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Background: The human microbiome comprises the microorganisms
that inhabit the various locales of the human body and plays a vital role in
human health. The composition of a microbial population is often quanti-
fied through measures of species diversity, which summarize the number of
species along with their relative abundances into a single value. In a micro-
biome sample there will certainly be species missing from the target popula-
tion which will affect the diversity estimates.
Methods: We employ a model based on the hierarchical Pitman-Yor (HPY)
process to model the species abundance distributions over multiple popula-
tions. The model parameters are estimated using a Gibbs sampler. We also
derive estimates of species diversity, conditional and unconditional on the
observed data, as a function of the HPY parameters Finally, we derive a gen-
eral formula for the Hill numbers in the HPY context.
Results: We show that the Gibbs sampler for the HPY model performs well
in simulations. We also show that the conditional estimates of diversity from
the HPY model improve over naïve estimates when species are missing. Sim-
ilarly the conditional HPY estimates tend to perform better than the naïve
estimates especially when the number of individuals sampled from a popula-
tion is small.

1. Introduction. Human microbiome studies attempt to quantify the makeup of the dif-
ferent species that occupy the human body. The composition of the gut microbiome in partic-
ular plays an important part in human health. Modelling species abundance distributions in
this framework has long been a goal in metagenomic datasets. There have been a number of
methods based on Bayesian non-parametrics developed to model these kinds of community
dynamics. In particular, the Dependent Dirichlet process has been applied in this context to
species abundance distribution and diversity estimation, and has additionally been used to
address the effects of covariates on these entities (Ren et al., 2017; Arbel et al., 2016). How-
ever, these models were created from a statistical standpoint, and do not reflect the underlying
principles of community ecology. In contrast, there are alternative statistical methods that at-
tempt to describe and capture the dynamics of such distributions in a manner that is faithful to
principles of ecological theory. Nevertheless, there are competing perspectives on how evolu-
tionary processes and the environment affect species distributions (Jeraldo et al., 2012). For
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example, one theory suggests that species assemblage is characterized by niches, which are
defined by the allocation of resources in the population (Chesson, 2000). There also exists
a competing theory that describes “neutral” models, which assume that species are func-
tionally equivalent and that processes such as immigration and birth/death events primarily
contribute to community diversity (Etienne, 2005). The theory of neutrality claims that most
genetic diversity observed in a population is a result of chance, as opposed to Darwinian se-
lection (Kimura, 1968); that is, the birth rate that a particular species depends on the number
of individuals of that species present in the population, rather than on the species’ ability to
survive in the environment. This is analogous to the theory of neutrality for gene alleles that
originated in the field of population genetics (Ewens, 1972). One important doctrine in neu-
tral theory is Hubbell’s Unified Neutral Theory of Biodiversity (Hubbell, 2001). In Hubbell’s
theory, it is assumed that there are a number of distinct local communities (sometimes called
local populations) that are subject to immigration and birth/death processes. Immigration into
each community is independent of the other communities, and all individuals that immigrate
to a community do so from a conceptual metacommunity shared by all local communities.
Immigration can happen at different rates across populations. The birth rate in the neutral
model is on a per capita basis—births are more likely to occur for more highly abundant
species. Additionally, the rate of speciation, i.e. the frequency at which new species appear
(i.e. species that have not yet been observed in any population), is a defining parameter of
the top-level metacommunity. Note that the metacommunity and the local communities in
Hubbell’s model are sometimes referred to in the context of the mainland-island model,
where immigration occurs from a mainland (analogous to metacommunity) to local islands
surrounded by uninhabitable space (analagous to the local communities).

Harris et al. (2015) showed that the class of neutral models, when multiple local com-
munities with differing population dynamics are considered and under certain conditions on
individual mean reproductive success, converges to the hierarchical Dirichlet process (HDP)
with large local population size. They developed a Gibbs sampler for the hierarchical Dirich-
let process given a matrix of species counts among multiple local communities. The authors
also presented a means for testing for neutrality in the populations after fitting the model.
However, microbial abundance data has suggested that ranked species abundance distribu-
tions follow a power-law tail (Li, Bihan and Methé, 2013). That is, if we consider the ranked
proportions of species in a population, pk, k = 1,2, . . . such that p1 > p2 > p3 > . . . , then we
have the following relationship for the ranked abundances:

