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Abstract

In this work we define iterated change operators that do not
obey the primacy of update principle. This kind of change
is required in applications when the recency of the input for-
mulae is not linked with their reliability/priority/weight. This
can be translated by a commutativity postulate that asks the
result of a sequence of changes to be the same whatever the
order of the formulae of this sequence. Technically then we
end up with a sequence of formulae that we have to combine
in order to obtain a meaningful belief base. Belief merging
operators are then natural candidates for this task. We show
that we can define improvement operators using an incremen-
tal belief merging approach. We also show that these opera-
tors can not be encoded as simple preorders transformations,
contrary to most iterated revision and improvement operators.

1 Introduction
Belief change operators (Alchourrón, Gärdenfors, and
Makinson 1985; Gärdenfors 1988; Katsuno and Mendelzon
1991; Fermé and Hansson 2011) aim at incorporating new
pieces of information into the belief base of an agent. Be-
lief revision operators are intrinsically linked to a primacy of
update principle, that states that the new piece of informa-
tion has more reliability/priority/weight than the current be-
liefs of the agent. This principle is mainly formalized as the
success postulate (Alchourrón, Gärdenfors, and Makinson
1985) (corresponding to (R2) in Katsuno and Mendelzon
(1991)). There were some works on non-prioritized belief
revision (see (Hansson 1997) for a survey). The pursued ob-
jective was mostly to determine which (or which part of the)
information given by the new formula should be accepted,
but in these works no new change operation was actually
pointed out. Recently, Schwind, Konieczny, and Marquis
(2018) proposed a weaker form of belief change operators,
promotion operators, that can be described as being a change
operation “between” belief revision and belief contraction.

In iterated belief revision (Darwiche and Pearl 1997;
Booth and Meyer 2006; Jin and Thielscher 2007; Rott 2006)
the problem of non-prioritized revision has received less at-
tention. Two exceptions are the proposition of revision by
comparison, where the credibility of a piece of information
is modified so that to be equal to another one (Fermé and
Rott 2004; Rott 2012), and the proposition of credibility-
limited iterated revision / improvement operators (Booth et

al. 2012; 2014), that do not obey the success postulate when
the new piece of information is not credible enough. But
the main way to weaken the success postulate was initiated
via the proposition of improvement operators (Konieczny
and Pino Pérez 2008; Konieczny, Medina Grespan, and Pino
Pérez 2010; Grespan and Pino Pérez 2013) that have been
introduced as an iterated belief change operation where the
primacy of update principle is not imposed, i.e., the set of
beliefs from the resulting epistemic state does not need to
entail the new formula. Instead, improving an agent’s epis-
temic state Ψ by a formula ϕ consists in increasing the plau-
sibility of ϕ in Ψ, and iterating the same process eventually
leads ϕ to be entailed by the set of beliefs in Ψ after a fi-
nite number of steps (see also (Cantwell 1997) for an earlier
work on small plausibility changes). Let us call this the iter-
ated success postulate (cf. postulate (I1) in the next section
for a formal definition). So with improvement operators the
success postulate does not hold, but the iterated success pos-
tulate still encodes some (weaker) primacy of update princi-
ple.

In this work we want to study improvement operators
where the new piece of information is by no way favorized
with respect to older received ones. This is an important
class of operators, since in some applications it may not be
possible to ensure that the order where the different pieces
of information are received corresponds to a continuous in-
crease of reliability or priority. So we can distinguish two
classes of iterated change operators. On the one hand the
class of iterated belief revision operators à la Darwiche and
Pearl (Darwiche and Pearl 1997; Booth and Meyer 2006;
Jin and Thielscher 2007) is more appropriate to encode the
evolution of scientific theories (as sequences of epistemo-
logical ruptures) or of school scientific learning processes.
On the other hand the new class of operators we propose in
this paper seems more appropriate in every-day life cases,
where the agent faces new evidences that she wants to take
into account in her belief base.

So we aim to formalize change operators that allow one to
incorporate new pieces of information, that are judged suf-
ficiently credible to be taken into account in the agent epis-
temic state (otherwise we can just ignore them - and like in
standard belief revision (Gärdenfors 1988), we assume that
the fact these pieces of information are considered credible
enough has been determined by an exogeneous process), but
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there is no (known) difference of credibility levels between
these pieces of information. So being a more recent piece of
information does not mean being more credible.

This process is easily formalized by a commutativity pos-
tulate, stating that the order in which the pieces of informa-
tion are received does not matter. And, clearly, the most
natural candidate operators for achieving this change are
belief merging operators (Konieczny and Pino Pérez 2002;
2011). Belief merging operators aim at combining differ-
ent pieces of information (of same reliability / priority) into
a consistent belief base. An interesting subclass of belief
merging operators is the class of majority merging opera-
tors, that ensure that if we repeat sufficiently many times a
formula, then the result of the merging will imply this for-
mula. That behavior is enough to obtain the iterated success
postulate (I1) of improvement operators.

We show in the following that majority belief merg-
ing operators are (quasi-)improvement operators. We also
show that there is only one belief merging operator that is
an improvement operator. The other ones satisfy all pos-
tulates except one, the (C2) postulate for iteration (Dar-
wiche and Pearl 1997), that is a long standing debated pos-
tulate (Lehmann 1995; Konieczny and Pino Pérez 2000;
Delgrande, Dubois, and Lang 2006). These results are in-
teresting since they also highlight the fact that iterated be-
lief change operators can not be summed up as transition
functions between total preorders on interpretations, as the
standard representation theorems can misleadingly be inter-
preted.

We will start with some preliminaries in the next section,
recalling the main definitions of iterated belief revision, im-
provement and merging. In Section 3 we discuss the (C2/I8)
postulates, we introduce the class of quasi-improvement op-
erators and we study some weakenings of (I8). Then we will
discuss the different possible representations of epistemic
states in Section 4. In Section 5 we define our commutative
iterated change operators, and show that (incremental) merg-
ing operators satisfy these requirements, and that they are
quasi-improvement operators. Then we show in Section 6
how to represent these merging operators as OCF (Spohn
1988) change operators, and we discuss the limitation of to-
tal preorders on interpretations as canonical representations
of iterated change operators. We then provide an illustra-
tive example in Section 7 which highlights the behavior of
our operators. We mention some related work in Section 8
before concluding.

For space reasons the proofs are omitted, but an ex-
tended version containing all the proofs is available from
http://www.cril.fr/∼konieczny/KR20-SK.pdf.

