
HAL Id: hal-03049236
https://cnrs.hal.science/hal-03049236

Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance monitoring for sensorimotor confidence: A
visuomotor tracking study

Shannon M Locke, Pascal Mamassian, Michael S Landy

To cite this version:
Shannon M Locke, Pascal Mamassian, Michael S Landy. Performance monitoring for sen-
sorimotor confidence: A visuomotor tracking study. Cognition, 2020, 205, pp.104396.
�10.1016/j.cognition.2020.104396�. �hal-03049236�

https://cnrs.hal.science/hal-03049236
https://hal.archives-ouvertes.fr


Locke, S. M., Mamassian, P., & Landy, M. S. (2020), Cognition, 205:104396.
https://doi.org/10.1016/j.cognition.2020.104396 1

Performance Monitoring for Sensorimotor Confidence:
A Visuomotor Tracking Study

Shannon M. Lockea,b*, Pascal Mamassiana, Michael S. Landyb,c
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Abstract 1

To best interact with the external world, humans are often required to consider the quality 2

of their actions. Sometimes the environment furnishes rewards or punishments to signal 3

action efficacy. However, when such feedback is absent or only partial, we must rely on 4

internally generated signals to evaluate our performance (i.e., metacognition). Yet, very 5

little is known about how humans form such judgements of sensorimotor confidence. Do 6

they monitor their actual performance or do they rely on cues to sensorimotor uncertainty? 7

We investigated sensorimotor metacognition in two visuomotor tracking experiments, where 8

participants followed an unpredictably moving dot cloud with a mouse cursor as it followed 9

a random horizontal trajectory. Their goal was to infer the underlying target generating the 10

dots, track it for several seconds, and then report their confidence in their tracking as bet- 11

ter or worse than their average. In Experiment 1, we manipulated task difficulty with two 12

methods: varying the size of the dot cloud and varying the stability of the target’s velocity. 13

In Experiment 2, the stimulus statistics were fixed and duration of the stimulus presentation 14

was varied. We found similar levels of metacognitive sensitivity in all experiments, which 15

was evidence against the cue-based strategy. The temporal analysis of metacognitive sensi- 16

tivity revealed a recency effect, where error later in the trial had a greater influence on the 17

sensorimotor confidence, consistent with a performance-monitoring strategy. From these 18
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results, we conclude that humans predominantly monitored their tracking performance, al- 19

beit inefficiently, to build a sense of sensorimotor confidence. 20

21

Keywords: sensorimotor, confidence, metacognition, perception, action, tracking. 22

Highlights 23

• Participants consciously reflected on their tracking performance with some accuracy 24

• Sensorimotor confidence was mostly influenced by recent error 25

• Expectations of task difficulty did not play a large role in sensorimotor confidence 26

• Metacognitive sensitivity of binary confidence judgements on continuous performance 27

can be quantified with standard non-parametric techniques 28

1 Introduction 29

Sensorimotor decision-making is fundamental for humans and animals when interacting with 30

their environment. It determines where we look, how we move our limbs through space, 31

or what actions we select to intercept or avoid objects. In return, we may receive decision 32

feedback from the environment, such as resources, knowledge, social standing, injury, or 33

embarrassment. The outcomes of an action are often crucial for determining subsequent 34

sensorimotor decision-making, particularly in dynamic scenarios where a series of actions 35

are chained together to achieve a sensorimotor goal (e.g., dancing or tracking a target). But 36

what happens if external feedback is absent, partial, or significantly delayed? How then do 37

we judge if an action has been performed well? One possible solution is for the person to 38

form their own subjective evaluation of sensorimotor performance using whatever sensory or 39

motor signals are available. These metacognitive judgements reflect the person’s confidence 40
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that their action or series of actions were correct or well-suited to their sensorimotor goal. 41

Yet, despite such judgements being a familiar and everyday occurrence, they have received 42

relatively little direct scientific scrutiny. 43

Before surveying the scientific context for the current study, it is imperative we clearly 44

define sensorimotor confidence. We consider three components necessary for the formation 45

of sensorimotor confidence, illustrated in Figure 1. First, there must be sensory inputs 46

relevant for action selection and a consideration of the perceptual uncertainty or error of 47

these inputs when assigning confidence. That is, sensory signals weakened by external or 48

internal noise (e.g., foggy day, low attentional resources) should negatively affect confidence. 49

However, it is important to note that observers may hold false beliefs about their sensory 50

observations, which should be reflected in their subjective evaluations. The second crucial 51

element is the performed action, with a consideration of the specific action taken (i.e., motor 52

awareness) and an estimate of uncertainty or error in the action execution. Decreased motor 53

awareness or experience of large motor noise should decrease sensorimotor confidence, un- 54

less the actor holds false beliefs. Evaluations of motor performance can come from various 55

sources of information, from motor commands, proprioception, or self-observation of the 56

action with one of the senses (e.g., seeing one’s own hand during a reach). Finally, there 57

must be a consideration of the sensorimotor goal, the objective for purposeful action, which 58

defines the landscape of success and failure for the individual. First, the consequences of 59

error may be asymmetric or lead to varying outcomes (e.g., stopping short of an intersec- 60

tion versus going too far; for an example of the effect of an asymmetric loss function, see 61

Mamassian and Landy, 2010), so sensorimotor goals should be selected by appropriately 62

factoring in the consequences of different potential outcomes (Trommershäuser et al., 2008). 63

Alternatively, an entirely wrong goal can be selected, leading to errors even when actions 64

are well-executed under ideal viewing conditions (e.g., mistakenly trying to unlock a car 65

that is not yours but looks similar). From a more subjective perspective, individuals may 66

differ in terms of what is considered success or failure, such as the goals of novice sports 67
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players versus professionals, which colour their evaluations of performance. Thus, evaluat- 68

ing the sensorimotor goal itself should be considered part of sensorimotor confidence. We 69

propose that subjective reports in the absence of any one of these three elements do not 70

constitute sensorimotor confidence but rather different forms of confidence (e.g., perceptual 71

confidence, motor-awareness confidence, etc.). 72

Elements of sensorimotor confidence have been touched upon in a variety of domains, 73

highlighting many of brain’s sophisticated monitoring and control processes that operate 74

on internally-gathered information (see Figure 1 for a summary). For the highest level of 75

processing, there is the study of cognitive control, which describes how the goals or plans 76

translate into actual behaviour. It is thought that cognitive control is responsible for the 77

appropriate deployment of attention, as well as voluntary selection, initiation, switching, 78

or termination of tasks (Norman and Shallice, 1986; Botvinick et al., 2001; Alexander and 79

Brown, 2010). At the lowest level of processing, there is the study of sensorimotor con- 80

trol. Usually, research questions focus on how the brain senses discrepancies between the 81

intended outcome of motor commands, as specified by an internal model, and the actual 82

action outcomes, that are processed as a feedback signal, to correct and update subsequent 83

motor control signals (Wolpert et al., 1995; Todorov, 2004). While the understanding of 84

sensorimotor processes is quite advanced, both at the behavioural and neural levels, very 85

little is known about our ability to consciously monitor sensorimotor performance. 86

If the action is reduced to a simple report of what is perceived, the monitoring of senso- 87

rimotor performance reduces to the study of perceptual confidence (Pleskac and Busemeyer, 88

2010; Fleming and Dolan, 2012; Mamassian, 2016). Perceptual confidence is a metacogni- 89

tive process that corresponds to the subjective sense of the correctness of our perceptual 90

decisions (Galvin et al., 2003; Pouget et al., 2016). Human observers exhibit consider- 91

able sensitivity to the quality of the processing of sensory information and the resulting 92

ability to predict the correctness of a perceptual choice (Barthelmé and Mamassian, 2010; 93

Kiani et al., 2014; Adler and Ma, 2018). However this so-called Type-2 judgement often 94
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Perception Action

Sensorimotor

Goal

Motor Awareness

Awareness of the actions performed

Perceptual confidence

Ability to subjectively evaluate the accuracy of perceptual judgements

Cognitive control

Performance monitoring for modulating attention, initiating/selecting/switching tasks, etc.

Uncertainty cues to difficulty (prospective)

Knowledge of perceptual uncertainty and/or motor noise that predicts performance

Feedback cues to performance (retrospective)

Evaluation of sensorimotor error signals from internal models, proprioception, vision, etc.

