrix mentioned in section 2.2.3 is basically the probability248

vectors of each position of the panel, merged together. In our test and in249

order to demonstrate our results, we simulated two artificial samples in which250

we added the calculated background error noise. The first sample or Sample251

1 has an average depth of 1000x (+/- 15% at each position) and Sample252

2 has an average depth of 10,000x. To make sure that the artifacts were253

correctly added to the reads, we used IGV (version 2.4.16) [17] to visualize254

the reads. Figure 5 shows how the background error noise is properly and very255

accurately added at position 2,493,165 of chromosome 1 with the probabilities256

calculated from the 6 control samples above.257

11



Figure 5: The A, C, G and T breakdown at the position 2,493,165 of the chromosome 1
in the produced samples: Sample 1 with the depth of 1000x (A) and Sample 2 with the
depth of 10,000x (B).

3.2. Simulated data validation258

In order to validate our simulated dataset, we compared it to the control259

samples used to generate it. First, we compared the base quality scores260

distribution in the reads. Figure 6A shows the variation of the median base261

quality scores with the position of base in the read for the control samples.262

We can clearly see that the median score is very high and very stable at the263

start and all along the read’s length (≥34). However, a first drop in quality264

is noted at position 138 and a second more considerable one at position 145.265

In our simulated data, we chose an average length for the reads of about 110266

bp so the longest read had a length of 127. We can see, in Figure 6B, how the267

algorithm perfectly recreates the stability of the scores all along the simulated268

reads. However, since the simulated reads did not have lengths > 135 bp,269

we do not see that little drop at the end of the simulated reads. In fact,270

to be sure that our quality score estimation works correctly, we simulated a271

drop in quality at the position 85 and wanted to see if it will be inserted in272

the simulated reads. Figure 7 shows how the simulated drop in quality (38273

→ 34) at position 85 was perfectly reproduced in the simulated data (36 →274

33). Another parameter we wanted to verify is the %GC variation between275

12



Figure 6: The variation of the median base quality score with position in read in real
samples (A) and in the simulated data (B).

the control and the simulated data. Figure 8 clearly shows how the median276

%GC of reads in the control data (Figure 8A - 56% GC) is nearly identical277

to that of the simulated reads (Figure 8B - 57% GC).278

3.3. Inserted variants279

Two different lists of mutations were created to go along with each simu-280

lated sample. The first list contains 11 substitution variants with frequencies281

that go from 0.9 (90%) to 0.01 (1%), one deletion at 1% and one insertion282

at 1%. This list is used to produce the simulated Sample 1 with a depth283

of 1000x. The second list contains 13 substitution variants with frequencies284

that go from 0.9 (90%) to 0.001 (0.1%), one deletion at 1% and one insertion285

at 1%. This list is used to produce the simulated Sample 2 with a depth of286

10,000x. Two very low frequency variants (frequency < 1%) were added to287

the second list to test the variant insertion accuracy of UMI-Gen. In fact,288

13



Figure 7: The variation of the median base quality score with position in read in real
samples (A) and in the simulated data (B). A simulated drop in quality was simulated in
scenario A and its reproduction in the simulated dataset (B).

very low frequency variants are the hardest to detect and should be system-289

atically used to rigorously test any variant caller. In order to verify that the290

wanted variants were added at the exact locations with the correct frequen-291

cies, we used IGV to visualize the reads. Figure 9 shows the variants added292

in both samples and Table 2 details the exact variants that we inserted at293

the specific locations. Next generation sequencers have difficulties with accu-294

rately detecting variants in long homopolymer regions. Some variant callers295

automatically filer out variants that occur in such regions and others do not.296

In order to avoid any bias, we chose each variant’s location carefully to make297

sure that it is not inserted in a homopolymer region. Figure 10 demonstrates298

that our tool is capable of accurately adding variants in the final reads at299

the specified locations for both samples.300

14



0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

A) Control data

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

B) Simulated data

Figure 8: The repartition of the GC percentage in reads in the real data (A) and in the
simulated data (B).