2 Preliminaries
Let LP be a propositional language built up from a finite set
of propositional variables P and the usual connectives. The
set L∗P denotes the set of consistent formulae from LP . ⊥
(resp. >) is the Boolean constant always false (resp. true).
An interpretation (or world) is a mapping from P to {0, 1}.
|= denotes logical entailment,≡ logical equivalence, and [ϕ]
denotes the set of models of the formula ϕ.

2.1 Improvement
In iterated belief change, it is standard to assume that the cur-
rent set of beliefs of an agent is represented by an epistemic
state. An epistemic state allows one to represent the cur-
rent beliefs of the agent and some conditional information
guiding the revision process. In all generality, an epistemic
state is an abstract object Ψ from which the set of beliefs
of the agent can be extracted through a mapping Bel, so
that Bel(Ψ) is a propositional formula from LP . Formally,
let E be the set of all epistemic states, then Bel is a map-
ping Bel : E 7→ LP . An (iterated) change operator asso-
ciates an epistemic state and a change formula with a revised
epistemic state. For simplicity in this paper we consider
only consistent change formulae, and thus more formally a
change operator is defined as a mapping ◦ : E × L∗P 7→ E .

Improvement operators (Konieczny and Pino Pérez 2008;
Konieczny, Medina Grespan, and Pino Pérez 2010; Grespan
and Pino Pérez 2013) are change operators ◦ that form a
more general class than the class of iterated revision oper-
ators, since they do not satisfy the success postulate (R*1)
which requires the change formula to be entailed in the be-
liefs of the revised epistemic state. Instead, (R*1) is here
replaced by a weaker property stating the change formula
must be entailed after a certain (finite) sequence of improve-
ments ((I1) below). In the following, given a change opera-
tor ◦, Ψ ◦k ϕ is inductively defined as Ψ ◦1 ϕ = Ψ ◦ ϕ and
for each k > 1, Ψ ◦k ϕ = (Ψ ◦k−1 ϕ) ◦ ϕ. Then Ψ ? ϕ
is defined as Ψ ◦n ϕ, where n is the first integer such that
Bel(Ψ ◦n ϕ) |= ϕ. Note that ? is undefined if there is no
n such that Bel(Ψ ◦n ϕ) |= ϕ, but for all operators ◦ con-
sidered in this work (because they all satisfy (I1) below), the
associated operator ? is total, that is for any pair Ψ, ϕ there
will exist n such that Bel(Ψ ◦n ϕ) |= ϕ.

Here are the postulates that have been proposed for the
main classes of improvement operators (Konieczny, Medina
Grespan, and Pino Pérez 2010; Konieczny and Pino Pérez
2008):
Definition 1. An operator ◦ is called a weak improvement
operator if it satisfies postulates (I1-I6). ◦ is an improve-
ment operator if it satisfies postulates (I1-I9). ◦ is a soft
improvement operator if it satisfies postulates (I1-I10).

(I1) There exists n such that Bel(Ψ ◦n ϕ) |= ϕ.
(I2) If Bel(Ψ)∧ϕ 6|= ⊥, then Bel(Ψ ? ϕ) ≡ Bel(Ψ)∧ϕ.
(I3) If ϕ 6|= ⊥, then Bel(Ψ ◦ ϕ) 6|= ⊥.
(I4) For any positive integer n, if ϕi ≡ ψi for all i ≤ n,

then Bel(Ψ◦ϕ1 ◦ . . .◦ϕn) ≡ Bel(Ψ◦ψ1 ◦ . . .◦ψn).
(I5) Bel(Ψ ? ϕ) ∧ ψ |= Bel(Ψ ? (ϕ ∧ ψ)).
(I6) If Bel(Ψ ? ϕ) ∧ ψ 6|= ⊥,

then Bel(Ψ ? (ϕ ∧ ψ)) |= Bel(Ψ ? ϕ) ∧ ψ.
(I7) If ϕ |= ψ, then Bel((Ψ ◦ ψ) ? ϕ) ≡ Bel(Ψ ? ϕ).
(I8) If ϕ |= ¬ψ, then Bel((Ψ ◦ ψ) ? ϕ) ≡ Bel(Ψ ? ϕ).
(I9) If Bel(Ψ ? ϕ) 6|= ¬ψ, then Bel((Ψ ◦ ψ) ? ϕ) |= ψ.

(I10) If Bel(Ψ ? ϕ) |= ¬ψ, then Bel((Ψ ◦ ψ) ? ϕ) 6|= ψ.

See (Konieczny and Pino Pérez 2008; Konieczny, Med-
ina Grespan, and Pino Pérez 2010) for a detailed justifica-
tion of these postulates. (I1-I6) are the most basic ones,
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that correspond to the basic (AGM/KM) postulates for be-
lief revision, when the success postulate is relaxed. They
define the class of weak improvement operators. (I7-I9) are
adaptations of the postulates characterizing iterated revision
((I7) is a translation of (C1) (Darwiche and Pearl 1997),
(I8) is a translation of (C2), and (I9) is a translation of the
admissibility postulate (P) from (Booth and Meyer 2006;
Jin and Thielscher 2007)). These three postulates (together
with the basic ones) define the class of improvement oper-
ators. (I10) characterizes soft improvement operators, and
constrains the increase of plausibility at each step to be
small.

While Definition 1 provides an axiomatic definition of
three classes of improvement, each one of these classes can
be characterized by associating each epistemic state with a
total preorder over worlds:
Definition 2. A function Ψ 7→�Ψ that maps each epistemic
state Ψ to a total preorder1 over worlds �Ψ is called a
strong faithful assignment iff:
1. If ω, ω′ |= Bel(Ψ), then ω 'Ψ ω′.
2. If ω |= Bel(Ψ) and ω′ 6|= Bel(Ψ), then ω ≺Ψ ω′.
3. For any positive integer n, if ϕi ≡ ψi for any i ≤ n, then
�Ψ◦ϕ1◦...◦ϕn=�Ψ◦ψ1◦...◦ψn .

A strong faithful assignment is called a gradual assignment
iff:
(S1) If ω, ω′ |= ϕ, then ω �Ψ ω′ ⇔ ω �Ψ◦ϕ ω

′.
(S2) If ω, ω′ |= ¬ϕ, then ω �Ψ ω′ ⇔ ω �Ψ◦ϕ ω

′.
(S3) If ω |= ϕ and ω′ |= ¬ϕ, then ω �Ψ ω′ ⇒ ω ≺Ψ◦ϕ ω

′.
A gradual assignment is called a soft gradual assignment iff:
(S4) If ω |= ϕ and ω′ |= ¬ϕ, then ω′ ≺Ψ ω ⇒ ω′ �Ψ◦ϕ ω.