Figure 1: Components of sensorimotor control (left) and related topics in the literature
(right). Sensorimotor confidence is a subjective evaluation of how well behaviour fulfilled
the sensorimotor goal, considering both sensory and motor factors. The topic of senso-
rimotor confidence is complementary to the discussions of cognitive control, perceptual
confidence, motor awareness, uncertainty, and self-generated feedback. It is likely that cues
to difficulty and performance, that are responsible for the computation of sensorimotor con-
fidence, originate both from sensory and motor sources. The former cues are prospective as
they are related to how well the acting agent can potentially perform, whereas the latter
are retrospective, they become available only after the action has occurred.

incurs additional noise, on top of the sensory noise that impairs perceptual performance 95

(Type-1 decisions) (Maniscalco and Lau, 2016). More recently, researchers have considered 96

the contribution of motor factors in perceptual confidence (Yeung and Summerfield, 2012; 97

Kiani et al., 2014; Fleming and Daw, 2017). Such elements are crucial, for example, for 98

the observer to respond “low confidence” on lapse trials where they are sure they mistak- 99

enly pressed the wrong key. In other examples, motor behaviour is used as an index of 100

perceptual confidence by tracking hand kinematics while observers report their perceptual 101

judgement (Resulaj et al., 2009; Patel et al., 2012; Dotan et al., 2018). However, these 102

noted contributions are often restricted to simple motor behaviours, and do not take into 103

account sources of response variability from action execution. 104

Motor awareness, the degree to which we are conscious of the actions we take (Blake- 105

more et al., 2002; Blakemore and Frith, 2003), is also likely to contribute to sensorimotor 106

confidence. Not all actions are consciously monitored, and it is a common experience to act 107

without conscious control. For example, when we are walking, we are not always thinking 108
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of exactly how to place one foot in front of the other. Yet, for other actions, we must 109

consciously attend to them, such as threading a sewing needle. A seminal study on motor 110

awareness by Fourneret and Jeannerod (1998) found poor introspective ability for the ac- 111

tion made when an unseen hand movement is perturbed by a horizontal displacement in 112

the visual feedback signal. Participants discount their compensatory actions and instead 113

indicated that their hand position followed a trajectory much like the perturbed cursor. 114

Follow-up studies have modified the response to be a binary motor-awareness decision (e.g., 115

“Was feedback perturbed or not”) followed by a confidence rating (Sinanaj et al., 2015; 116

Bègue et al., 2018). Another motor-awareness study measured confidence ratings following 117

a judgement of whether a visual dot was flashed ahead or behind their finger position dur- 118

ing up-down movement (Charles et al., 2020). However, we shall argue that none of these 119

measurements of confidence correspond to sensorimotor confidence as we have defined it. 120

Motor-awareness confidence reflects the knowledge held about the executed actions, but 121

lacks the sensory and goal components of sensorimotor confidence. To our knowledge, the 122

only study to ask participants to explicitly reflect on their sensorimotor performance was 123

by Mole et al. (2018), who had participants perform a virtual driving task. Green lines 124

were placed on the road to indicate a good-performance zone, and after completing the 125

trial, they were asked to report the percentage of time they spent in the green zone (i.e., a 126

continuous measure of sensorimotor confidence). They found that correspondence between 127

objective performance and sensorimotor confidence roughly followed difficulty of the task 128

but was otherwise limited. 129

The study of sensorimotor confidence should also be contrasted with the mere knowl- 130

edge of sensorimotor uncertainty in the absence of any particular instance of sensorimotor 131

control (Augustyn and Rosenbaum, 2005). In theory, this can be studied by examining 132

how knowledge of variability from sensory, motor, and task sources, influences the action- 133

selection process in motor decision-making (Wolpert and Landy, 2012). The majority of 134

studies support the hypothesis that humans plan actions consistent with accurate knowledge 135
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of their sensorimotor uncertainty (e.g., Augustyn and Rosenbaum, 2005; Trommershäuser 136

et al., 2008; Stevenson et al., 2009; Bonnen et al., 2015), with some exceptions (e.g., Mamas- 137

sian, 2008; Zhang et al., 2013). However, the degree to which this knowledge is consciously 138

available to the person is highly debatable (Augustyn and Rosenbaum, 2005). Furthermore, 139

judgements of one’s uncertainty in a planned action only allow one to predict the probability 140

of a successful outcome. In this sense, they can act as prospective confidence judgements 141

before the action is taken, but do not constitute retrospective confidence judgements made 142

by reflecting on sensorimotor behaviour from performance monitoring. For example, one 143

would typically have more prospective confidence for riding a bicycle than a unicycle. This 144

belief is not derived from performance monitoring but rather from experience-informed ex- 145

pectation. In other areas of metacognitive research, such use of uncertainty information 146

or other predictions of task difficulty are considered heuristics that can even impair the 147

relationship between objective performance and confidence (e.g., Spence et al., 2015; De 148

Gardelle and Mamassian, 2015; Mole et al., 2018; Charles et al., 2020). Thus, it is desirable 149

to identify the degree to which sensorimotor confidence is based on conscious monitoring 150

of performance from feedback cues versus prospective judgements of performance based on 151

uncertainty cues. 152

Here, we report on two experiments explicitly measuring sensorimotor confidence in a 153

visuomotor tracking task using a computer display and mouse. In both experiments, partic- 154

ipants manually tracked an invisible target that moved horizontally by inferring its location 155

from a noisy sample of evidence in the form of a twinkling dot cloud. The trajectory of the 156

target was unpredictable, as its velocity profile was generated by a random-walk algorithm. 157

A dynamic task was selected to mirror the sensorimotor goals typically encountered in the 158

real world. 159

After tracking, participants reported their sensorimotor confidence by subjectively evalu- 160

ating their tracking performance with a relative judgement of “better” or “worse” than their 161

average. This confidence measure differs from that typically used in perceptual confidence 162
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(Mamassian, 2020). For a perceptual judgement in a typical psychophysical experiment, 163

there are only two choice outcomes, correct or incorrect, and the confidence report solicited 164

by the experimenter reflects the belief in the correctness (Pouget et al., 2016). If given a full- 165

scale confidence measure ranging from 0% to 100% (Weber and Brewer, 2003), participants 166

can use the low end of the scale to report they are sure to be incorrect. In contrast, when 167

given a half-scale ranging from 50% to 100%, the low end of the scale collapses both the 168

?correct-unsure? and ?incorrect-sure? responses. Sensorimotor decisions, however, do not 169

produce binary outcomes (correct/incorrect). Rather, they produce continuous outcomes 170

(e.g., 1 degree of error, 2 degrees, etc.) and will almost always have some amount of error. 171

Knowing that interpreting calibration judgements is not very straightforward (Fleming and 172

Lau, 2014), we did not ask participants to report perceived error on a continuous scale. 173

Instead, we opted for the simpler request that participants perform a median split of bet- 174

ter/worse performance, turning the confidence judgement into a binary judgement. How 175

does this map onto low-error/high-error (like correct and incorrect for perceptual decisions) 176

and sure/unsure? If they are sure of lower-than-average error or higher-than-average error 177

they would just report ?worse? or ?better?. In the case they were unsure, they should 178

essentially flip a coin, because they do not know. Thus our measure is more akin to a 179

full-scale judgement with only two choice categories, and not the half scale you would get 180

for a high/low confidence judgement. Our measure allowed us to assess the correspondence 181

between true performance and subjective performance. 182

In Experiment 1, trials differed in terms of the uncertainty in target location. We used 183

two manipulations to achieve this: varying the size of the dot cloud (i.e., dot-sample noise), 184

and varying the stability of the target’s velocity (i.e., random-walk noise). In Experiment 185