3.4. Variant detection301

We tested the ability of four different variant callers to correctly detect the302

true variants added in section 3.3 and filter out sequencing errors/artifacts303

added in 3.1. We used SiNVICT and OutLyzer, two raw-read-based variant304

callers specifically developed to detect low frequency variants and two UMI-305

based variant callers (DeepSNVMiner and UMI-VarCal) with a very low fre-306

quency detection threshold and that analyze UMI tags in order to produce307

more accurate results. The four variant callers were tested on the two artifi-308

cial samples: Sample 1 that contains 13 known variants and a depth of 1000x309

and Sample 2 that contains 15 known variants and a depth of 10,000x. Both310

samples have a total of 76,630 sequenced positions which corresponds to the311

size of the sequencing panel.312

Table 3 and 4 detail the results of each tool for Sample 1 and 2 respec-313

tively. The total number of positives corresponds to the number of variants314

15



Position Reference allele Variant allele Frequency Sample
2,488,101 G A 0.9 S1 & S2
2,489,200 C A 0.8 S1 & S2
2,491,260 A G 0.7 S1 & S2
2,493,201 T A 0.6 S1 & S2
2,494,300 G A 0.5 S1 & S2
23,885,600 C A 0.4 S1 & S2
23,885,800 A T 0.3 S1 & S2
27,022,900 C A 0.2 S1 & S2
27,023,200 C A 0.1 S1 & S2
27,093,001 G A 0.05 S1 & S2
27,100,350 C A 0.01 S1 & S2
27,106,500 G A 0.005 S2 only
117,057,400 T A 0.001 S2 only
120,458,000 C CTA 0.1 S1 & S2
120,466,600 TGTC T 0.1 S1 & S2

Table 2: Detailed list of the inserted mutations. In this test, all mutations are inserted on
chromosome 1.

found in the result VCF file. The total number of negatives is then calculated315

by subtracting total positives from the total number of positions (76,630).316

The four variant callers had comparable results between the two samples.317

Starting with SiNVICT, it detected 241 variants in Sample 1 and 463 in318

Sample 2 but with the same number of true positives. This corresponds to a319

sensitivity of 61.5%/53.4% which is relatively acceptable and a specificity of320

99.7%/99.4% on Sample 1/2. Moving on to OutLyzer, the tool detected 109321

variants in Sample 1 and three times more variants in Sample 2 (342). Unfor-322

tunately, this corresponded to one more true positive, the rest being only false323

positives. Outlyzer scored good sensitivities (> 80%) and excellent specifici-324

ties (99.9%/99.6%) on both samples. Concerning DeepSNVMiner, the tool325

managed to detect all the inserted varianrs except the deletion in both sam-326

ples. The tool scored very high scores on sensitivity (92.3%/93.4%) as well327

as specificity (99.95%/99.99%) for both datasets. Finally, UMI-VarCal was328

able to achieve a perfect score (100%] in terms of sensitivity and specificity329

on both samples detecting all the 13/15 variants in Sample 1/2 with no false330

positives for both configurations.331

16



Figure 9: Along with the reference genome FASTA file and the BED file, two different lists
were used, one with 13 variants and the other with 15 variants to respectively produce the
artificial samples Sample 1 and Sample 2.

3.5. Performance332

In order to evaluate UMI-Gen’s performance, we simulated four samples333

with increasing depths: 500, 1000, 5000 and 10,000. For each simulated334

sample, execution time and memory consumption were reported. The four335

samples were simulated using the same six control samples. The first time336

we run UMI-Gen, the pileup generation step is mandatory. The pileup gen-337

eration step only depends on the control samples and takes about 1.5 minute338

per sample. The quality estimation step following the pileup is also essential339

and takes on average 0.5 minute per sample. However, these 2 steps gener-340

ate files that can be given directly to the program at the execution. This341

means that for the other times the user wants to simulate data using the342

same control samples, the pileup file and the quality matrix file can be used343

directly allowing to save considerable time. Table 5 details the execution344

time numbers and the memory needed to generate each sample. Generating345

the FASTQ files takes only 1.57 minute for the 500x sample and uses only346

1 GB of RAM. On the other side, 16.58 minutes are needed for a sample of347

10,000x and memory consumption goes up to 5.1 GB. All these tests were348

performed on a computer running Linux (Ubuntu 16.04) using only one core349

17



Figure 10: The inserted mutations were correctly added to the reads with their
exact locations at their corresponding frequencies. Here, we see four mutations:
chr1:2491260A>G at 70%, chr1:27022900C>A at 20%, chr1:120458000C>CTA at 10%
and chr1:27093001G>A at 5%.