Proposition 1 ((Konieczny, Medina Grespan, and Pino
Pérez 2010)). A change operator ◦ is a weak improvement
operator (resp. improvement operator, soft improvement op-
erator) if and only if there exists a strong faithful assign-
ment (resp. gradual assignment, soft gradual assignment)
that maps each epistemic state Ψ to a total preorder over
worlds �Ψ such that for every formula ϕ ∈ L∗P :

[Bel(Ψ ? ϕ)] = min([ϕ],�Ψ).

An important remark is that (weak) improvement opera-
tors generalize the class of iterated revision operators. More
precisely, weak improvement operators satisfying (R*1) are
AGM/DP revision operators (Alchourrón, Gärdenfors, and
Makinson 1985; Darwiche and Pearl 1997), and improve-
ment operators satisfying (R*1) are admissible iterated revi-
sion operators in the sense of (Booth and Meyer 2006).

Three particular soft improvement operators have been in-
troduced in (Konieczny, Medina Grespan, and Pino Pérez
2010). We introduce their semantic characterization, in
terms of soft gradual assignments, which makes easier to see
how the preorder associated with an epistemic state changes
after an improvement step:

1For each preorder�,' denotes the corresponding indifference
relation, and ≺ the strict part of �.

One-improvement. It is the soft improvement operator
◦O satisfying the following additional property2:
(S5) If ω |= ϕ and ω′ |= ¬ϕ, then ω′ �Ψ ω ⇒ ω �Ψ◦ϕ ω

′.

Half-improvement. It is the soft improvement operator
◦H satisfying the following two additional properties:
(SH1) If ω |= ϕ, ω′ |= ¬ϕ, ω′ �Ψ ω and @ω′′ |= ¬ϕ such

that ω′′ 'Ψ ω, then ω �Ψ◦ϕ ω
′.

(SH2) If ω |= ϕ, ω′ |= ¬ϕ, ω′ �Ψ ω and ∃ω′′ |= ¬ϕ such
that ω′′ 'Ψ ω, then ω′ ≺Ψ◦ϕ ω.

Best-improvement. It is the soft improvement operator
◦B satisfying the following two additional properties. We
say that a formula α is separated in � for a given total pre-
order� iff for all ω, ω′, if ω |= ϕ and ω′ |= ¬ϕ then ω 6' ω′:
(SB1) If ω |= ϕ, ω′ |= ¬ϕ, ω′ �Ψ ω and ϕ is separated in

�Ψ, then ω �Ψ◦ϕ ω
′.

(SB2) If ω |= ϕ, ω′ |= ¬ϕ, ω′ ≺Ψ ω and ϕ is not separated
in �Ψ, then ω′ ≺Ψ◦ϕ ω.

Please see (Konieczny, Medina Grespan, and Pino Pérez
2010) for more justifications and details about these opera-
tors. Very roughly, these three operators are soft improve-
ment operators, so they perform a very slow increase of
the plausibility of the new formula in the epistemic state
(i.e., the models of the new formula are just moved a bit
towards the bottom in the preorder associated with the epis-
temic state). Then the difference between the three oper-
ators can be explained on their behavior on the following
case: suppose that ω |= ϕ and ω′, ω′′ |= ¬ϕ, and that
ω′′ �Ψ ω 'Ψ ω′, i.e., ω and ω′ are at the same level
in the preorder (i.e., they have the same plausibility), and
ω′′ is in the immediately lower level (i.e., it is just a little
bit more plausible). In this case in the resulting epistemic
state with one-improvement, ω will move to the lower level :
ω′′ 'Ψ◦Oϕ ω �Ψ◦Oϕ ω

′. Whereas with half-improvement,
we will create a new level in-between the two levels of ω′
and ω′′, i.e., we obtain ω′′ �Ψ◦Hϕ ω �Ψ◦Hϕ ω′. And
with best-improvement this last change is made only if no
other change is made in the preorder due to the other soft
improvement constraints.

For each soft improvement operator ◦ ∈ {◦O, ◦H , ◦B},
an example illustrating how the revised preorder �Ψ◦ϕ is
defined given an epistemic state Ψ and a change formula ϕ
is given in Section 7.

2.2 Belief Merging
Belief merging operators aim at defining a belief base (for-
mula) which represents the beliefs of a group of agents given
their individual belief bases, and some integrity constraints.
A profile E = 〈ϕ1, . . . , ϕn〉 is a non-empty vector3 of con-
sistent bases representing the beliefs from the group of n

2For all ω, ω′, ω � ω′ is a shortcut for (ω ≺ ω′ and @ω′′, ω ≺
ω′′ ≺ ω′).

3Usually in belief merging a profile is represented by a multi-
set, but the two representations are identical for operators satisfying
(IC3).
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agents involved in the merging process. t denotes the union
(concatenation) on vectors and≡ the equivalence of profiles
(two profiles E1, E2 are equivalent when there is a bijection
f : E1 7→ E2 so that for each base ϕ ∈ E1, f(ϕ) ≡ ϕ).
A merging operator ∆ is a mapping associating a formula µ
(representing the integrity constraints) and a profile E with
a new base ∆µ(E), simply denoted by ∆(E) when µ = >.
Definition 3. A merging operator ∆ is called an IC merging
operator if it satisfies postulates (IC0-IC8). An IC merging
operator ∆ is called a majority merging operator if it satis-
fies postulate (Maj).

(IC0) ∆µ(E) |= µ.
(IC1) If µ is consistent, then ∆µ(E) is consistent.
(IC2) If

∧
ϕi∈E ϕi ∧ µ is consistent,

then ∆µ(E) ≡
∧
ϕi∈E ϕi ∧ µ.

(IC3) If E1 ≡ E2 and µ1 ≡ µ2,
then ∆µ1(E1) ≡ ∆µ2(E2).

(IC4) If ϕ1 |= µ, ϕ2 |= µ and ∆µ(〈ϕ1, ϕ2〉) ∧ ϕ1 is consis-
tent, then ∆µ(〈ϕ1, ϕ2〉) ∧ ϕ2 is consistent.