2, we manipulated only the stimulus-presentation duration to introduce uncertainty about 186

when the confidence response would be required. We had several goals in this study: 1) to 187

test whether humans are able to make reasonable sensorimotor confidence judgements from 188

monitoring performance-error signals rather than relying only on uncertainty-based expec- 189
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tations; 2) to quantify how well sensorimotor confidence reflected objective performance; 190

and 3) to examine how error information at different moments in time contributes to the 191

final sensorimotor confidence judgement. 192

2 Experiment 1 193

Experiment 1 sought to measure sensorimotor confidence in a visuomotor tracking task 194

and establish a metric of metacognitive sensitivity that quantified how well the confidence 195

judgements corresponded to objective tracking performance. Difficulty in the task was 196

manipulated in the cloud-size session by varying the external noise of the sensory evidence 197

indicating the target location. In the velocity-stability session, we varied the degree of noise 198

in the target’s horizontal trajectory. To investigate the error evidence contributing to the 199

sensorimotor confidence, we investigated the temporal pattern of metacognitive sensitivity, 200

applying our metric to 1 s time bins within the trial. 201

2.1 Methods 202

Participants: Thirteen naive participants (23 – 35 years old, two left-handed, four female) 203

took part in the study. All had normal or corrected-to-normal vision and self-reported 204

normal motor functioning. They received details of the experimental procedures and gave 205

informed consent prior to the experiment. Participants were tested in accordance with the 206

ethics requirements of the École Normale Supérieure and the Declaration of Helsinki. 207

Apparatus: Stimuli were displayed on a V3D245 LCD monitor (Viewsonic, Brea, CA; 208

52 x 29.5 cm, 1920 x 1080 pixels, 60 Hz). Participants sat 46.5 cm from the monitor with 209

their head stabilised by a chin rest. Manual tracking was performed using a Logitech M325 210

wireless optical mouse (60 Hz sampling rate, standard acceleration profile for Mac OS X), 211

operated by the participant’s right hand. Subjective assessments of performance were re- 212

ported on a standard computer keyboard with the left hand. The experiment was conducted 213
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using custom-written code in MATLAB version R2014a (The MathWorks, Natick, MA), 214

using Psychtoolbox version 3.0.12 (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). 215

Dot-cloud stimulus: On every frame, the horizontal and vertical coordinates of two 216

white dots were drawn from a 2D circularly symmetric Gaussian generating distribution 217

with standard deviation σcloud. The mean of the distribution was the tracking target, which 218

was invisible to observers and must be inferred from the dot cloud. Each dot had a one- 219

frame lifetime and two new dots were drawn every frame. Due to the persistence of vision, 220

participants had the impression of seeing up to 10 dots at any one time (Figure 2A). Dots 221

had a diameter of 0.25 deg and were presented on a mid-grey background. Dots were gen- 222

erated using Psychtoolbox functions that rendered them with sub-pixel dot placement and 223

high quality anti-aliasing. The horizontal position of the target changed every frame accord- 224

ing to a random walk in velocity space (Figure 2B): vt+1 = vt + ε and ε ∼ N (0, σwalk) deg/s. 225

This gave the target momentum, making it more akin to a real-world moving target (Fig- 226

ure 2C). Both the target and the black cursor dot (diam.: 0.19 deg) were always centred 227

vertically on the screen. The cursor could not deviate vertically during tracking (i.e., any 228

vertical movements of the mouse were ignored in the rendering of the cursor icon) and 229

participants were informed of this during training. Trajectories that caused the target to 230

move closer than 2×max(σcloud) from the screen edge were discarded and resampled prior 231

to presentation. 232

Task: The trial sequence (Figure 2D) began with a red dot at the centre of the screen. 233

Participants initiated the tracking portion of the trial by moving the black cursor dot to this 234

red dot, causing the red dot to disappear. The dot-cloud stimulus appeared immediately, 235

with the target centred horizontally. The target followed its horizontal random walk for 236

10 s. Then, the participant made a subjective assessment of tracking performance while 237

viewing a blank grey screen, reporting by keypress whether they believed their tracking 238

performance was better or worse than their session average. 239

The experiment was conducted in two 1-hour sessions on separate days. In the “cloud 240

https://doi.org/10.1016/j.cognition.2020.104396
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in temporal averaging and motor constraints, it is not possible to estimate motor noise

just yet and analysis will be restricted to the computational lag.

Results & Discussion

A cross-correlation analysis was performed to determine the lag between the target lo-

cation and the cursor placement for every single trial. The cross-correlation values were

normalised to produce a correlation coe�cient by subtracting the mean and dividing by

the standard deviation for each lag value examined. Cross-correlograms were first av-

eraged within subjects, with the peak used as the estimate of the subject’s preferred

tracking lag, ⌧ , for the model fitting(see Figure 4a). Averaging these cross-correlograms

indicates that normal, healthy adult is expected to have a ⌧ of approximately 400 ms.

Shown in Figure 4b is the distribution of peak lags across trials for each subject. The

histograms are all positively skewed and resemble those observed for reaction times in

traditional psychophysics tasks (Usher & McClelland, 2001). However, a one-sample t-

test on the Pearson moment coe�cient of skewness for each subject’s sample of peak lags

did not reveal a significant e↵ect (t(4)=2.24 , p = 0.09). This result is not unexpected

given the small sample size of this pilot experiment. Subjects are encouraged by the

points system of the experiment to track the target quickly, but doing so may reduce
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Figure 4: A) Mean cross-correlations for individual subjects (black) and averaged across sub-
jects (red). Peak lag for the red trace is 400 ms. B) Individual histograms showing the percent
of traces with a particular peak lag (smoothed with a Gaussian filter with sd= 20 ms).
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Figure 5: A comparison of the lag in tracking for one subject in a task where the target is
inferred from the dot cloud (“cloud”, blue), and a task where the target is visible (“target”,
orange). The dashed lines indicate peak of the mean cross-correlation from each of the tasks.
The distance between these peaks corresponds to the time to compute the centroid, ⌧centroid

(abbr. in figure), assuming that temporal lag due to sensory processing and motor execution
are the same in both tasks.

the accuracy of their tracking for various reasons such as reduced time in estimating the

centroid or planning and executing a movement. Therefore, peak tracking time may be a

useful measure of speed in a speed-accuracy trade-o↵ analysis. Current attempts at this

analysis suggest that more data needs to be collected.

The same cross-correlation analysis was applied to the tracking data from the task

where the target was made visible (see Figure 5). As expected, the peak lag for the ex-

plicit target experiment is lower than for the peak lag for the experiment requiring the

subject to infer target location from the dot cloud. This indicates the subject takes ap-

proximately 70 ms to compute the centroid of the dot cloud and 300 ms to both process

the sensory information and execute a movement. Another noticeable di↵erence between

the two distributions of peak lags is that the target visible distribution has a smaller vari-

ance, indicating that computing the centroid contributes considerably to the variability

in tracking delays. Viewing the results in another way, one could say that decreasing the

di�culty of the task by providing the target’s true location led to faster responses. This is

consistent with traditional decision-making experiments (Gold & Shadlen, 2007). Further

experiments are needed to see if manipulating the quality of the sensory information in

the dot cloud (i.e. the number of dots) will similarly a↵ect tracking lag.

Tracking behaviour was first compared to the standard Kalman filter described in
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Figure 6: Comparison of errors as compared to the true target location for 1) the actual tracking
behaviour of the subject, 2) the unadjusted Kalman filter, and 3) a Kalman filter lagged by the
subject’s peak tracking lag. Error bars and shaded error region represent the 95% confidence
intervals.

Part 2. This model is equivalent to a human that has no temporal averaging or internal

sensory noise and can instantaneously place the cursor on the estimated target location

without any motor noise. Figure 6a shows that the human performance is approximately

three times worse than this model when assessed in terms of the Root Mean Square Error

(RMSE). If, however, the output of this Kalman filter is shifted by ⌧ estimate of the

corresponding subject, the performance is indistinguishable from that of the human4. It

is unlikely that more tracking trial will reduce the spread of errors as Subject 1 in the plot

completed 2.5 times more trials than the other subjects. Figure 6b plots the di↵erence

between the subject’s tracking and the two models on a per trial basis. Again, it is not

possible to di↵erentiate the lagged Kalman filter and human performance. This suggests

adding in the additional components of the model may be tricky if RMSE is used as the

metric of fit.

To conclude, a lagged version of the standard Kalman filter did very well at fitting

human performance. The average tracking lag was very consistent across subjects, and

the distributions of peak tracking lag tended to follow the pattern observed for reaction

times in non-tracking experiments.