pk ∝ k−a

for some a > 0 (Clauset, Shalizi and Newman, 2009). One limitation of the Dirichlet process
model is it cannot accommodate a power-law tail in its species distribution. Conversely, a
related process called the Pitman-Yor process, can indeed generate a species distribution that
exhibits a power-law tail (Goldwater, Johnson and Griffiths, 2006). It is then of value to
pursue the question as to whether the Pitman-Yor model is more appropriate for modelling
the species frequency distribution than the Dirichlet model. In this paper we investigate the
use of the Pitman-Yor process in a hierarchical formulation called the hierarchical Pitman-
Yor process (HPY process) to model abundance data in multiple microbial populations. The
HPY model has been employed outside the context of community modelling (REFS). It has
also been recently used in species discovery (Battiston, Favaro and Teh, 2018) as well as in
single-cell RNA-Seq data (Camerlenghi et al., 2020). However, to the authors’ knowledge,
this model has not previously been used in a species diversity estimation framework, nor have
estimates of diversity metrics been derived in terms of the HPY model parameters. Therefore,
in this article we provide such a derivation of diversity metrics in this context; in particular,
we derive a general formula for the Hill numbers as a function of HPY parameters.
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MICROBIAL DIVERSITY ESTIMATION USING THE HPY PROCESS 3

The HPY process is analagous to the mainland-island model, but it can also accommodate
a departure from the assumption of neutrality. We develop a Gibbs sampler to fit the model
parameters. In addition to the Gibbs sampler, we derive expressions for two measures of
species diveristy in the context of the HPY process. We perform an extensive simulation
study to investigate the performance of the HPY model under different situations, as well as
the efficacy of the measures of species diversity defined in the HPY context.

We begin in the next section with the definition of the Pitman-Yor Process. In the Methods
section (Section 2.1), we introduce the hierarchical Pitman-Yor model and give details for
the Gibbs sampler as well as a description on calculating diversity in this model. In Section 3
we present results for an extensive simulation study that investigates the performance of the
HPY model. Finally, in Section 4 we show results from applying the HPY model to a gut
microbiome 16S sequencing dataset from a study on lean and obese twin pairs.

1.1. Pitman-Yor process. Assume that, for 0 ≤ α < 1 and γ > −α, we generate a se-
quence of random variables Vk, for k = 1,2, . . . such that Vk ∼ Beta(1 − α,γ + kα). Fur-
thermore, define the following:

(1) p1 = V1, pk = (1− V1) . . . (1− Vk−1)Vk, for k ≥ 2.

Then the Griffiths, Engen, and McCloskey distribution is defined as the joint distribution of
(p1, p2, . . . ) and is abbreviated as GEM(γ,α) (Yamato, Sibuya and Nomachi, 2001).

Let X∗
k , k = 1,2, . . . be a sequence of independent samples from some distribution H .

If we draw the vector p ∼ GEM(γ,α) independently from each X∗
k , then the Pitman-Yor

process (or two-parameter Poisson-Dirichlet process) is defined as:
∞∑
k=1

pkδX∗
k
,(2)

where δX∗
k

is a discrete measure at X∗
k (Buntine and Hutter, 2010). The Pitman-Yor process

is abbreviated as PY(α,γ,H). α and γ are called the discount and concentration parameters,
respectively. H is referred to as the base distribution. The Dirichlet process is a special case
of the Pitman-Yor process where the discount parameter α= 0.

A convenient way of drawing from the Pitman-Yor process is through the Chinese restau-
rant process representation. Assume that we have already drawn X1, . . . ,Xn among which
we have drawn the values X∗

1 , . . . ,X
∗
K directly from the base distribution H , for some

1 ≤ K ≤ n. If H is continuous, then all of X∗
1 , . . . ,X

∗
K are distinct, however if H is dis-

crete then some of the values may not be distinct. Then the distribution of Xn+1 conditional
on X1, . . . ,Xn is:

Xn+1|X1, . . . ,Xn, γ,α,H ∼
K∑
k=1

nk − α

γ + n
δX∗

k
+
γ +Kα

γ + n
H,(3)

where nk represents the number of times the value X∗
k appears among X1, . . . ,Xn. More

simply, Xn+1 is sampled either from an existing value X∗
k with probability proportional to

nk, or from the base distributionH . The valuesX∗
1 , . . . ,X

∗
K are called “tables” in the Chinese

restaurant configuration. The tables may also be referred to simply by their indices 1, . . . ,K .

1.2. Diversity. One of the most important descriptive tools in microbial community esti-
mation is species diversity. Diversity aims to create a quantitative description of a population
that incorporates information such as the total number of species in a population and the rel-
ative frequencies of those species. For example, one commonly applied measure of diversity
is Simpson’s index, which concerns the probability of sampling the same species twice from
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a population. Assume a population contains K distinct species and that the proportion of
species k is represented by pk. Simpson’s index is sometimes calculated as the probability of
sampling two different species in subsequent draws (i.e. the complement of the above def-
inition). The latter definition is used in this paper. Simpson’s index, denoted by D, is then
written as:

D = 1−
K∑
k=1

p2k,(4)

(Gorelick, 2006). A larger value of D implies the probability of obtaining the same species
in two subsequent samples from the population is small. Thus, the closer the value of D is to
one, the more diverse the population under consideration.