(IC5) ∆µ(E1) ∧∆µ(E2) |= ∆µ(E1 t E2).
(IC6) If ∆µ(E1) ∧∆µ(E2) is consistent,

then ∆µ(E1 t E2) |= ∆µ(E1) ∧∆µ(E2).
(IC7) ∆µ1

(E) ∧ µ2 |= ∆µ1∧µ2
(E).

(IC8) If ∆µ1
(E) ∧ µ2 is consistent,

then ∆µ1∧µ2
(E) |= ∆µ1

(E) ∧ µ2.
(Maj) ∃n ≥ 1 ∆µ(E1 t E2 t . . . t E2︸ ︷︷ ︸

n

) |= ∆µ(E2).

We refer the reader to (Konieczny and Pino Pérez 2002)
for a detailed explanation about the rationale of these postu-
lates.

(Majority) IC merging operators can be characterized by
associating each profile with a total preorder over worlds
such that some conditions are satisfied:
Definition 4. A function E 7→�E that maps each profile
E to a total preorder over worlds �E is called a syncretic
assignment iff:

1. If ω, ω′ |=
∧
ϕi∈E ϕi, then ω 'E ω′.

2. If ω |=
∧
ϕi∈E ϕi and ω′ 6|=

∧
ϕi∈E ϕi, then ω ≺E ω′.

3. If E1 ≡ E2, then �E1
=�E2

.
4. ∀ω |= ϕ1, ∃ω′ |= ϕ2, ω′ �〈ϕ1,ϕ2〉 ω.
5. If ω �E1

ω′ and ω �E2
ω′, then ω �E1tE2

ω′.
6. If ω �E1

ω′ and ω ≺E2
ω′, then ω ≺E1tE2

ω′.

A syncretic assignment is called a majority assignment iff:

7. If ω ≺E2 ω
′, then ∃n, ω ≺E1tEn

2
ω′.

Proposition 2 (Konieczny and Pino Pérez 2002). A merg-
ing operator ∆ is an IC merging operator (resp. majority
merging operator) if and only if there exists a syncretic as-
signment (resp. majority assignment) associating with every
profile E a total preorder �E such that for every formula µ,

[∆µ(E)] = min([µ],�E).

An important subclass of IC merging operators are
distance-based merging operators (Konieczny and Pino
Pérez 2002), that are defined from a distance4 d between
worlds and an aggregation function f (a mapping associat-
ing with a tuple of non-negative real numbers a non-negative
real number), and are denoted by ∆d,f .

Definition 5. Given a profile E and a formula µ, ∆d,f
µ (E)

is defined as [∆d,f
µ (E)] = min([µ],�E), with

• ω �d,fE ω′ iff df (ω,E) ≤ df (ω′, E),

• df (ω,E) = fϕi∈E{d(ω, ϕi)},
• d(ω, ϕi) = minω′|=ϕi

d(ω, ω′).

Usual distances are the drastic distance (dD(ω, ω′) = 0
if ω = ω′ and 1 otherwise), and the Hamming distance
(dH(ω, ω′) = n if ω and ω′ differ on n variables).

Noteworthy, for any distance d, the operators5 ∆d,Σ,
∆d,Σn

for any integer n > 0 and ∆d,GMin are majority
IC merging operators, i.e., they satisfy postulates (IC0-IC8)
and (Maj) (Konieczny and Pino Pérez 2002; Konieczny and
Pérez 2002; Everaere, Konieczny, and Marquis 2010).

3 Quasi-improvement
In the preliminaries we recalled the definition of weak-
improvements operators, that satisfy the basic postulates (I1-
I6), and of improvement operators that satisfy all iteration
postulates (I7-I9). These three last postulates correspond re-
spectively to postulates (C1), (C2) and (P) in iterated belief
revision (Darwiche and Pearl 1997; Booth and Meyer 2006;
Jin and Thielscher 2007).

The (C2) postulate (corresponding to (I8) for improve-
ment) has been criticized in a number of works (Lehmann
1995; Konieczny and Pino Pérez 2000; Chopra, Ghose, and
Meyer 2002; Delgrande, Dubois, and Lang 2006; Konieczny
and Pino Pérez 2017). Let us recall an example of undesir-
able behavior for an operator required to satisfy (C2), given
in (Konieczny and Pino Pérez 2000):

Consider a circuit containing an adder and a multi-
plier. In this example we have two atomic proposi-
tions adder ok and multiplier ok, denoting respectively
the fact that the adder and the multiplier are work-
ing. We have initially no information about this circuit
(Bel(Ψ) = >), and we learn that the adder and the
multiplier are working (µ = adder ok∧multiplier ok).
Then someone tells us that the adder is not working
(α = ¬adder ok). There is, then, no reason to “for-
get” that the multiplier is working, which is imposed by
(C2) : α |= ¬µ so by (C2) we have Bel((Ψ ◦µ)◦α) ≡
Bel(Ψ ◦ α).

Lehmann (1995) gave another convincing explanation on
the fact that it makes sense to choose to satisfy (C2) or not
(i.e., that both options are sensible):

4Actually, a pseudo-distance is enough, i.e., triangular inequal-
ity is not mandatory.

5Σn is the sum of the nth power, i.e., Σn((x1, . . . , xm)) =
xn
1 + . . . + xn

m.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

741



Suppose an agent learns, first, a long conjunction a ∧
b ∧ . . . ∧ z and then its negation ¬a ∨ ¬b ∨ . . . ∨ ¬z.
Postulate [(C2)] implies it will forget about the first in-
formation, since it has been contradicted by the second
one. But one could argue that this is not the right thing
to do. Granted, the first information is incorrect, but
it could be almost correct. If one makes this assump-
tion, upon receiving the second information, one will
conclude that few components, perhaps only one, of
the conjunction are false, most of them still believed to
hold true. This analysis distinguishes, I think two kinds
of [revisions]. In the first one, one retracts a propo-
sition because the source from which it has been ob-
tained is now known to be unreliable. In this case, there
is no reason to suppose the proposition is approxima-
tively correct. In the second kind of [revisions], one
retracts a proposition because some new information
came to contradict it. In this case, one may have reason
to believe the proposition is still approximatively cor-
rect. This distinction should lead to two different sets
of postulates for [revisions].

The underlying hypothesis in (C2) is that each piece of
information is in a sense atomic, since if one contradicts
parts of a piece of information, one has to forget it entirely.
This can make sense in some applications, but it seems a too
strong constraint in general, and the two above examples il-
lustrate the fact that in some cases it is perfectly sensible to
reject (C2).

The examples above can easily be tuned to provide a sim-
ilar argument criticizing (I8) in the improvement context.