4Do you think it is a problem I am using the same sequences to estimate tracking lag and assess the
fit of the model?
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Part 2. Modelling Approach

This section outlines the development of a Bayesian ideal observer model for a tracking

task where subjects track a moving cloud of dots as moves along a one-dimensional ran-

dom walk trajectory (see Figure 1). We selected the Kalman filter, which is the optimal

recursive linear estimator suited to dynamic environments assuming all noise in the sys-

tem is Gaussian. This is the “decision” component of the model. The Kalman filter is

biologically plausible is because it does not require infinite memory, yet considers every

piece of sensory evidence given.

The decision, “where to move next?”, is answered by this model, but requires realistic

inputs and outputs. We consider several human perception factors that act on the sensory

input and motor outputs, as well as modify variables in the decision-making machinery. A

schematic diagram of the final model is shown at the end of this section (Figure 3). This

model gives, for a particular sensory input, the ideal tracking performance achievable.
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Figure 1: A) Example of a single display frame. White dots are sampled from a 2D Gaussian
distribution (red dot indicates mean and dashed line shows 1 SD, both not visible to subjects).
Black dot is the cursor position as set by the subject. B) An example horizontal random-walk
trajectory of the target.
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Mean cross-correlograms 
of target and cursor: 

subject’s appear to lag 
behind the stimulus by 400 

ms (add legend). Human error versus 
model error:  

Applying temporal lag to 
a Kalman filter Oh look, 
simple Kalman filter with 

temporal lag does a 
good job at explaining 

error (difference is 
between human and 

model). (make fill versus 
no fill)Control experiment (tracking 

visible target): Tracking lag not just 
motor response time, reflects 
something about computation 
(CCG). Include tracking lag 

distribution for standard non-
lagged model (simulations), this 

shows the contribution of the 
exponential decay weighting 

function to lag.

Result 1: ROC 
curves: show all Ss 
on plot, mean area 
(SEM) AUROC. Oh 

look, there appears to 
be meta-cognitive 

sensitivity going on!
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Figure 2.4: Metacognitive ROC curves were computed non-parametrically (i.e. using the raw data)
for each observer in each condition. The area under the curve was also computed non-parametrically
using the trapezoidal method detailed in Macmillan and Creelman (2005) on pg. 64. An area of 0.5,
or a curve that falls along the dashed line, indicates no metacognitive sensitivity. An area of 1, or a
curve that follows the left and top border, indicates the upper limit of metacognitive sensitivity.
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag

Page 5

Second Year Paper 25th September 2016

the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply
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where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp
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(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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in temporal averaging and motor constraints, it is not possible to estimate motor noise

just yet and analysis will be restricted to the computational lag.

Results & Discussion

A cross-correlation analysis was performed to determine the lag between the target lo-

cation and the cursor placement for every single trial. The cross-correlation values were

normalised to produce a correlation coe�cient by subtracting the mean and dividing by

the standard deviation for each lag value examined. Cross-correlograms were first av-

eraged within subjects, with the peak used as the estimate of the subject’s preferred

tracking lag, ⌧ , for the model fitting(see Figure 4a). Averaging these cross-correlograms

indicates that normal, healthy adult is expected to have a ⌧ of approximately 400 ms.

Shown in Figure 4b is the distribution of peak lags across trials for each subject. The

histograms are all positively skewed and resemble those observed for reaction times in

traditional psychophysics tasks (Usher & McClelland, 2001). However, a one-sample t-

test on the Pearson moment coe�cient of skewness for each subject’s sample of peak lags

did not reveal a significant e↵ect (t(4)=2.24 , p = 0.09). This result is not unexpected

given the small sample size of this pilot experiment. Subjects are encouraged by the

points system of the experiment to track the target quickly, but doing so may reduce
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0.2

0.4

0.6

0.8

1

400 ms lag

Tracking Lag (sec)

C
or

re
la

ti
on

(A)

0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

Peak Tracking Lag (sec)

P
er

ce
n
t

(B)

Figure 4: A) Mean cross-correlations for individual subjects (black) and averaged across sub-
jects (red). Peak lag for the red trace is 400 ms. B) Individual histograms showing the percent
of traces with a particular peak lag (smoothed with a Gaussian filter with sd= 20 ms).
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Figure 5: A comparison of the lag in tracking for one subject in a task where the target is
inferred from the dot cloud (“cloud”, blue), and a task where the target is visible (“target”,
orange). The dashed lines indicate peak of the mean cross-correlation from each of the tasks.
The distance between these peaks corresponds to the time to compute the centroid, ⌧centroid

(abbr. in figure), assuming that temporal lag due to sensory processing and motor execution
are the same in both tasks.

the accuracy of their tracking for various reasons such as reduced time in estimating the

centroid or planning and executing a movement. Therefore, peak tracking time may be a

useful measure of speed in a speed-accuracy trade-o↵ analysis. Current attempts at this

analysis suggest that more data needs to be collected.

The same cross-correlation analysis was applied to the tracking data from the task

where the target was made visible (see Figure 5). As expected, the peak lag for the ex-

plicit target experiment is lower than for the peak lag for the experiment requiring the

subject to infer target location from the dot cloud. This indicates the subject takes ap-

proximately 70 ms to compute the centroid of the dot cloud and 300 ms to both process

the sensory information and execute a movement. Another noticeable di↵erence between

the two distributions of peak lags is that the target visible distribution has a smaller vari-

ance, indicating that computing the centroid contributes considerably to the variability

in tracking delays. Viewing the results in another way, one could say that decreasing the

di�culty of the task by providing the target’s true location led to faster responses. This is

consistent with traditional decision-making experiments (Gold & Shadlen, 2007). Further

experiments are needed to see if manipulating the quality of the sensory information in

the dot cloud (i.e. the number of dots) will similarly a↵ect tracking lag.

Tracking behaviour was first compared to the standard Kalman filter described in
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Figure 6: Comparison of errors as compared to the true target location for 1) the actual tracking
behaviour of the subject, 2) the unadjusted Kalman filter, and 3) a Kalman filter lagged by the
subject’s peak tracking lag. Error bars and shaded error region represent the 95% confidence
intervals.

Part 2. This model is equivalent to a human that has no temporal averaging or internal

sensory noise and can instantaneously place the cursor on the estimated target location

without any motor noise. Figure 6a shows that the human performance is approximately

three times worse than this model when assessed in terms of the Root Mean Square Error

(RMSE). If, however, the output of this Kalman filter is shifted by ⌧ estimate of the

corresponding subject, the performance is indistinguishable from that of the human4. It

is unlikely that more tracking trial will reduce the spread of errors as Subject 1 in the plot

completed 2.5 times more trials than the other subjects. Figure 6b plots the di↵erence

between the subject’s tracking and the two models on a per trial basis. Again, it is not

possible to di↵erentiate the lagged Kalman filter and human performance. This suggests

adding in the additional components of the model may be tricky if RMSE is used as the

metric of fit.

To conclude, a lagged version of the standard Kalman filter did very well at fitting

human performance. The average tracking lag was very consistent across subjects, and

the distributions of peak tracking lag tended to follow the pattern observed for reaction

times in non-tracking experiments.

4Do you think it is a problem I am using the same sequences to estimate tracking lag and assess the
fit of the model?
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Part 2. Modelling Approach

This section outlines the development of a Bayesian ideal observer model for a tracking

task where subjects track a moving cloud of dots as moves along a one-dimensional ran-

dom walk trajectory (see Figure 1). We selected the Kalman filter, which is the optimal

recursive linear estimator suited to dynamic environments assuming all noise in the sys-

tem is Gaussian. This is the “decision” component of the model. The Kalman filter is

biologically plausible is because it does not require infinite memory, yet considers every

piece of sensory evidence given.

