Skip to Main content Skip to Navigation
Journal articles

Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes

Abstract : Molecular-engineered bio-inspired catalysts hold promise for the next generation of proton-exchange membrane fuel cells (PEMFCs). Yet, their implementation in catalytic layers with Nafion ionomer faces nanocomposite formulation issues. Here, we use various DuBois nickel catalysts immobilized on carbon nanotubes to exemplify how self-assembly at the mesoscale affects H2 oxidation anode performance. We exploited the reversible activity of these catalysts together with potential-step chronoamperometry to locally produce H2 and probe mass transport within the catalytic layer. Small-angle neutron scattering studies serve to build a model describing how the surface functionalization drives the structuration of the ionomer and affects the diffusion of protons and gas from and to catalytic centers. This study thus demonstrates that implementation of unconventional catalysts in catalytic layers requires the redesign of the whole system of materials. On the basis of such information, catalytic layer formulation was optimized, allowing order-of-magnitude performance enhancement of noble-metal-free PEMFCs
Document type :
Journal articles
Complete list of metadata

https://hal-cnrs.archives-ouvertes.fr/hal-03126604
Contributor : Frédéric Maillard <>
Submitted on : Wednesday, February 3, 2021 - 8:06:55 AM
Last modification on : Friday, April 23, 2021 - 3:16:04 AM

Links full text

Identifiers

Citation

Nathan Coutard, Bertrand Reuillard, Tran Ngoc Huan, Fabrice Valentino, Reuben Jane, et al.. Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes. Chem Catalysis, Elsevier, In press, ⟨10.1016/j.checat.2021.01.001⟩. ⟨hal-03126604⟩

Share

Metrics

Record views

112