So let us define quasi-improvement operators, that are im-
provement operators up to (I8):

Definition 6. ◦ is a quasi-improvement operator if it satisfies
postulates (I1-I7) and (I9).

As explained above, (C2/I8) can be really criticized and
seen as undesirable in very sensible contexts. And most of
the operators we will introduce in the following do not sat-
isfy (I8).

But it is interesting to study some weakenings of (I8) that
can still be meaningful, and be satisfied by these operators.

So let us first consider (I8w), that is a very natural weak-
ening of (I8):

Definition 7. A quasi-improvement operator ◦ is said to be
stable if it satisfies the following additional postulate:

(I8w) If ϕ |= ¬ψ, then ∃n such that ∀k ≥ n,
Bel((Ψ ◦n ψ) ? ϕ) ≡ Bel((Ψ ◦k ψ) ? ϕ).

Basically (I8w) states that the (I8) behavior occurs for ψ
only when we (previously) received sufficiently many evi-
dences of ψ. This is even clearer to compare the correspond-
ing semantical condition (S2w) with (S2):

Definition 8. A strong faithful assignment Ψ 7→�Ψ is called
a stable assignment iff it satisfies conditions (S1), (S3), and
the following additional condition:

(S2w) If ω, ω′ |= ¬ϕ, then ∃n such that ∀k ≥ n,
ω �Ψ◦nϕ ω

′ ⇔ ω �Ψ◦kϕ ω
′.

We get the following representation theorem for stable
quasi-improvement operators:

Proposition 3. A change operator ◦ is a stable quasi-
improvement operator iff there exists a stable assignment
Ψ 7→�Ψ such that [Bel(Ψ ? ϕ)] = min([ϕ],�Ψ).

Let us now introduce an other natural weakening of (I8)
in the form of two postulates (RMon) and (LMon), which
together state that when (I8) is not satisfied, there is still a
monotonicity in the change:

Definition 9. A quasi-improvement operator ◦ is called
monotonic if it satisfies the following additional postulates:

(RMon) If ϕ |= ¬ψ andBel(Ψ?ϕ)∧Bel((Ψ◦ψ)?ϕ) |= α,
then ∀n > 0,Bel(Ψ?ϕ)∧Bel((Ψ◦nψ)?ϕ) |= α.

(LMon) If ϕ |= ¬ψ and Bel((Ψ ◦ ψ) ? ϕ) 6|= Bel(Ψ ? ϕ),
then ∀n > 0, Bel((Ψ ◦n ψ) ? ϕ) 6|= Bel(Ψ ? ϕ).

(RMon) (resp. (LMon)) states that when revising an epis-
temic state Ψ by a formula ϕ, what is added (resp. removed)
when an improvement of Ψ by a formula ψ, that is inconsis-
tent with ϕ, is performed prior to the revision remains so if
the improvement is iterated.

We get the following representation theorem for mono-
tonic quasi-improvement operators:

Definition 10. A strong faithful assignment Ψ 7→�Ψ is
called a monotonic assignment if it satisfies condition (S1),
(S3), and the following additional conditions:

(RM) If ω, ω′ |= ¬ϕ, ω �Ψ ω′ and ω′ ≺Ψ◦ϕ ω,
then ∀n > 0, ω′ ≺Ψ◦nϕ ω.

(LM) If ω, ω′ |= ¬ϕ, ω ≺Ψ ω′ and ω′ �Ψ◦ϕ ω,
then ∀n > 0, ω′ �Ψ◦nϕ ω.

So on the semantic conditions of monotonicity, we see
that whenever improving an epistemic state by a formula ϕ
impacts the relative plausibility of the models of ¬ϕ in a cer-
tain way, then it must hold in the same way when iterating.

Proposition 4. A change operator ◦ is a monotonic quasi-
improvement operator iff there exists a monotonic assign-
ment Ψ 7→�Ψ such that [Bel(Ψ ? ϕ)] = min([ϕ],�Ψ).

Interestingly, monotonicity implies stability for quasi-
improvement operators:

Proposition 5. If ◦ is a monotonic quasi-improvement op-
erator, then it is a stable quasi-improvement operator.

All of the operators we will define in Section 5 turn out to
be monotonic, and thus are stable quasi-improvement oper-
ators. And we insist on the fact that it is important to avoid
(I8) when we want to have interesting commutative opera-
tors (see for instance Proposition 7 below).

4 Sequence-based Epistemic States
Even if in (Darwiche and Pearl 1997) epistemic states are
abstract objects from which we can “only” obtain the as-
sociated beliefs Bel(Ψ), one has to choose one particular
instantiation or “representation” for defining concrete iter-
ated change operators and for implementing them in a com-
puter system. There are many possible choices for such an
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instantiation: preorders on interpretations, set of condition-
als (Boutilier 1996), sequences of formulae (Lehmann 1995;
Konieczny and Pino Pérez 2000), ordinal conditional func-
tions (OCFs) (Spohn 1988), or even more complex represen-
tations (Konieczny and Pérez 2017).

Let us formalize the notion of instantiation in its most
general form:
Definition 11. An instantiation (of epistemic states) I is a
pair 〈U,B〉, where U is a set and B is a mapping from U to
LP .

Intuitively, in an instantiation I = 〈U,B〉 the setU is used
to represent the set of all epistemic states, and the mapping
B is used to associate with each representation of epistemic
state its corresponding beliefs.

Then we can define the notion of I-instantiability:
Definition 12. Let ◦ be a change operator and I = 〈U,B〉
be an instantiation. We say that ◦ is I-instantiable if there
exists a mapping associating every epistemic state Ψ ∈ E
with an element ΨI ∈ U such that Bel(Ψ) = B(ΨI), and
there exists a mapping ◦I : U ×L∗P 7→ U such that for each
epistemic state Ψ ∈ E and each ϕ ∈ L∗P , if Ψ ◦ϕ = Ψ′ then
ΨI ◦I ϕ = Ψ′I .

The most standard instantiation of epistemic states is in
terms of total preorders on interpretations. Its popularity
can be explained by its simplicity and by the representation
theorems for iterated change operators (Darwiche and Pearl
1997; Booth and Meyer 2006; Konieczny and Pino Pérez
2008; Konieczny, Medina Grespan, and Pino Pérez 2010;
Grespan and Pino Pérez 2013). This choice of instan-
tiation is for instance used in (Booth and Meyer 2011;
Booth and Chandler 2019). Let us call it the tpo-based in-
stantiation (“tpo” stands for “total preorder”, as abreviated
in (Booth and Chandler 2019)):
Definition 13. The tpo-based instantiation is the instantia-
tion Itpo = 〈Utpo, Btpo〉 where:
• Utpo is the set of all total preorders over the set of all

worlds over the propositional language LP ;
• Btpo is the mapping associating each total preorder �

from Utpo with a formula ψ such that [ψ] = min([>],�).