The fundamental problem in estimating diversity is that it is unlikely that a sample from a
population will include all K species that exist in the population. To illustrate the problem,
consider a population with three species (K = 3), where the counts of the three species are
(n1, n2, n3) = (5,4,1). If we calculate Simpson’s index naïvely based on Equation 4 we
get D = 0.58. Now, consider a sample from this population where we obtain the counts
(n1, n2, n3) = (3,2,0). Calculating Simpson’s index on the sample proportions gives D =
0.48. Thus, the diversity in the population has been underestimated, simply because we failed
to sample individuals from species 3.

Model assumptions can help to estimate species diversity in the presence of missing
species. Methods for estimating Simpson’s index in the mainland-island model assumed in
Hubbell’s neutral theory of biodiversity have been developed by Cerquetti (2015). Expres-
sions to estimate Simpson’s index have not yet been developed in the HPY context, however.
Thus, in this paper we propose the derivation of an expression of Simpson’s index in this
context. The idea is that the HPY Gibbs sampler proposed in this paper could be applied
to species abundance data, and estimates of the HPY model parameters could be obtained.
From there, Simpson’s index could be calculated using the estimated HPY model parameters.
The advantage of this approach is that, even if a particular population has missing species,
the model structure assumed in the HPY framework can help to model the probability of
discovering a new species (i.e. one that has not yet been observed). There is also a sense of
“borrowing strength” between populations, in that we can account for sampling probabilities
for a species that has a zero count in a population by considering the frequencies of that
species in another population.

The framework that we pursue to estimate Simpson’s index using the HPY model depends
on calculation of the Hill numbers (Hill, 1973), which are defined for integers q ≥ 2 as:

qD =

(
K∑
k=1

pqk

) 1

1−q

,(5)

so that Simpson’s index as defined in Equation 4 can be written as

D = 1− 1
2D

.(6)

In this paper we show that the Chinese restaurant franchise representation of the HPY process
admits a convenient way to derive the reciprocal of 2D. Additionally, we provide a formula
for qD for general q ≥ 2 in the HPY context.
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MICROBIAL DIVERSITY ESTIMATION USING THE HPY PROCESS 5

2. Methods. In this section we outline the model for the HPY process and describe the
Gibbs sampler used to fit the model. Additionally we present a formula for Simpson’s index
in the context of the HPY model parameters. In the mainland-island model, each individual
in a local community can be traced back to an ancestor that immigrated to the community.
In the hierarchical Pitman-Yor model, the “tables” in the Chinese restaurant representation
of the Pitman-Yor process are analogous to individuals’ ancestors that immigrated in the
mainland-island model. Multiple individuals in a community could have descended from
the same ancestor and there can be multiple ancestors of the same species. The makeup of
the ancestors are not directly observable and are therefore treated as latent variables in this
framework. In this paper we use the following notation:

• J is the number of observed local communities
• K is the total number of observed species
• Yjk is the observed count of species k in population j
• tjp is the ancestor (“table”) from which individual p in community j descends
• mjk is the number of ancestors in community j corresponding to species k
• njtk is the number of observations in community j that descended from ancestor t, corre-

sponding to species k.
• kjp is the species of individual p in community j (a number from 1 to K)
• ψjt is the species of the tth ancestor in community j (a number from 1 to K)

We use the symbol · in a subscript to denote the summation of all values over a particular
dimension. For example, mj· =

∑K
k=1mjk is the number of ancestors in population j over

all species k = 1, . . . ,K .

2.1. Hierarchical Pitman-Yor process model. In this section we introduce the hierarchi-
cal Pitman-Yor process and describe how it is connected to the mainland-island model. The
model is defined as follows:

p0|α,γ ∼ GEM(α,γ)

pj |σj , θj , p0 ∼ PY(σj , θj , p0)

Yj |pj ∼ Multinom(nj··, pj),

for j = 1, . . . , J . The vector of proportions p0 represents the abundance of species in the
metacommunity which is assumed to follow a GEM distribution. Each vector pj represents
the abundance distribution of local population j, and is assumed to follow a Pitman-Yor
process with base distribution p0. Therefore, sampling a new ancestor in local community
j is akin to sampling from the abundance distribution p0 of the metacommunity. Finally,
the vector of observed species counts in population j, denoted by Yj , is sampled from a
multinomial distribution with its proportion vector set to pj . This final step represents the
sampling procedure from the local community. The hierarchical Dirichlet process developed
in Harris et al. (2015), was shown to be the large population size limiting distribution for
Hubbell’s neutral model under certain conditions on individual mean reproductive success.
In the hierarchical Pitman-Yor model, we include the discount parameters α and σj ; it has
been shown that a non-zero value for the discount parameter corresponds to non-neutral
assemblage (Crane et al., 2016). Thus, the discount parameter could be used as a measure of
departure from neutrality. Figure 1 gives a schematic of the assumed HPY model assuming
two local populations.
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FIG 1. Schematic showing the HPY model assuming two local populations. A red node labelled Aij corresponds
to ancestor j in local population i. The microbes pictured at the bottom correspond to descendants of the ances-
tors; i.e. the microbes present in the local communities. The observed species abundance table is a sample from
the descendant microbes.