CPU running at 2.20 GHz and equipped with 16 GB of RAM. All measure-350

ments were done three times and the average was used for the comparison.351

After the FASTQ generation, BWA and SAMtools are called from within the352

tool to generate the corresponding BAM and SAM files.353

4. Discussion354

Tagging DNA fragments with UMI tags have proved itself as a very reli-355

able method to significantly reduce - if not completely remove - the number356

of false positives upon variant calling. A huge number of variant callers357

are publicly available at the moment but unfortunately, only 4 of them are358

specifically developed to treat UMI tags in reads. For raw-read-based vari-359

ant callers, a lot of artificial read simulator exist and can satisfy everyone’s360

needs. However, to our knowledge, no tool is publicly available to simulate361

artificial reads with UMI tags. Such tool is very important as it allows de-362

velopers to accurately test the specificity and the sensitivity of their variant363

callers on artificial reads in which real variants are known instead of testing364

18



Variant Caller TP FP FN Sensitivity (%) Specificity (%)
SiNVICT 8 233 5 61.5 99.7
OutLyzer 11 98 2 84.6 99.9
DeepSNVMiner 12 37 1 92.3 99.95
UMI-VarCal 13 0 0 100 100

Table 3: Variant calling results on Sample 1. Four variant callers were tested: SiNVICT,
OutLyzer, DeepSNVMiner and UMI-VarCal and for each tool, True Positives (TP), False
Positives (FP), False Negatives (FN), sensitivity and specificity are reported.

Variant Caller TP FP FN Sensitivity (%) Specificity (%)
SiNVICT 8 455 7 53.4 99.4
OutLyzer 12 330 3 80 99.6
DeepSNVMiner 14 2 1 93.4 99.99
UMI-VarCal 15 0 0 100 100

Table 4: Variant calling results on Sample 2. Four variant callers were tested: SiNVICT,
OutLyzer, DeepSNVMiner and UMI-VarCal and for each tool, True Positives (TP), False
Positives (FP), False Negatives (FN), sensitivity and specificity are reported.

them on biological samples whose mutational profile is completely or partially365

unknown.366

Our main objective was to develop a UMI-based read simulator that is367

fast, accurate and reliable. UMI-Gen is able to estimate the background368

error noise of a given control dataset and then reproduce it accurately in the369

produced reads. Doing so, it allows to mimic the sequencer’s background370

noise of a real sequencing experiment. We also showed that our simulator is371

able to accurately insert variants if provided with a list of variants with exact372

locations and their corresponding frequencies and produce reads that mimic373

ones produced in real life experiments. In our tests, we were able to insert374

mutations as low as 0.1% but theoretically, we can go as low as we want375

provided that the depth of the produced sample is accordingly increased.376

Moreover, in our variant caller comparison, SiNVICT did a decent job377

detecting the 8 of the added variants and went as low as 5%. Impressively,378

we judge the performance of OutLyzer as excellent as it detected 12 of the379

15 variants (Sample 2) and showed a detection threshold of 0.5% which is380

very respectable. However, SiNVICT and OutLyzer being raw-read-based381

19



Sample Data Simulation (min) FASTQ to BAM (s) Ram Usage (GB)

500x 1.57 8 1.0
1000x 1.87 14 1.1
5000x 6.97 52 2.6
10,000x 16.58 99 5.1

Table 5: Performance analysis of UMI-Gen: the variation of execution time and memory
consumption with the simulated data’s depth.