For instance, all concrete examples of Darwiche and Pearl
iterated revision operators and the examples of improve-
ment operators (one-improvement, half-improvement, best-
improvement) are Itpo-instantiable.

Another way to instantiate epistemic states is by means of
sequences of formulae:
Definition 14. A sequence-based instantiation is an instan-
tiation I = 〈Useq, B〉 such that:
• Useq is the set of (possibly empty) finite sequences of con-

sistent formulae, i.e., Useq = {∅} ∪ {ϕ1 · . . . · ϕn | n >
0 and ∀i ∈ {1, . . . , n}, ϕi ∈ L∗P};

• B is any mapping B : Useq 7→ LP such that B(∅) = >.

Sequence-based instantiations are relevant in a scenario
where an agent starts with an “empty” epistemic state Ψ∅
(with Bel(Ψ∅) = >) and then receives different pieces of
information successively.

Let us remark that the notion of sequence-based revision
operator is not new: it has been already advocated and used
in (Lehmann 1995; Konieczny and Pino Pérez 2000; Rott
2003; Booth and Nittka 2005; Delgrande, Dubois, and Lang
2006).

In the next section, we will introduce a specific class of
sequence-based change operators.

5 Quasi-improvement via Incremental
Merging

We introduce a commutativity postulate, expressed as fol-
lows : let σ be any permutation,
(Com) Bel(Ψ◦ϕ1◦. . .◦ϕn) ≡ Bel(Ψ◦ϕσ(1)◦. . .◦ϕσ(n))

Operators satisfying (Com) will be simply called commu-
tative operators. A first notable observation is that none of
the existing improvement operators (one, half, and best im-
provement) is a commutative one. This is shown in the fol-
lowing simple example:
Example 1. Let Ψ∅ be an epistemic state such that
Bel(Ψ∅) = >. Then for ◦ ∈ {◦O, ◦H , ◦B}, we have that
Bel(Ψ∅ ◦ p ◦ p ◦ ¬p) ≡ > and Bel(Ψ∅ ◦ ¬p ◦ p ◦ p) ≡ p.
This shows that for ◦ ∈ {◦O, ◦H , ◦B}, ◦ does not satisfy
(Com).

A natural way to define a change operator satisfying
(Com) is to take advantage of majority merging operators.
Indeed, one can remark that the (Maj) postulate has some
similarity with the (I1) postulate, that is characteristic of im-
provement operators.
Definition 15. An incremental merging operator 4◦ is a
change operator such that there is a sequence-based instan-
tiation I such that 4◦ is I-instantiable, and there exists a
majority merging operator ∆ such that for each epistemic
state Ψ (with ΨI = ϕ1 · . . . · ϕn) and for each consistent
formula ϕ, Bel(Ψ4◦ ϕ) = ∆(〈ϕ1, . . . , ϕn, ϕ〉).

Note that the sequence-based instantiation I = 〈Useq, B〉
in Definition 15 is unique, since for any ΨI ∈ Useq , we
have B(ΨI) = > if ΨI = ∅, (cf. Definition 14), and if
ΨI = ϕ1 · . . . ·ϕn, n > 0, then B(ΨI) = ∆(〈ϕ1, . . . , ϕn〉).

We get the following interesting result:
Proposition 6. If 4◦ is an incremental merging operator,
then it is a commutative monotonic quasi-improvement op-
erator, i.e., it satisfies (Com), (I1-I7), (I8w), (I9), (RMon)
and (LMon).

So, basically, an incremental merging operator is a quasi-
improvement operator, where, at each step, we add one new
formula into the vector of formulas that instantiates the epis-
temic state, and we compute the corresponding result of the
merging in order to obtain the associated beliefs. These op-
erators satisfy all the expected postulates for iterated change,
except (I8), that we (and others) criticized.

A natural question is still to wonder if there are incremen-
tal merging operators satisfying (I8). And in fact we can
show that there is a unique such solution:
Proposition 7. Let 4◦ be an incremental merging operator.
Then 4◦ is a improvement operator iff it is the drastic incre-
mental merging operator 4◦dD,Σ.
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The (only if) part of the proof of Proposition 7 takes ad-
vantage of the following lemma. We mention it explicitly
here as we believe that this lemma is interesting as such:
Lemma 1. Let ∆ be an IC merging operator and E 7→�E
be its corresponding syncretic assignment. If for each sin-
gleton profile E = 〈ϕ〉, �E has not more than two levels,
then ∆ is the drastic majority operator ∆dD,Σ.

In addition, we can prove that the drastic incremental
merging operator 4◦dD,Σ is also a soft improvement opera-
tor:
Proposition 8. 4◦dD,Σ is a soft improvement operator.

6 Representation of Commutative
Quasi-improvement

Let us first show that whenever commutativity is an ex-
pected property in a given iterated change scenario, one can-
not take advantage of total preorders over worlds as an in-
stantiation of epistemic states when defining a stable quasi-
improvement operator:
Proposition 9. There is no commutative stable quasi-
improvement operator that is Itpo-instantiable.

Since every incremental merging operator is a commuta-
tive stable quasi-improvement operator, this means that no
incremental merging operator is Itpo-instantiable.

Now, let ∆d,f be any distance-based majority merging
operator, and let 4◦d,f be the incremental merging operator
induced by ∆d,f (we call such an operator 4◦d,f a distance-
based incremental merging operator). We intend to show
that for any operator 4◦d,f where the aggregation function f
satisfies a property of incrementability, each epistemic state
can be represented as an ordinal conditional function (OCF
for short) (Spohn 1988).

Let us introduce the property of incrementability for ag-
gregation functions and define the notion of OCF:
Definition 16. An aggregation function f is said to be
incrementable iff there exists a mapping gf associat-
ing two non-negative numbers with a non-negative num-
ber, such that for any tuple of non-negative numbers
〈x1, . . . , xn, xn+1〉, we have that f(〈x1, . . . , xn, xn+1〉) =
gf (〈f(〈x1, . . . , xn〉), xn+1〉).

