HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Hydrogen transport property of polymer-derived cobalt cation-doped amorphous silica

Abstract : The effect of the local structure of Co-doped amorphous silica on the hydrogen transport property was studied with the aim to improve the high-temperature hydrogen-permselectivity of microporous amorphous silica-based membranes. Co-Doped silica materials with measured Co/Si atomic ratios ranging from 0.01 to 0.18 were successfully synthesized through the polymer-derived ceramic (PDC) route. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses confirmed the amorphous state of the polymer-derived Co-doped silica, while both X-ray photoelectron and Fourier transform infrared (FT-IR) spectroscopy analyses revealed that the divalent Co cation (Co 2+) modified the matrix amorphous silica network to form hydrogen-bonded silanol. After dehydration treatment at 500°C in argon, hydrogen (H)/deuterium (D) isotope exchange behavior on the surface silanol groups (Si-OH/OD conversion) of the polymer-derived non-doped and Co-doped amorphous silica was in situ monitored by measuring diffuse reflectance infrared Fourier transform (DRIFT) spectra at 500°C. The self-diffusion coefficient for OH/OD conversion of free silanol groups of non-doped silica was 6.1 × 10 −15 m 2 s −1 , while that on the hydrogen bonded Si-OH was found to reach 15.6 × 10 −15 m 2 s −1 by Co-doping at the measured Co/Si atomic ratio of 0.05.The effect of the amount of Co 2+ doping on the hydrogen transport property was further studied by scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS) analyses, and it was suggested that a rather small amount of Co-doping, i.e. Co/Si atomic ratio of 0.05 was effective for enhancing high-temperature hydrogen permeance through microporous amorphous silica-based membranes.
Document type :
Journal articles
Complete list of metadata

Contributor : Samuel Bernard Connect in order to contact the contributor
Submitted on : Friday, December 18, 2020 - 3:28:12 PM
Last modification on : Friday, April 1, 2022 - 3:54:58 AM
Long-term archiving on: : Friday, March 19, 2021 - 6:10:17 PM


Files produced by the author(s)




Shotaro Tada, Shiori Ando, Toru Asaka, Yusuke Daiko, Sawao Honda, et al.. Hydrogen transport property of polymer-derived cobalt cation-doped amorphous silica. Inorganic Chemistry Frontiers, Royal Society of Chemistry, 2021, 8, pp.90-99. ⟨10.1039/d0qi01035a⟩. ⟨hal-03053425⟩



Record views


Files downloads