variant callers, UMI tags were not treated in the reads and therefore, both382

tools produced a high percentage of false positives. On the other hand, Deep-383

SNVMiner results were near perfect as expected from a decent UMI-based384

variant caller detecting all variants except one in both scenarios with only a385

couple of false positives. Finally, UMI-VarCal was successfully able to treat386

UMI tags allowing it to filter out all false positives and only call out the387

13 added variants in Sample 1 and all of the 15 in Sample 2. These results388

demonstrate how the UMI-based variant calling approach is much more effi-389

cient and accurate than raw-read-based ones allowing to detect variant with390

VAFs as low as 0.1% without sacrificing specificity. It also highlights the391

need to the development and usage of UMI-based read simulators in order392

to test these new algorithms.393

5. Conclusion394

Here, we present UMI-Gen: a standalone UMI-based read simulator for395

variant calling evaluation in paired-end sequencing NGS libraries. UMI-Gen396

produces sequencing files (FASTQ, BAM and SAM) for an artificial sample397

to be used for UMI-based variant calling testing purposes. By using a set of398

control DNA samples, our tool is capable to accurately mimic the background399

error noise of the sequencer and add it into the reads. After that, it can insert400

specific mutations at specific locations and at very precise frequencies that401

can go as low as 0.1% (and even lower). In our tests, all added artifacts were402

correctly inserted in the reads, causing a high number of false positives in the403

raw-read-based variant callers results. Also, all inserted true variants were404

visualized with a genome visualizing tool (IGV) and were detected by at least405

one of the four variant calling tools we tested. Finally, we note that UMI-406

Gen’s filters and parameters (such as read length and UMI tag length) are407

20



customizable which gives the user total control over his produced samples.408

This level of customization allows the tool to be adequate for a high number409

of research applications.410

6. Funding411

This work was partly funded by the Université de Rouen Normandie and412

Vincent Sater is funded by a PhD fellowship from the Région Normandie.413

7. References414

[1] M. W. Schmitt, S. R. Kennedy, J. J. Salk, E. J. Fox, J. B. Hiatt, L. A. Loeb, Detection of ultra-rare415

mutations by next-generation sequencing, Proc Natl Acad Sci U S A 109 (2012) 14508–14513. URL:416

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437896/. doi:10.1073/pnas.1208715109.417

[2] Y. Kukita, R. Matoba, J. Uchida, T. Hamakawa, Y. Doki, F. Imamura, K. Kato, High-fidelity target418

sequencing of individual molecules identified using barcode sequences: de novo detection and absolute419

quantitation of mutations in plasma cell-free DNA from cancer patients, DNA Res 22 (2015) 269–277.420

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535617/. doi:10.1093/dnares/dsv010.421

[3] A. M. Newman, A. F. Lovejoy, D. M. Klass, D. M. Kurtz, J. J. Chabon, F. Scherer, H. Stehr,422

C. L. Liu, S. V. Bratman, C. Say, L. Zhou, J. N. Carter, R. B. West, G. W. Sledge, J. B. Shrager,423

B. W. Loo, J. W. Neal, H. A. Wakelee, M. Diehn, A. A. Alizadeh, Integrated digital error sup-424

pression for improved detection of circulating tumor DNA, Nat Biotechnol 34 (2016) 547–555. URL:425

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907374/. doi:10.1038/nbt.3520.426

[4] A. L. Young, G. A. Challen, B. M. Birmann, T. E. Druley, Clonal haematopoiesis harbour-427

ing AML-associated mutations is ubiquitous in healthy adults, Nat Commun 7 (2016). URL:428

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4996934/. doi:10.1038/ncomms12484.429

[5] D. Z. Bar, M. F. Arlt, J. F. Brazier, W. E. Norris, S. E. Campbell, P. Chines, D. Larrieu, S. P.430

Jackson, F. S. Collins, T. W. Glover, L. B. Gordon, A novel somatic mutation achieves partial res-431

cue in a child with Hutchinson-Gilford progeria syndrome, J Med Genet 54 (2017) 212–216. URL:432