Priors for the top- and local-level discount and concentration parameters also must be
specified in the HPY model:

α∼ Uniform(0,1)

σj ∼ Uniform(0,1)

γ ∼ Gamma(a0, b0)

θj ∼ Gamma(aj , bj)

for j = 1, . . . , J . Here, a0 and b0 are respectively the shape and scale hyperparameters of the
gamma distribution for the top-level concentration parameter γ. Likewise, aj and bj are the
shape and scale hyperparameters in the prior for the local-level concentration parameter θj .

2.2. Diversity estimation. In this paper we consider Simpson’s index in the context of
the HPY model. The idea is, rather than calculating the Hill number reciprocal 1/(2D) di-
rectly from the observed proportions, we can infer in a given population the probability of
sampling the same species twice in a row based on the sampling probabilities prescribed by
the hierarchical Pitman-Yor process. This theoretical calculation would allow the inclusion
of sampling species that have not yet been observed in a particular sample. We can do this
by considering the Chinese restaurant process representation of the Pitman-Yor process. That
is, when a particular species is sampled in a population, the probability of observing that
same species a second time is slightly altered, since the corresponding ancestral counts will
have been modified. Thus, the joint probability of sampling the same species twice can be
calculated by considering all possible configurations of sampling the same species twice. We
consider two forms of the expression for Simpson’s index: the first form, which we call the
unconditional Simpson’s index, uses only the discount and concentration parameters from
the HPY model; the second form, which we call the conditional Simpson’s index, uses the
HPY parameters as well as the observed species counts and ancestral states tjp. The uncondi-
tional index represents the overall probability of sampling the same species twice in the HPY
framework, and the conditional index represents the probability that the next two samples
are of the same species, given a particular number of individuals have already been sampled.
Considering the error in estimating the HPY discount and concentration parameters, we ex-
pect that additional leveraging of the observed counts and estimated ancestral states will aid
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MICROBIAL DIVERSITY ESTIMATION USING THE HPY PROCESS 7

in estimation accuracy for Simpson’s index. In addition to providing a means of calculating
1/(2D) in this way, we also provide a formula for calculating 1/(qD) for general q ≥ 2; these
results can be seen in Section S2.1.1.

Simpson’s index is a measure of alpha-diversity—in other words it measures the amount
of diversity in a single population. In this paper we also consider the equivalent probabil-
ity calculation across populations, i.e. the probability of sampling one species in one pop-
ulation and the same species in another population. This could be applied as a measure of
beta-diversity, which measures the discrepancies in species abundance distributions between
populations. This probability can similarly be calculated in the context of the hierarchical
Pitman-Yor model. We have have derived expressions for Simpson’s index (conditional and
unconditional) relating to both alpha-diversity and beta-diversity. As the expressions are quite
complicated, they can be found in the supplement (Section S2).

2.3. Gibbs sampler for the HPY model. In order to fit the HPY model defined in Sec-
tion 2.1, we use a Gibbs sampler. The parameters that must be updated in each step of
the Gibbs sampler are the top-level GEM parameters α and γ; the local-level PY parame-
ters σj and θj , for j = 1, . . . , J ; and the ancestor indicators tjp for each j = 1, . . . , J and
p= 1, . . . , nj··.

As the local-level abundances are represented by a Pitman-Yor process, updates for the pa-
rameters σj and θj can be obtained by slice-sampling procedures defined by Buntine (2012).
This algorithm is outlined in Algorithm S1 in the supplement. Note that the full conditionals
for the concentration parameters are not log-concave. Buntine uses the technique from Es-
cobar and West (1995) to generate an auxiliary beta-distributed random variable. The joint
distribution of the concentration parameter and the auxiliary variable is log-concave (see
Section S1.2.2) which allows the use of a slice-sampler. At the top level we have a GEM
distribution, however the slice samplers from Buntine can still be applied with a slight mod-
ification to the table count vectors. Details on these procedures are given in Section S1.1 for
the discount parameters, and Section S1.2 for the concentration parameters. For the ancestral
indicators tjp, j = 1, . . . , J and p= 1, . . . , nj··, we apply the method used in Battiston, Favaro
and Teh (2018). In their algorithm, each individual (i.e. each organism) is removed from the
population and reassigned to a new or existing ancestor with probabilities defined by the Chi-
nese restaurant process. Details of that procedure are outlined in Section S1.3. Algorithm 1
outlines a single iteration of the Gibbs sampler used to fit the model.