The decision, “where to move next?”, is answered by this model, but requires realistic

inputs and outputs. We consider several human perception factors that act on the sensory

input and motor outputs, as well as modify variables in the decision-making machinery. A

schematic diagram of the final model is shown at the end of this section (Figure 3). This

model gives, for a particular sensory input, the ideal tracking performance achievable.
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0 2 4 6 8 10 12 14 16 18 20

�10

0

10

Time (sec)

T
ar

ge
t

µ
t
(d

eg
)

(B)

Figure 1: A) Example of a single display frame. White dots are sampled from a 2D Gaussian
distribution (red dot indicates mean and dashed line shows 1 SD, both not visible to subjects).
Black dot is the cursor position as set by the subject. B) An example horizontal random-walk
trajectory of the target.
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Mean cross-correlograms 
of target and cursor: 

subject’s appear to lag 
behind the stimulus by 400 

ms (add legend). Human error versus 
model error:  

Applying temporal lag to 
a Kalman filter Oh look, 
simple Kalman filter with 

temporal lag does a 
good job at explaining 

error (difference is 
between human and 

model). (make fill versus 
no fill)Control experiment (tracking 

visible target): Tracking lag not just 
motor response time, reflects 
something about computation 
(CCG). Include tracking lag 

distribution for standard non-
lagged model (simulations), this 

shows the contribution of the 
exponential decay weighting 

function to lag.

Result 1: ROC 
curves: show all Ss 
on plot, mean area 
(SEM) AUROC. Oh 

look, there appears to 
be meta-cognitive 

sensitivity going on!
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Figure 2.4: Metacognitive ROC curves were computed non-parametrically (i.e. using the raw data)
for each observer in each condition. The area under the curve was also computed non-parametrically
using the trapezoidal method detailed in Macmillan and Creelman (2005) on pg. 64. An area of 0.5,
or a curve that falls along the dashed line, indicates no metacognitive sensitivity. An area of 1, or a
curve that follows the left and top border, indicates the upper limit of metacognitive sensitivity.
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk
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walk + �2

cloud
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where �cloud is the standard deviation of the generating Gaussian distribution for dot
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describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:
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Pt = (1 � Kt)(Pt�1 + �2
walk) (4)
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The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag

Page 5

Second Year Paper 25th September 2016

the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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Figure 2: Visuomotor tracking task. A: The “twinkling” dot cloud stimulus (white), gen-
erated by drawing two dots per frame from a 2D Gaussian generating distribution. Red:
mean and 1 SD circle, which were not displayed. Black: mouse cursor. The dots provided
sensory evidence of target location (generating distribution mean). As illustrated, more
than two dots were perceived at any moment due to temporal averaging in the visual sys-
tem. B: Example target random-walk trajectory in velocity space. C: The corresponding
horizontal trajectory of the target. D: Trial sequence. Trials were initiated by the observer,
followed by 10 s of manual tracking of the inferred target with a computer mouse. Then,
participants reported their sensorimotor confidence by indicating whether their performance
on that trial was better or worse than their average. Objective performance feedback was
provided intermittently including average points awarded and a final leaderboard. Diffi-
culty manipulations: cloud size (σcloud) and velocity stability (σwalk) were varied in separate
sessions.
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size” session, the standard deviation of the dot cloud, σcloud, was varied from trial to trial 241

(5 levels: 1, 1.5, 2, 2.5, and 3 deg) and the standard deviation of the random walk, σwalk, 242

was fixed at 0.15 deg/s. In the “velocity stability” session, σwalk was varied (5 levels: 0.05, 243

0.10, 0.15, 0.20, and 0.25 deg/s) and σcloud was fixed at 2 deg. Examples of the stimuli 244

for both sessions are provided as Supplementary media files. The order of sessions was 245

counterbalanced across participants to the best extent possible. Each session began with 246

a training block (20 trials, 4 per stimulus level in random order), where only tracking 247

responses were required. The training trials allowed participants to become familiar with 248

the stimulus and set-up, and to form an estimate of their average performance. The main 249

testing session followed (250 trials, 50 per stimulus level in random order). For the second 250

session, participants were instructed to form a new estimate of average performance, and 251

not to rely on their previous estimate. 252

Grading objective performance: For our analyses, we used root-mean-squared-error 253

(RMSE) in deg as our measure of tracking error, calculated from the horizontal distance 254

between the target (i.e., the current distribution mean) and the cursor. For the purposes 255

of feedback, the tracking performance on each trial was converted to a score according to 256

the formula points = 100 − 30 ∗ RMSE. Typical scores ranged from 60 to 80 points. 257

Every 5 trials, the average score for the previous 5-trials was reported. This feedback 258

was provided for both training and test trials. Presenting the average score served several 259

purposes. The primary purpose of the feedback was to focus the efforts of participants 260

on their tracking, thus discouraging them choosing ahead of time whether the trial was 261

to be “better” or “worse” and executing tracking to match their metacognitive rating. 262

Feedback also could have encouraged consistent performance across the session and helped 263

participants to maintain a calibrated internal estimate of average performance. At the end 264

of a session, participants were shown their cumulative score for that session and ranking on 265

a performance leaderboard. 266

Metacognitive sensitivity metric: To examine sensorimotor confidence, we sought 267
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a metacognitive sensitivity metric that reflected how well the confidence reports discrimi- 268

nated good from bad tracking performance (i.e., low versus high RMSE). This concept is 269

similar to the one used in perceptual confidence, where metacognitive sensitivity refers to a 270

person’s ability to distinguish correct from incorrect decisions (Fleming and Lau, 2014). As 271

the outcome of tracking was not binary (e.g., correct vs. incorrect), we considered the ob- 272

jective tracking performance within a trial relative to all trials within the session performed 273

by that participant. We constructed two objective-performance probability distributions 274

conditioned on the sensorimotor confidence: one distribution for trials followed by a “bet- 275

ter than average” response and one for “worse than average” responses (Figure 3A-B). A 276

high overlap in these conditional distributions would reflect low metacognitive sensitivity as 277

this means objective performance is a poor predictor of the participant’s evaluation of their 278

performance. Conversely, low overlap indicates high metacognitive sensitivity. We used an 279

empirical Receiver Operating Characteristic (ROC) curve, also known as a quantile-quantile 280

plot (Figure 3C), for a non-parametric measure of metacognitive sensitivity that reflected 281

the separation of these distributions, independent of any specific criterion for average per- 282

formance. As shown in Figure 3D, completely overlapping distributions would fall along the 283

equality line in an ROC plot, resulting in an Area Under the ROC curve (AUROC) of 0.5. 284

In contrast, complete separation would yield an AUROC of 1. An advantage of this tech- 285

nique over methods that rely on averaging (e.g., classification images) is that this method 286

is suitable for continuous performance distributions of any shape (e.g., skewed). There are 287

two things worth noting about the interpretation of this metric. First, this is not the ROC 288

method other researchers typically use to measure perceptual confidence (Barrett et al., 289

2013; Fleming and Lau, 2014). AUROC has, however, been used previously to explore the 290

relationship between choice correctness and continuous confidence ratings as well as reaction 291

times (Faivre et al., 2018). Second, our AUROC measure has the following interpretation: 292

if the experimenter was given the RMSE of two trials and was told one was rated “worse” 293

and the other “better”, the AUROC would reflect the probability of correctly inferring that 294
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Figure 3: A metacognitive sensitivity metric. A: Example of tracking error within a trial.
Root-mean-squared-error (RMSE, dashed line) was the objective performance measure.
B: Example participant’s objective-error distributions, conditioned on sensorimotor confi-
dence, for all trials in the variable cloud-size session. True average performance (dashed line)
indicates the ideal criterion. Smaller RMSE tended to elicit “better” reports, and larger
RMSE “worse”. C: Metacognitive sensitivity was quantified by the separation of the con-
ditional objective-error distributions with a non-parametric calculation of the Area Under
the ROC (AUROC) using a quantile-quantile plot. At every point along the objective-
performance axis, the cumulative probability of each conditional error distribution was
contrasted. D: The area under the resulting curve is the AUROC statistic, with 0.5 indi-
cating no meta-cognitive sensitivity and 1 indicating maximum sensitivity. The greater the
separation of the conditional distributions, the more the objective tracking performance was
predictive of sensorimotor confidence, and thus the higher the metacognitive sensitivity.

the objectively better trial of the two was rated as “better” by the participant. 295