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384422/. doi:10.1136/jmedgenet-2016-104295.433

[6] X. Yuan, J. Zhang, L. Yang, IntSIM: An Integrated Simulator of Next-Generation Sequencing Data, IEEE434

Transactions on Biomedical Engineering 64 (2017) 441–451. doi:10.1109/TBME.2016.2560939.435

[7] X. Yuan, M. Gao, J. Bai, J. Duan, SVSR: A Program to Simulate Structural Variations and Gener-436

ate Sequencing Reads for Multiple Platforms, IEEE/ACM Transactions on Computational Biology and437

Bioinformatics 17 (2020) 1082–1091. doi:10.1109/TCBB.2018.2876527.438

[8] C. Kockan, F. Hach, I. Sarrafi, R. H. Bell, B. McConeghy, K. Beja, A. Haegert, A. W. Wy-439

att, S. V. Volik, K. N. Chi, C. C. Collins, S. C. Sahinalp, SiNVICT: ultra-sensitive detection of440

single nucleotide variants and indels in circulating tumour DNA, Bioinformatics 33 (2017) 26–34.441

doi:10.1093/bioinformatics/btw536.442

[9] E. Muller, N. Goardon, B. Brault, A. Rousselin, G. Paimparay, A. Legros, R. Fouillet,443

O. Bruet, A. Tranchant, F. Domin, C. San, C. Quesnelle, T. Frebourg, A. Ricou, S. Krieger,444

D. Vaur, L. Castera, OutLyzer: software for extracting low-allele-frequency tumor mutations445

from sequencing background noise in clinical practice, Oncotarget 7 (2016) 79485–79493. URL:446

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346729/. doi:10.18632/oncotarget.13103.447

21



[10] T. D. Andrews, Y. Jeelall, D. Talaulikar, C. C. Goodnow, M. A. Field, DeepSNVMiner: a sequence448

analysis tool to detect emergent, rare mutations in subsets of cell populations, PeerJ 4 (2016). URL:449

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888318/. doi:10.7717/peerj.2074.450

[11] V. Sater, P.-J. Viailly, T. Lecroq, E. Prieur-Gaston, E. Bohers, M. Viennot, P. Ruminy, H. Dauchel,451

P. Vera, F. Jardin, UMI-VarCal: a new UMI-based variant caller that efficiently improves low-frequency452

variant detection in paired-end sequencing NGS libraries, Bioinformatics (Oxford, England) (2020).453

doi:10.1093/bioinformatics/btaa053.454

[12] M. Schirmer, R. DAmore, U. Z. Ijaz, N. Hall, C. Quince, Illumina error pro-455

files: resolving fine-scale variation in metagenomic sequencing data 17 (????). URL:456

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4787001/. doi:10.1186/s12859-016-0976-y.457

[13] B. Ewing, P. Green, Base-Calling of Automated Sequencer Traces Using Phred. II. Error458

Probabilities, Genome Research 8 (1998) 186–194. URL: http://genome.cshlp.org/content/8/3/186.459

doi:10.1101/gr.8.3.186.460

[14] B. Ewing, L. Hillier, M. C. Wendl, P. Green, Base-Calling of Automated Sequencer461

Traces UsingPhred. I. Accuracy Assessment, Genome Research 8 (1998) 175–185. URL:462

http://genome.cshlp.org/content/8/3/175. doi:10.1101/gr.8.3.175.463

[15] H. Li, R. Durbin, Fast and accurate short read alignment with burrows-wheeler transform,464

Bioinformatics 25 (2009) 1754–1760. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705234/.465

doi:10.1093/bioinformatics/btp324.466

[16] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin,467

The Sequence Alignment/Map format and SAMtools, Bioinformatics 25 (2009) 2078–2079. URL:468

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2723002/. doi:10.1093/bioinformatics/btp352.469

[17] J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz,470

J. P. Mesirov, Integrative Genomics Viewer, Nature biotechnology 29 (2011) 24–26. URL:471

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346182/. doi:10.1038/nbt.1754.472

22