It is not immediately obvious what choices would be best for the hyperparameters a0,
b0, aj , and bj . To guarantee the log-concavity of the joint distribution of the concentration
parameters, we need to choose the shape parameters so that a0 ≥ 1 and each aj ≥ 1 (see
Section S1.2.2). We find that setting these shape parameters to 1.1 works well in practice.
The sampler is fairly sensitive to the choice of the scale parameters b0 and bj . However,
we do find in practice that setting all the scale parameters equal to the number of observed
species K leads to good estimation accuracy. This allows the prior means for the concentra-
tion parameters to scale as a function of the number of observed species, which is necessary
since we have observed that a poorly specified setting for this prior mean can negatively
affect the posterior distributions of these parameters. This configuration corresponds to the
recommendation in Buntine’s libstb C library, which is used to sample the Pitman-Yor
parameters (Buntine, 2012).

2.4. Simulation study. To validate the Gibbs sampler for the HPY model, we have de-
signed an extensive simulation study. We simulate data from the hierarchical Pitman-Yor
process using its Chinese restaurant process representation. That is, for every new individual
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Algorithm 1: Iteration i of the HPY Sampler
for j← 1 to J do

for p← 1 to nj·· do
njtjp·← njtjp· − 1 ;
if njtjp· = 0 then

for q← tjp + 1 to mj· do
tjq← tjq − 1

end
mjkjp ←mjkjp − 1 ;

pnew←

(
1 +

(γ +m··)(nj·kjp −m·kjpσj)

(θj +mj·σj)(m·kjp − α)

)−1

;

Generate r ∼Unif(0,1);
if r < pnew then

tjp←mj· + 1 ;
mjkjp ←mjkjp + 1 ;

else
foreach t : ψjt = ψjtjp do

πt ∝
njt·−σj

θj+nj··−1 ;

end
Set tjp← t with probability πt ;

end
end
Sample σj ∼ p(σj |θj , tj·1, . . . , tj·K , tj··) and θj ∼ p(θj |σj , tj··) ;

end
Sample α∼ p(α|γ,m·1, . . . ,m·K) and γ ∼ p(γ|α,K);

sampled in local population j, we will perform one of three options (1) sample from an exist-
ing ancestor, thus assigning that individual the same species as the ancestor; (2) sample from
an existing species at the top level; or (3) sample a new species at the top level.

In the simulation study, we simulate data under multiple realistic configurations of
the parameters in the HPY model. For the local-level parameters, we consider the val-
ues σj ∈ {0.2,0.5} and θj ∈ {5,25}. For the top-level parameters, we consider the values
α ∈ {0.2,0.5,0.8} and γ ∈ {5,25,50}. We generate 10 local communities, and assume the
same values for the local parameters across all communities. In all cases, the total num-
ber of individuals generated from the HPY process is 100,000 in each community; how-
ever, the final number of individuals sampled in each community in the multinomial step is
nj·· ∈ {500,1000,5000} (i.e. this is the number of individuals that would be observed in the
species abundance vector Yj in each population j). We generated 50 replications of each sim-
ulation scenario. For each of the simulation replications the HPY Gibbs sampler was run for
2000 steps along with 1000 burn-in steps. To obtain parameter estimates we take the posterior
mode of the MCMC samples. The posterior mode is more appropriate than the posterior mean
in this context as the posterior distributions of the concentration and discount parameters are
usually quite skewed due to the constraints on their supports.

Results from the simulation study are shown in Section 3. We examine the accuracy of the
estimated parameters by comparing the posterior mode of the parameter samples from the
Gibbs sampler to the true simulated values. We also calculate Simpson’s index to measure
alpha-diversity in each population (see Equations S.13 and S.14) and beta-diversity to com-
pare across populations (see Equations S.15 and S.16); we do this for both the unconditional
and conditional versions of Simpson’s index. We compare Simpson’s index from the HPY
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model to the naïvely calculated indices, i.e. summing the squared observed proportions in
each sample.