Noteworthy, the property of incrementability is satisfied
by most “usual” aggregation functions, including the func-
tions Σn (n > 0) considered in the distance-based majority
merging operators ∆d,Σn

. In particular, for any n > 0 and
all non-negative numbers x1, x2, gΣn(〈x1, x2〉) = x1 + xn2 .
Definition 17. An OCF κ is a function associating each
world with a non-negative integer such that ∃ω κ(ω) = 0.

When an epistemic state Ψ is represented as an OCF κ, its
associated beliefs Bel(Ψ) are defined as [Bel(Ψ)] = {ω |
κ(ω) = 0}.

So more precisely, we can show that each distance-based
incremental merging operator based on an incrementable ag-
gregation function is instantiable on OCFs:
Definition 18. The OCF-based instantiation is the instanti-
ation Iocf = 〈Uocf , Bocf 〉 where:

• Uocf is the set of all OCFs over the propositional lan-
guage LP ;
• Bocf is the mapping associating each OCF κ from Uocf

with a formula ψ such that [ψ] = {ω | κ(ω) = 0}.

Proposition 10. Let f be an incrementable aggregation
function. Then any distance-based incremental merging op-
erator 4◦d,f is Iocf -instantiable.

Let4◦d,f be any distance-based incremental merging oper-
ator. By definition,4◦d,f is I-instantiable for some sequence-
based instantiation I = 〈Useq, B〉. Then even if f is not in-
crementable, one can actually associate with each epistemic
state Ψ the OCF κΨ

d,f defined for each world ω as

κΨ
d,f (ω) =

{
0 if ΨI = ∅,
df (ω, 〈ϕ1, . . . , ϕn〉)−min otherwise,

where ΨI = ϕ1 · . . . ·ϕn when ΨI is non-empty, andmin =
minω{df (ω, 〈ϕ1, . . . , ϕn〉)}. It can be verified by definition
of Bocf (cf. Definition 18) that

Bocf (κΨ
d,f ) =

{
> if ΨI = ∅,
∆d,f (〈ϕ1, . . . , ϕn〉) otherwise,

and thus Bocf (κΨ
d,f ) = Bel(Ψ) for each epistemic state Ψ.

What Proposition 10 also says is that if f is incrementable,
then working with OCFs instead of sequences is enough to
characterize any change operation Ψ4◦d,fϕ.

To illustrate that OCFs adequately represent sequence-
based epistemic states and that it is not the case for total
preorders, let us give a very simple example, on a proposi-
tional language with one variable p, so with only two worlds
denoted by p and p̄. There are only three possible total pre-
orders:

�1

p p̄

�2

p̄

p

�3

p

p̄

Now consider the following four sequence-based epis-
temic states:

Ψ1 = p Ψ2 = p · p · p · p · p
Ψ3 = p · ¬p Ψ4 = p · p · p · p · p · ¬p

Take any distance-based incremental merging operator
(let us say for instance 4◦dD,Σ), then the corresponding be-
liefs for each epistemic state are:

Bel(Ψ1) = p Bel(Ψ2) = p Bel(Ψ3) = > Bel(Ψ4) = p

From this, with the representation theorem for weak im-
provement operators (cf. Proposition 1), we can easily find
the total preorders that correspond to these beliefs:

�Ψ1=�2 �Ψ2=�2 �Ψ3=�1 �Ψ4=�2

Let us note also that Ψ3 = Ψ14◦dD,Σ ¬p and that Ψ4 =
Ψ24◦dD,Σ ¬p. But since�Ψ1

=�Ψ2
, for any Itpo-instantiable

operator, performing the wanted change on either Ψ1 or Ψ2

would return the same epistemic state. However, we can see
that �Ψ3

6=�Ψ4
.
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Instead, let us look at the associated OCF for these four
epistemic states:

Ψ1

0

1
p̄

p

Ψ2

0

5
p̄

p

Ψ3

0
p p̄

Ψ4

0

4
p̄

p

One can see that with an OCF, it is possible to represent
the intensity (plausibility) with which a belief is held: the
more we receive some pieces of information, the more their
plausibility increases. Whereas with total preorders we are
limited in the different situations that can be represented.

7 Illustrative Example
In this section, we will provide an example illustrating the
framework and describing the behavior of the operators in-
troduced in the previous sections.

Consider the following scenario. Yuko is potentially inter-
ested in two products p and q she found online. But before
purchasing any of them, she would like to get an outside
opinion about the quality of these products as she initially
has no clue about it. So she asks for advice from all her
friends by sending a text message to each one of them sep-
arately. Agathe is the first to reply to Yuko’s email: she
tried product p and recommends it (ϕ1 = p). Yuko wants to
take into account any advice she receives, and at this point
Agathe is the only one who replied. So Yuko has now a
favorable opinion of product p. Then Betty replies to Yuko
saying that she has indeed bought product q and she is happy
with it (ϕ2 = q). So Yuko expands her beliefs with Betty’s
advice, and now believes that both products p and q worth
the purchase. But later, Yuko got a reply from Charlie. He
said he tried both products p and q and does not recommend
either of them (ϕ3 = ¬p ∧ ¬q). Later in the day, Yuko got
additional replies from five other friends echoing Charlie’s
advice that p and q are not recommendable. Lastly, Yuko got
two additional replies which, on the contrary, recommend
both products (ϕ4 = p ∧ q). So more formally, Yuko is ini-
tially associated with an empty epistemic state Ψ0 = ∅ with
Bel(Ψ0) = >; and she receives as input a list of opinions
in a certain order, represented as the sequence6 of formulae
S = ϕ1 · ϕ2 · (ϕ3)6 · (ϕ4)2.

Figure 1 depicts the behavior in this scenario of the half-
improvement operator ◦H and the best-improvement oper-
ator ◦B (row #1), the one-improvement operator ◦O (row
#2), the drastic incremental merging operator 4◦dD,Σ (row
#3), and the two distance-based incremental merging op-
erators 4◦dH ,Σ and 4◦dH ,Σ

2

(row #4 and #5, respectively).
Each ith column correspond to Yuko’s epistemic state af-
ter i change operations. Each epistemic state Ψ is labeled in
the bottom of the figure for each column, e.g., as Ψ12(3)4 =

ϕ1 ·ϕ2 · (ϕ3)4. Note that ◦H and ◦B have the exact same be-
havior on this example. For each operator and at each step,
the grey part corresponds to the models of the change for-
mula, and the arrows represent the change of “position” of
these models in the epistemic state at the next step.