2.2 Results 296

Confirming the difficulty manipulation: We first examined whether the difficulty ma- 297

nipulation affected objective tracking performance. Figure 4A shows the mean RMSE for 298

each stimulus level for the two difficulty manipulations. Qualitatively, the difficulty levels 299

appear matched for most participants: performance curves follow the equality line. To check 300

this result, we fit a linear mixed-effects model (LMM) to the RMSE values of each trial. 301
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The fixed effects in the model were difficulty manipulation (cloud-size or velocity-stability), 302

stimulus difficulty (five levels), trial number, and an intercept term. The random effect 303

was the participant affecting only the intercept term. Trial number was included to test 304

whether learning occurred during the experiment. An analysis of deviance was performed 305

using Type II Wald chi-square tests, revealing several significant effects. As expected, dif- 306

ficulty level had a significant effect on tracking performance (χ2 = 3044.40, p < 0.05), with 307

larger RMSE for more difficult trials. This confirms that the difficulty manipulations had 308

the desired effect on tracking performance. We also found that the cloud-size difficulty 309

manipulation had significantly higher tracking error than velocity-stability (χ2 = 15.34, 310

p < 0.05), indicating that tracking in the velocity-stability session was easier than in the 311

cloud-size session. There was no significant interaction between difficulty manipulation 312

and stimulus level (p > 0.05). Trial number also had a significant effect on performance 313

(χ2 = 5.25, p < 0.05), with later trials having larger error. This suggests training trials 314

were likely sufficient for performance to stabilise prior to the main task, but fatigue likely 315

affected performance later in the session. 316

Overall metacognitive accuracy: Next, we examine metacognitive accuracy, which 317

is the percentage of trials correctly judged as better or worse than average. Performance in 318

both sessions was significantly better than chance (cloud-size session: 64.4± 1.2% correct; 319

velocity-stability session: 64.7±2.3%). The accuracy results for each session are contrasted 320

in Figure 4B. Four participants had significantly higher accuracy in the cloud-size session, 321

according to the 95% binomial error confidence intervals, and four participants were sig- 322

nificantly more accurate in the velocity-stability session. Overall, evaluation of tracking 323

performance was similar in the two conditions. However, this accuracy metric may be 324

subject to response bias. Therefore, we examined meta-cognitive sensitivity. 325

Overall metacognitive sensitivity: The pattern of results for metacognitive sen- 326

sitivity (AUROC, see Methods) was similar to the one found for metacognitive accuracy. 327

Metacognitive sensitivity is contrasted between the sessions in Figure 4C and the individual 328
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Figure 4: Comparable above-chance metacognitive sensitivity for cloud-size and velocity-
stability difficulty manipulations in Experiment 1 (n = 13). A: Effect of difficulty ma-
nipulation on tracking error. Mean RMSE contrasted for equivalent difficulty levels in
the variable cloud-size session and the variable velocity-stability session. Colour: difficulty
level. Curves: individual participants. Dashed line: equivalent difficulty. B: Comparison of
metacognitive accuracy for the two difficulty-manipulation techniques, pooled across diffi-
culty levels. Data points: individual subjects. Dashed line: equivalent accuracy. Error bars:
95% binomial SE. Shaded regions indicate whether metacognitive accuracy was better for
the cloud-size or velocity-stability session. C: Same as in (B) but comparing the sensitivity
of the sensorimotor confidence judgement. Dashed line: equivalent sensitivity. Error bars:
95% confidence intervals by non-parametric bootstrap. D: ROC-style curves for individual
participants in the cloud-size session, pooled across difficulty levels. Shading: AUROC of
example observer. Dashed line: the no-sensitivity lower bound. E: Same as (D) for the
velocity-stability session. Shading corresponds to the same example observer.
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ROC-style curves for the cloud-size and velocity-stability sessions are shown in Figures 4D 329

and 4E, respectively. Almost all participants displayed some degree of metacognitive sen- 330

sitivity in both sessions (i.e., have ROC-style curves above the equality line). On average, 331

the AUROC in the cloud-size session was 0.68± 0.02 (mean±SEM) and was 0.68± 0.03 for 332

the velocity-stability session. At the group level, a Wilcoxon’s Matched-Pairs Signed-Ranks 333

Test revealed no significant difference between AUROCs from the two sessions (n = 13, 334

T = 45, p > 0.05). To examine the sensitivity at the individual subject level, we performed 335

a bootstrap procedure in which the AUROC was computed for each participant 1000 times, 336

sampling from their trial set with replacement, allowing us to calculate 95% confidence 337

intervals for our estimates (Figure 4C). Four participants were significantly more sensitive 338

in the velocity-stability session, three were significantly more sensitive in the cloud-size ses- 339

sion, and the remaining six showed no significant difference between the two conditions. It 340

is unlikely that these results are due to a learning effect across sessions: four of the seven 341

significant results come from greater meta-cognitive accuracy in the first session completed. 342

Another consideration is the amount of variability in performance for each individual and 343

session. A highly variable participant may have a higher metacognitive sensitivity score 344

because distinguishing better from worse performance is easier if a better trial differs more, 345

on average, from a worse trial (Rahnev and Fleming, 2019). Also, variance could have dif- 346

fered between the two difficulty manipulations, affecting within-participant comparisons of 347

metacognitive sensitivity. To examine this we fit a GLMM of the AUROC with participant 348

as the random effect (intercept term only), and fixed effects of RMSE variance (pooled 349

across difficulty levels), difficulty manipulation, and an intercept term. We found no signifi- 350

cant effect of any of our predictors. To check the strength of the non-significant relationship 351

between variance and metacognitive sensitivity, we calculated the Bayesian Information Cri- 352

terion (BIC) for this linear model and compared it to the same model without trial variance 353

as a predictor. This simplified model had a lower BIC score (∆BIC = 5.35), supporting the 354

claim that performance variance has little influence on metacognitive sensitivity. 355
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Temporal profile of metacognitive sensitivity: We conducted an analysis of metacog- 356

nitive sensitivity for each 1 s time bin within the 10 s trial to examine the degree to which 357

each second of tracking contributed to the final sensorimotor confidence judgement. An 358

AUROC of 0.5 indicates that error in that 1 s time bin has no predictive power for the 359

metacognitive judgement; an AUROC of 1 indicates perfect predictive power. Figure 5A 360

shows the results of this analysis. In both the cloud-size and the velocity-stability sessions 361

there was a noticeable recency effect: error late in the trial was more predictive of sensori- 362

motor confidence than error early in the trial. There was no discernible difference between 363

the two difficulty manipulations, except for the first few seconds where early error was more 364

predictive for the velocity-stability session. 365

For comparison, we also computed the temporal AUROCs, replacing the participant’s 366

responses with simulated sensorimotor confidence judgements under two strategy extremes. 367

Figure 5B shows the AUROC time course for an ideal observer that had perfect knowledge 368

of performance (RMSE) and based the confidence judgement on whether the RMSE was 369

truly better or worse than average (i.e., weighted all time points equally). After the first 370

two seconds of tracking, the temporal AUROC is relatively level. Note that no time bin 371

was perfectly predictive of the confidence judgement, because the error within one second is 372

not equivalent to the total error across the entire trial. Figure 5C shows the AUROC time 373

course for an observer that perfectly uses uncertainty cues (i.e., cloud-size, velocity-stability) 374

to judge the difficulty level of the trial, and computes prospective confidence rather than 375

basing the confidence judgement on performance monitoring. Again, no single time bin 376

should be particularly informative if one is assessing a cue that does not disproportionately 377

occur at or affect performance for one particular portion of the trial, such is the case with 378

our difficulty manipulations. Note that for the heuristic-evaluation simulation, confidence 379

was coded as “worse” for the two hardest difficulty levels, “better” for the two easiest, 380

and flipping a 50-50 coin for the middle difficulty level. Again, both temporal profiles are 381

flat after the first 2 s. Neither perfect monitoring nor prospective confidence based on 382
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Figure 5: Performance weighting over time for sensorimotor confidence in Experiment 1
(n = 13). A: AUROC analysis performed based on each 1-s time bin in the tracking
period. Error bars: SEM across participants. Error later in the trial is more predictive of
sensorimotor confidence as indicated by the higher AUROC. B: The same analysis as in (A)
for an ideal observer that has perfect knowledge of the error and compares the RMSE to the
average RMSE. C: Temporal analysis performed with simulated responses based on expected
performance according to the heuristic of difficulty level for each difficulty manipulation (see
text). D: Mean and variance of the RMSE between target and cursor. Mean RMSE plateaus
between 1-2 s and remains stable for the remainder of the trial. Variance is also quite stable
after 2 s. Error bars: SEM across participants. E: Auto-correlation of the tracking error
signal for each subject and each session. F: Autocorrelation matrix of the 1 s binned RMSE.
Data pooled over trials, conditions, and participants. The correlation between time-bins is
relatively low after 1 s.
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uncertainty cues produced the recency effect in measured metacognitive behaviour. This 383

result, however, is not trivial due to the complex correlation structure of the error signal, 384

which we investigated next. 385

Weighing all time points equally is only an optimal strategy if all time bins are equally 386

predictive of trial-averaged performance. Error variability is one factor that can affect that: 387

periods of low error volatility have less impact on the predictive validity of a time bin for 388

overall RMSE. Thus, a recency effect might be an optimal strategy if there is higher error 389

volatility late in the trial. We found that error is overall lower and less variable before 2 s 390