2.5. Data analysis in twin study. We apply the hierarchical Pitman-Yor model Gibbs
sampler on a 16S sequencing dataset from the Missouri Adolescent Female Twin Study
(Turnbaugh et al., 2009). The study was undertaken to investigate the differences in the com-
position of the gut microbiota between lean and obese hosts. The study considered monozy-
gotic and dizygotic twin pairs that were concordant for obesity as well as their mothers,
though we only include data from the twins in the HPY analysis. The study population con-
sisted of 21-32 year-old women of European and African ancestry. 16S sequencing from
fecal samples was performed using multiplex pyrosequencing on the V2 and V6 regions. Fe-
cal samples were taken at two time points for each twin, however we consider samples only
from the first time point, as there would likely be strong correlation between the composi-
tions of the intestinal microbiota within each twin between the two time points. Most twin
pairs lived apart, though 29% of the twin paris did live in the same household. In this anal-
ysis we consider a sample size of 102 samples from 29 monozygotic and 22 dizygotic twin
pairs. In the cleaned dataset the are 28 women in the lean category (BMI 18.5–24.9 kg/m2), 7
women in the overweight category (BMI 25–30 kg/m2), and 70 women in the obese category
(BMI> 30 kg/m2).

In this paper we wish to estimate diversity using the HPY model and compare diversity
within the adiposity groups. We also explore some technical details such as the appropriate-
ness of the fitted HPY model to the observed data and the effect of sequencing depth on the
diversity estimates. From the HPY sampler we obtain 2000 MCMC samples after running
1000 burn-in samples. Note that, in consideration of the results of the simulation study, we
only calculate the conditional version of Simpson’s index in this data application.

3. Simulation results. In this section we outline the results of the simulation study de-
scribed in Section 2.4. First we consider the estimation accuracy of the various parameters
in the HPY model (γ, α, θj , σj). Results from these investigations are shown in Section S3.
Each of these plots shows estimation errors as the difference between the estimated param-
eter (posterior mode) and the true simulated value. These errors are normalized by dividing
by the true simulated values to facilitate comparisons across simulation scenarios.

In Figure S1 we consider the normalized errors from estimating the top-level concentra-
tion parameter γ. Estimates generally appear to be unbiased. There is little improvement in
estimation accuracy with increasing sample size in the local populations. Conversely, there
does appear to be better estimation accuracy when the true value of the top-level discount
parameter (α) is smaller. Higher values of α correspond to a heavier tail when considering
the species abundance distribution aggregated across populations. That is, a higher top-level
discount parameter implies many singleton species, which could contribute to the difficulties
in estimation accuracy in this particular parameter configuration.

Simulation results for the top-level discount parameter α are shown in Figure S2. Again,
the estimates do not appear to have any particular bias. In many cases there does appear
to be a slight improvement in estimation accuracy with increasing sample size. There is a
substantial increase in estimation accuracy for larger values of the true simulated value of
α. In the nj·· = 500 configuration, there is generally better estimation accuracy for σj = 0.2
than for σj = 0.5.

In Figure S3 we show the estimation accuracy in simulations for the local-level concen-
tration parameters θj , j ∈ {1, . . . , J}. There is generally better estimation accuracy when
the true value of the local concentration parameters are θj = 5 compared to θj = 25. It also
seems that there is a slight positive bias in estimates for this parameter, though the reason for
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FIG 2. Estimation error for Simpson’s index comparing conditional Simpson’s index (HPY) and naïve estimates
in simulated data.

this potential bias is still unclear. Similarly in Figure S4 we show results for the local-level
concentration parameters σj , j ∈ {1, . . . , J}. In most cases there is a noticeable improvement
with increasing sample size. In some cases there is an improvement for θ = 25 as opposed
to θ = 5, however, this improvement is not consistent across all simulation scenarios. There
also appears to be a slight negative bias for these parameters. In the MCMC samples there is
typically a strong negative correlation between the local concentration and discount parame-
ters due to the fact that both parameters are related to the total number of observed species.
This could explain why the biases for the local concentrations are of the opposite sign of the
biases of the local discount parameters.

Next, we investigate the results of estimating Simpson’s index using the HPY model. First,
the unconditional and conditional versions of Simpson’s index are calculated from Equa-
tions S.13 and S.14, respectively. We calculate each index for each of the 2000 MCMC sam-
ples from the Gibbs sampler. Then, then final estimate for each version of Simpson’s index is
taken as the mode of those values. It should be noted that the posterior distribution of Simp-
son’s index does not have a high variance, so the actual estimated value would not change
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much if the posterior mean or median were used. We compare the values of Simpson’s index
from the HPY model to a naïvely calculated Simpson’s index from the observed proportions
in each subsampled population. The true value of Simpson’s index is considered to be the
result of applying Equation 4 to the proportions in the full simulated HPY dataset (which
would be unobserved in practice).