6(ϕ)n denotes the sequence defined by the formula ϕ repeated
n times

Since ◦O, ◦H and ◦B are Itpo-instantiable, Yuko’s succes-
sive epistemic states are represented as total preorders, start-
ing from Ψ1 = Ψ0 ◦ϕ1 and followed by the epistemic states
resulting from the improvement by each remaining formula
from the sequence S. Since 4◦dD,Σ, 4◦dH ,Σ and 4◦dH ,Σ

2

are
Iocf -instantiable (cf. Proposition 10), each epistemic state Ψ
can be represented as an OCF, and the epistemic state result-
ing from a change of Ψ by ϕ can also be characterized as an
OCF based solely on the information provided by Ψ and ϕ.

This example illustrates the case where an agent succes-
sively integrates into her epistemic state a list of formulae,
where no formula in the list has a priority on another. So
first, let us remark that using an iterated belief revision op-
erator ◦ is not appropriate here. Indeed, after revising her
initial epistemic state successively by ϕ1 = p, ϕ2 = q, and
ϕ3 = ¬p∧¬q, the beliefs from the resulting epistemic state
Ψ123 would entail ϕ3. Intuitively, while Charlie’s opinion
contradicts Agathe and Betty’s one, there is no reason to
trust Charlie more than Agathe and Betty based solely on
the fact that Charlie replied to Yuko after the two others.

Using instead an improvement operator addresses the pri-
macy of update issue: one can see from Figure 1 that af-
ter the improvement of Yuko’s initial epistemic state by ϕ1

and then by ϕ2, the formula ϕ3 = ¬p ∧ ¬q becomes en-
tailed in the beliefs of her epistemic state only after three
iterations in the case of ◦O (i.e., in Bel(Ψ12(3)3)) and six
iterations in the case of ◦H and ◦B (i.e., in Bel(Ψ12(3)6)).
But because these operators are Itpo-instantiable, each epis-
temic state can be represented as a total preorder, and thus
Ψ12(3)3 (resp. Ψ12(3)6 ) remains unchanged after any fur-
ther improvement by ϕ3 using ◦O (resp. ◦H / ◦B). And
as a consequence, in any epistemic state Ψ12(3)k , k ≥ 6,
two iterations of improvement by ϕ4 = p ∧ q are suffi-
cient to entail ϕ4 (cf. Bel(Ψ12(3)6(4)2)) for these operators.
This means that whatever large the number of Yuko’s friends
whose opinion is not to purchase products p and q while she
already agrees with that, she will change her mind as soon as
just two additional friends recommend both products. This
clearly gives too much priority to these two last friends over
all others. In addition, the order in which the messages are
received should not impact Yuko’s belief state after she got
all replies. Yet ◦O, ◦H and ◦B are non-commutative; so for
instance, while Bel(Ψ12(3)3) ≡ ¬p ∧ ¬q, it can be verified
that Bel(Ψ(3)312) ≡ p ∧ q, i.e., Yuko would have diamet-
rically opposite beliefs, had Charlie and two other friends
agreeing with him replied before Agathe and Betty.

On the other hand, the incremental merging operators
4◦dD,Σ, 4◦dH ,Σ and 4◦dH ,Σ

2

exhibit a more appropriate behav-
ior. First, they are all commutative. Second, it can be seen
that the number of times Ψ12 is improved by ϕ3 impacts its
OCF representation. Indeed, for all n, n′ ≥ 6, while for
◦ ∈ {◦O, ◦H , ◦B} we get that Ψ12(3)n = Ψ12(3)n′ , this is

never true for 4◦dD,Σ, 4◦dH ,Σ and 4◦dH ,Σ
2

when n 6= n′. This
reflects that for these operators, even if Bel(Ψ12(3)n) ≡ ϕ3

for any n ≥ 2, an improvement of ϕ3 into Ψ12(3)n further
“entrenches” ϕ3 into the beliefs of Yuko. As expected, e.g.,
for 4◦dD,Σ (resp. for 4◦dH ,Σ), in any epistemic state Ψ12(3)n

with n ≥ 2 one needs at least n − 1 (resp. n) iterations of
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Figure 1: The three non-commutative improvement operators ◦O , ◦H and ◦B , the drastic incremental merging operator and the two Hamming-
based incremental merging operators based on Σ and Σ2.

improvement of Ψ12(3)n by ϕ4 to obtain an epistemic state
whose beliefs entail ϕ4. Translated in natural language, if
more people advise Yuko not to purchase the products, then
more people need to advise Yuko to purchase the products
to change her mind.

8 Related Work
The fact that iterated revision would be more adequatly mod-
elized by prioritized belief merging is advocated in (Del-
grande, Dubois, and Lang 2006). We agree with most of
their points and our work is complementary. Let us quote
the introduction of this paper:

Standard accounts of iterated belief revision assume a
static world, about which an agent receives a sequence
of observations. More recent items are assumed to have
priority over less recent items. We argue that there is no
reason, given a static world, for giving priority to more
recent items. Instead we suggest that a sequence of ob-
servations should be merged with the agent’s beliefs.

This is exactly our justification for the commutativity pos-
tulate. They also considered sequences of formulae as rep-
resentation of the epistemic states, as we do in this work.

Delgrande, Dubois and Lang proposed prioritized merg-
ing as a generalization of DP iterated revision operators (i.e.,
as usual iterated revision encoded by increasing weights at-
tached to the input formulae), and studied the properties of
the corresponding operators. They also mentioned that if all
the input formulae have the same weight, then the adequate
operators are belief merging operators (Konieczny and Pino

Pérez 2002). So our work corresponds to the formalization
of this idea, and the study of the correspondence between
these merging operators and improvements operators.

9 Conclusion
We have investigated a class of improvement operators that
do not obey to any primacy of update. We formalized this
by a commutative postulate, which states that the result does
not depend on the order on which the different pieces of
information are received. (Incremental) merging operators
are natural candidates to perform this change, and we have
shown that they actually perform well since they are quasi-
improvement operators. Interestingly these operators cannot
be represented as functions associating a total preorder and
a formula with a total preorder.

An interesting research perspective would be to seek for
commutative improvement operators (i.e., satisfying (Com)
and (I1-I9)) that are not merging-based.
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Konieczny, S., and Pino Pérez, R. 2008. Improvement oper-
ators. In Proceedings of the 11th International Conference
on Principles of Knowledge Representation and Reasoning
(KR’08), 177–187.
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