(Figure 5D). This is because participants begin the trial by placing their cursor at the centre 391

of the screen, where the target is located. After this initial 2 s, however, tracking error vari- 392

ability is relatively constant, indicating that all these time points are similarly informative 393

about the final RMSE. Thus, error variance may explain why metacognitive sensitivity was 394

reduced for the initial 2 s for the measured and simulated sensorimotor confidence, but it 395

cannot explain the observed recency effect. Figure 5E shows the auto-correlation of the 396

signed error signal for each participant averaged across difficulty levels. This graph reveals 397

that error is correlated up to ±1 s, and is slightly anti-correlated thereafter. Errors are 398

necessarily related from moment to moment, due to the continuous nature of tracking. To 399

resolve a tracking error, one needs to make a corrective action to compensate. The anti- 400

correlation is likely a result of such corrective actions. Figure 5F shows that this salient 401

auto-correlation up to ±1 s is also present between the RMSE of neighbouring 1 s time 402

bins. These results indicate that some of the predictive power of error in one time bin 403

may be attributed to weighting of error in a neighbouring bin. Thus, if we ask for what 404

additional variance is accounted for, starting with last bin, the recency effect would appear 405

even stronger. 406

Other performance metrics: Our modelling thus far has been based on the error 407

between the location of the target and the cursor placement. However, this is not a realistic 408

model of how the participant perceives their error as they imperfectly infer target location 409
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from the dot cloud, which is predominately affected by the external noise σcloud. To model 410

this perceptual process (Figure 6A), we opted for a simple exponential filtering of the cen- 411

troid signal (i.e., the mid-point of the two dots presented on each frame). The true centroid 412

position is a reasonable input, given that humans perform well at static centroid estimation 413

(McGowan et al., 1998; Juni et al., 2010). The smoothing aims to capture both the tem- 414

poral averaging in the visual system, which causes a cloud of 10 or so dots to be perceived, 415

as well as the averaging across time for strategic decision-making (Kleinman, 1969; Bonnen 416

et al., 2015). The current estimate of target position, x̂t, is obtained by computing the 417

weighted average at time t of the horizontal component of the current centroid, ct, with the 418

previous estimate, x̂t−1: 419

x̂t = αct + (1− α)x̂t−1. (1)

The smoothing parameter, α, controls the steepness of the exponential. Larger α mean 420

that current sensory evidence is weighted more than previous target estimates, and vice 421

versa. The weighting is a trade-off that has to be balanced: averaging improves the amount 422

of information contributing to the estimate, but too much averaging into the past leads to 423

biased estimates. 424

We selected the value of α that minimised the sum of squared errors between true target 425

location and the model’s estimate as a stand in for the observer’s estimate of the current 426

location of the target. This was calculated separately for each stimulus level and condition 427

(Figure 6B). As expected, there is less smoothing (larger α) for the easy, small dot clouds 428

than the more difficult, large dot clouds (smaller α). This is because accepting some history 429

bias only makes sense when dealing with the noisier large dot clouds. The opposite pattern 430

is true for the velocity-stability condition. If velocity stability is high (easy), it is safer 431

to average further into the past to improve the estimate than if velocity stability is low 432

(difficult). It is not simple to use the tracking time series to estimate the true perceptual 433

smoothing performed by the observer as tracking actions are not smooth and continuous 434
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in temporal averaging and motor constraints, it is not possible to estimate motor noise

just yet and analysis will be restricted to the computational lag.

Results & Discussion

A cross-correlation analysis was performed to determine the lag between the target lo-

cation and the cursor placement for every single trial. The cross-correlation values were

normalised to produce a correlation coe�cient by subtracting the mean and dividing by

the standard deviation for each lag value examined. Cross-correlograms were first av-

eraged within subjects, with the peak used as the estimate of the subject’s preferred

tracking lag, ⌧ , for the model fitting(see Figure 4a). Averaging these cross-correlograms

indicates that normal, healthy adult is expected to have a ⌧ of approximately 400 ms.

Shown in Figure 4b is the distribution of peak lags across trials for each subject. The

histograms are all positively skewed and resemble those observed for reaction times in

traditional psychophysics tasks (Usher & McClelland, 2001). However, a one-sample t-

test on the Pearson moment coe�cient of skewness for each subject’s sample of peak lags

did not reveal a significant e↵ect (t(4)=2.24 , p = 0.09). This result is not unexpected

given the small sample size of this pilot experiment. Subjects are encouraged by the

points system of the experiment to track the target quickly, but doing so may reduce
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Figure 4: A) Mean cross-correlations for individual subjects (black) and averaged across sub-
jects (red). Peak lag for the red trace is 400 ms. B) Individual histograms showing the percent
of traces with a particular peak lag (smoothed with a Gaussian filter with sd= 20 ms).
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Figure 5: A comparison of the lag in tracking for one subject in a task where the target is
inferred from the dot cloud (“cloud”, blue), and a task where the target is visible (“target”,
orange). The dashed lines indicate peak of the mean cross-correlation from each of the tasks.
The distance between these peaks corresponds to the time to compute the centroid, ⌧centroid

(abbr. in figure), assuming that temporal lag due to sensory processing and motor execution
are the same in both tasks.

the accuracy of their tracking for various reasons such as reduced time in estimating the

centroid or planning and executing a movement. Therefore, peak tracking time may be a

useful measure of speed in a speed-accuracy trade-o↵ analysis. Current attempts at this

analysis suggest that more data needs to be collected.

The same cross-correlation analysis was applied to the tracking data from the task

where the target was made visible (see Figure 5). As expected, the peak lag for the ex-

plicit target experiment is lower than for the peak lag for the experiment requiring the

subject to infer target location from the dot cloud. This indicates the subject takes ap-

proximately 70 ms to compute the centroid of the dot cloud and 300 ms to both process

the sensory information and execute a movement. Another noticeable di↵erence between

the two distributions of peak lags is that the target visible distribution has a smaller vari-

ance, indicating that computing the centroid contributes considerably to the variability

in tracking delays. Viewing the results in another way, one could say that decreasing the

di�culty of the task by providing the target’s true location led to faster responses. This is

consistent with traditional decision-making experiments (Gold & Shadlen, 2007). Further

experiments are needed to see if manipulating the quality of the sensory information in

the dot cloud (i.e. the number of dots) will similarly a↵ect tracking lag.

Tracking behaviour was first compared to the standard Kalman filter described in
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Figure 6: Comparison of errors as compared to the true target location for 1) the actual tracking
behaviour of the subject, 2) the unadjusted Kalman filter, and 3) a Kalman filter lagged by the
subject’s peak tracking lag. Error bars and shaded error region represent the 95% confidence
intervals.

Part 2. This model is equivalent to a human that has no temporal averaging or internal

sensory noise and can instantaneously place the cursor on the estimated target location

without any motor noise. Figure 6a shows that the human performance is approximately

three times worse than this model when assessed in terms of the Root Mean Square Error

(RMSE). If, however, the output of this Kalman filter is shifted by ⌧ estimate of the

corresponding subject, the performance is indistinguishable from that of the human4. It

is unlikely that more tracking trial will reduce the spread of errors as Subject 1 in the plot

completed 2.5 times more trials than the other subjects. Figure 6b plots the di↵erence

between the subject’s tracking and the two models on a per trial basis. Again, it is not

possible to di↵erentiate the lagged Kalman filter and human performance. This suggests

adding in the additional components of the model may be tricky if RMSE is used as the

metric of fit.