In Figure 2 we compare the errors for the conditional and naïve estimation methods; the
unconditional version also appears in Figure S5, but performs significantly worse than other
methods. There is consistently greater variation in the amount of error for the unconditional
version of Simpson’s index. For the sake of more easily making a comparison between uncon-
ditional and naïve, we have omitted the unconditional from Figure 2. The naïvely estimated
Simpson’s index is often underestimated, especially when γ = 50, whereas the HPY con-
ditional calculation was more accurate, though it did slightly overestimate in some cases, in
particular when the sample size in the local populations was smaller. Recall that higher values
of γ generally correspond to a higher species richness across all populations (i.e. in the meta-
community). Thus, the conditional Simpson’s index calculated using the HPY framework is
more accurate when there is high species richness in the metacommunity. The conditional
index is also generally more accurate for smaller population sizes. It should be noted that, as
the number of samples taken within each population increases, both the naïvely calculated
and HPY calculated values of Simpson’s index are consistently accurate. This shows that it
is important to consider the number of sequences when calculating diversity in a population,
and that the conditional estimates from the HPY model are valuable in samples with a low
number of sequences.

We also explore the results of Simpson’s index for beta-diversity. In the HPY model we
estimate this in the same way as for the alpha-diversity measure of Simpson’s index shown
above, only we now use Equation S.15 for the unconditional index and Equation S.16 for
the conditional index. Figure S6 shows the error for Simpson’s index for beta-diversity esti-
mated from the HPY model (unconditional and conditional) and naïvely. There are not many
discernible differences between the three estimation methods. This is likely due to the fact
that, when calculating the underlying true beta-diversity values, it is probable that one or
both of the proportions from a pair of populations will be zero. Thus, differences in the true
beta-diversity values will be greatly affected by more abundant species, whereas differences
in estimated values tend to occur due to differences in rarer species. Like before, estimation
improves substantially for both methods with an increasing number of sequences.

4. Data analysis results. We now outline the results of applying the HPY model in the
lean/obese twin study as described in Section 2.5. In this section we only consider the con-
ditional HPY version of Simpson’s index, due to its clear advantage over the unconditional
version as seen in the simulation study. First we consider the HPY estimated values of Simp-
son’s index within the obesity categories.

Figure 3(a) gives the distributions of Simpson’s index from the HPY sampler within each
of the obesity categories. There is no apparent difference in alpha-diversity between subjects
within the three categories using this measure. Similarly, we consider Simpson’s index for
beta-diversity in Figure 3(b) calculated between subject pairs within the same obesity cat-
egory and across obesity categories. Again, there is very little difference in beta-diversity
using this metric in subject pairs concordant for obesity category compared to discordant.

We also check the distributions of the estimated values of the local-level HPY parameters
in the obesity categories in Figure S7. As in the above results for diversity, there do not
appear to be differences in the distributions of either the local concentrations θj or the local
discounts σj between the obesity categories. Next, we check whether the estimated local-
level parameter estimates correlate with the age of the host. Though there is no apparent
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FIG 3. (a) Simpson’s index estimated from HPY model across overweight categories. (b) Simpson’s index for
beta-diversity between subject pairs that are concordant vs. discordant for overweight categories.

relationship for θj , there does appear to be a positive association between the age of the host
and the local discount σj , as shown in Figure S8. However, this association is rather weak
with linear regression estimating a slope of only 0.0064, p = 0.026. Recall that a positive
discount parameter reflects a non-neutral community. The range of estimated local discount
parameters is from about 0.3 to 0.67, suggesting non-neutral assemblage within all the local
communities.

Next we consider the effect of twin pairs on the results of the HPY model. In Figure S9
we examine scatterplots comparing (a) local concentration θj , (b) local discount σj , and (c)
Simpson’s index between twin pairs. There is no apparent concordance for any of the three
quantities between twin pairs. We also look at Simpson’s index for beta-diversity between
and across twin pairs from the HPY model in Figure S10. There is a subtle difference in
means of beta-diversity within and between twin pairs—the mean was 0.9098 for unrelated
pairs, and 0.9027 within twin pairs. A two-sample t-test for comparing these means resulted
in p= 0.0402. This means that the probability of sampling the same species twice is higher
for twin pairs, suggesting slightly more similar diversity within twin pairs compared to unre-
lated pairs. Finally, we check whether alpha-diversity or beta-diversity differs with respect to
monozygotic (MZ) or dizygotic (DZ) twin pairs in Figure S11. There does not appear to be
any significant difference in either alpha or beta-diveristy between MZ and DZ twin pairs.

It is also important to check the appropriateness of the HPY model on this dataset. To do
so, we compare the curve of ranked species abundances (averaged over all subjects in the
dataset) to multiple datasets simulated under the HPY model. In each simulation we ran the
HPY process using parameters from one of the MCMC samples from the Gibbs sampler run
on the lean/obese twins dataset. We also did the same using a hierarchical Dirichlet process
for comparison. Figure 4 shows the range of the the ranked species abundances curves for
the HPY and Dirichlet models along with the observed species abundance curve from the
dataset. It is immediately apparent that the HPY model fits the observed data much better
than the hierarchical Dirichlet model. In particular, the HPY model better captures the tail of
the distribution, which is unsurprising given the model’s ability to handle a power-law tail.

Finally we see the effect on the number of sequences in a sample on the difference in
Simpson’s index (both alpha and beta-diversity) between the HPY model and naïvely es-
timated. In Figure S12 we see the differences in both indices as a function of the number
of sequences; in the plot for beta-diversity we consider the sum of the sequences in both
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FIG 4. Ranked abundances of species in the twin study. The blue dots represent the true abundances and the
shaded region represents the range of the ranked abundances in the simulated data from both the hierarchical
Dirichlet and Pitman-Yor processes.

samples. In both cases there is more agreement between the HPY and naïve estimates with
increasing sequence counts. This result is consistent with the simulation results presented in
Section 3 and again underscores the fact that the HPY model is useful for estimating diversity
in populations with a smaller number of sequences sampled.

5. Discussion. In this paper we have applied the hierarchical Pitman-Yor process to
model species abundance distributions in microbiome sequencing data. We have developed
a Gibbs sampler to fit the model and shown that the parameters in the HPY process are well
estimated in this context. We have additionally provided a general formula for calculation
of Hill numbers in the context of the HPY process. Finally, we have derived an estimator of
Simpson’s index that leverages both HPY estimates from the Gibbs sampler as well as the ob-
served data and inferred ancestral states. This conditional estimator was shown to outperform
the unconditional estimator as well as the naïve estimator in most simulation cases.

The main limitation of the method is the computational inefficiency of the Gibbs sam-
pler, in particular resampling the ancestral states tjp. Since sequencing depths could be quite
high, there could be tens of thousands of ancestral states to update in each iteration of the
Gibbs sampler. However, because all individuals of the same species within a population
could be considered interchangeable to an extent, we do not have to keep track of the indi-
viduals’ ancestral states, rather we only need to keep track of the total number of ancestors
corresponding to each species. In this case, ancestors can be added or subtracted from each
population at a rate that depends on HPY parameters and current ancestor frequencies. Bun-
tine and Hutter (2010) developed a sampler in this style which could be applied instead of
the table indicator sampler as described by Battiston, Favaro and Teh (2018). Similarly, there
have also been developments in variational approximations in Dirichlet mixtures that could
be extended for the hierarchical Pitman-Yor model (Kurihara, Welling and Teh, 2007; Huynh,
Phung and Venkatesh, 2016). Such approximations could greatly reduce the computational
times in this model.

In this paper, when calculating Simpson’s index from the hierarhical Pitman-Yor model,
we consider the results of sampling the next two individuals from the Chinese restaurant
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representation of the process, after having observed a sample from the target population.
However this is distinct from the “true” diversity in a microbiome population, since the fre-
quencies of the Chinese restaurant process will be different in the true underlying population.
To get better estimates of diversity as well as species richness, individuals can be up-sampled
within each population using the Chinese restaurant process. From there various measures of
diversity could be calculated to estimate their true values in the underlying population. This
could be useful in particular for diversity measures that would be difficult or impossible to
write directly in terms of the HPY parameters.

One last point is that one of the main advantages of using the Pitman-Yor process instead
of the Dirichlet process was to better capture the tail of the ranked species abundance dis-
tribution. However, since Simpson’s index is a diversity measure of second order, it is not
sensitive to changes in the tail of this distribution. This means that Simpson’s index is not
necessarily the best diversity measure for investigating the tail. However, the calculation of
Simpson’s index can be expressed very nicely in terms of the probabilities defined by the
Chinese restaurant representation. We believe using this index is a good starting point for
demonstrating how diversity measures could be estimated using the HPY process, though
future work should focus on alternative metrics to better capture the tail of the ranked species
abundance distribution.

6. Conclusion. We have developed a Gibbs sampler to fit a model based on the hierar-
chical Pitman-Yor process given species abundance data across multiple microbial popula-
tions. This process is more appropriate for use on microbiota species abundance data than
the previously established hierarchical Dirichlet process due to its ability to accommodate a
power-law tail. Additionally, we have provided new expressions for Simpson’s index measur-
ing alpha-diversity and beta-diversity in the context of the hierarchical Pitman-Yor process
and showed their usefulness in simulation and in a data application. In doing so, we also
derived a general formula for calculation of the Hill numbers in the HPY framework.
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Supplementary file containing additional information relevant to the manuscript.

R-package
Implementation of the Gibbs sampler and calculation of Simpson’s index in the HPY model.
Package hpy is available at https://github.com/kevinmcgregor/hpy

Twin study data
This dataset is publicly available: https://pubmed.ncbi.nlm.nih.gov/19043404/
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