To conclude, a lagged version of the standard Kalman filter did very well at fitting

human performance. The average tracking lag was very consistent across subjects, and

the distributions of peak tracking lag tended to follow the pattern observed for reaction

times in non-tracking experiments.

4Do you think it is a problem I am using the same sequences to estimate tracking lag and assess the
fit of the model?
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Part 2. Modelling Approach

This section outlines the development of a Bayesian ideal observer model for a tracking

task where subjects track a moving cloud of dots as moves along a one-dimensional ran-

dom walk trajectory (see Figure 1). We selected the Kalman filter, which is the optimal

recursive linear estimator suited to dynamic environments assuming all noise in the sys-

tem is Gaussian. This is the “decision” component of the model. The Kalman filter is

biologically plausible is because it does not require infinite memory, yet considers every

piece of sensory evidence given.

The decision, “where to move next?”, is answered by this model, but requires realistic

inputs and outputs. We consider several human perception factors that act on the sensory

input and motor outputs, as well as modify variables in the decision-making machinery. A

schematic diagram of the final model is shown at the end of this section (Figure 3). This

model gives, for a particular sensory input, the ideal tracking performance achievable.
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Figure 1: A) Example of a single display frame. White dots are sampled from a 2D Gaussian
distribution (red dot indicates mean and dashed line shows 1 SD, both not visible to subjects).
Black dot is the cursor position as set by the subject. B) An example horizontal random-walk
trajectory of the target.
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Mean cross-correlograms 
of target and cursor: 

subject’s appear to lag 
behind the stimulus by 400 

ms (add legend). Human error versus 
model error:  

Applying temporal lag to 
a Kalman filter Oh look, 
simple Kalman filter with 

temporal lag does a 
good job at explaining 

error (difference is 
between human and 

model). (make fill versus 
no fill)Control experiment (tracking 

visible target): Tracking lag not just 
motor response time, reflects 
something about computation 
(CCG). Include tracking lag 

distribution for standard non-
lagged model (simulations), this 

shows the contribution of the 
exponential decay weighting 

function to lag.

Result 1: ROC 
curves: show all Ss 
on plot, mean area 
(SEM) AUROC. Oh 

look, there appears to 
be meta-cognitive 

sensitivity going on!

Variable Sensory SD Variable Walk SD

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

127
226

387
741

906
998

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
Mean Subtracted RMSE (deg)

D
en

si
ty conf

High
Low

Metacognitive Sensitivity

Variable Sensory SD Variable Walk SD

0
10
20
30

0
10
20
30

0
10
20
30

0
10
20
30

0
10
20
30

0
10
20
30

127
226

387
741

906
998

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
Mean Subtracted RMSE (deg)

C
ou

nt

conf
High
Low

Metacognitive Sensitivity

Figure 2.3: ...

15

Variable Sensory SD Variable Walk SD

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

127
226

387
741

906
998

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
Mean Subtracted RMSE (deg)

D
en

si
ty conf

High
Low

Metacognitive Sensitivity

Variable Sensory SD Variable Walk SD

0
10
20
30

0
10
20
30

0
10
20
30

0
10
20
30

0
10
20
30

0
10
20
30

127
226

387
741

906
998

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
Mean Subtracted RMSE (deg)

C
ou

nt

conf
High
Low

Metacognitive Sensitivity

Figure 2.3: ...

15

mean subtracted RMSE

# 
re

sp
on

se
s

Variable Sensory SD Variable Walk SD

A =  0.59

A =  0.78

A =  0.6

A =  0.67

A =  0.79

A =  0.76

A =  0.6

A =  0.68

A =  0.72

A =  0.63

A =  0.83

A =  0.72

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

127
226

387
741

906
998

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
P(Low Conf)

P(
Hi

gh
 C

on
f)

ROC Analysis of Metacognitive Sensitivity

Figure 2.4: Metacognitive ROC curves were computed non-parametrically (i.e. using the raw data)
for each observer in each condition. The area under the curve was also computed non-parametrically
using the trapezoidal method detailed in Macmillan and Creelman (2005) on pg. 64. An area of 0.5,
or a curve that falls along the dashed line, indicates no metacognitive sensitivity. An area of 1, or a
curve that follows the left and top border, indicates the upper limit of metacognitive sensitivity.
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Figure 2.4: Metacognitive ROC curves were computed non-parametrically (i.e. using the raw data)
for each observer in each condition. The area under the curve was also computed non-parametrically
using the trapezoidal method detailed in Macmillan and Creelman (2005) on pg. 64. An area of 0.5,
or a curve that falls along the dashed line, indicates no metacognitive sensitivity. An area of 1, or a
curve that follows the left and top border, indicates the upper limit of metacognitive sensitivity.
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the

Page 4

Second Year Paper 25th September 2016

the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the

Page 4

Second Year Paper 25th September 2016

in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag
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covariance P0 = 0, which will be updated as measurements are made.
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walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply
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walk
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cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:

x̂t = x̂t�1 + Kt(zt � x̂t�1) (3)

With each iteration of the Kalman filter loop, the error covariance term, Pt, is updated

as follows

Pt = (1 � Kt)(Pt�1 + �2
walk) (4)

Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply
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where �cloud is the standard deviation of the generating Gaussian distribution for dot

locations and �walk is the standard deviation in the random walk. This Kalman gain term

describes the previous estimate of target location, x̂t�1, is combined with the incoming

measurements to update the estimate of target location x̂t:
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Internal Sensory Noise

The dots presented in the task are intentionally high contrast, so the subjects will be

easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)

�internal =
JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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in the following manner1

ct =

8
>><
>>:

0 + ✏motor, if t � ⌧  0

x̂t�⌧ + ✏motor, otherwise

(9)

We can estimate ⌧ by finding the delay which produces the highest correlation between

target location and mouse cursor in the tracking task. A simple addition to the main

tracking task, however, can reveal more about these temporal delays as well as provide

a way to estimate motor noise. If we place a dot at the true position of the target,

identifiable by its red colour, and ask subjects to track this dot and ignore white dot

cloud, we have removed the centroid computation step. The delay with the highest

target-cursor correlation could be expressed as

⌧visible = ⌧sensory + ⌧motor (10)

Thus, the di↵erence in temporal lag between having the target invisible or not tells us

the time subjects are using to compute the centroid of the dot cloud2

⌧centroid = ⌧invisible � ⌧visible (11)

Additionally, we can computed the RMSE in tracking behaviour in the target visible

experiment, after shifting the cursor trace by ⌧visible, as an estimate of �motor. The corre-

sponding RMSE in the main task would also include error in estimating the target, which

is why we wouldn’t use it to estimate motor noise.

1I haven’t thought of a good way to express the cursor placement prior to acting on sensory information.
Subjects will have to place the cursor at the center of the screen (with some small spatial tolerance) so
it should be around 0, but then they might move it about a bit, and then of course those movements are
not independent of each other...

2I’m not entirely convinced if this is correct. In this version of the task �dot = 0, and so the Kalman
gain will be di↵erent in the sense they will move closer to their estimate than in the version where the
target is invisible. Would this correspond to a di↵erent lag?
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Temporal Averaging

Dot clouds are presented very rapidly in the tracking task. The perceptual consequence

of this is that several dot clouds will appear on the screen together due to the temporal

averaging of the visual system. I can imagine modelling this using a temporal weighting

function which includes the previous dot locations in the computation of the centroid.

Let’s begin by redefining the centroid computation

gt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(12)

zt =

t
�tX

i=0

✓
wigt�i�t

◆
(13)

where �t is the time step of the sampling and wi is the weight from the temporal weighting

function and must be such that
t
�tX

i=0

wi = 1 (14)

The first weighting function we will consider is one where all dots which appear to be

simultaneously presented on the screen are given equal weight (i.e. a step function):

wi =

8
>><
>>:

1
⌧blur�t

, if i�t  ⌧blur

0, otherwise

(15)

where ⌧blur is the length of time over which the stimulus is temporally averaged. Alterna-

tive temporal weighting functions would weight dots according to when they where first

presented. For example, this could be done using a Gaussian function wi ⇠ N(0, �blur).

Another possibility is an exponential function, but this seems like it would be hard to

disentangle from the operation of the Kalman filter itself.
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target via computing the centroid would be corrupted by Gaussian noise as follows

zt =
1

J

JX

j=1

✓
djt + ✏internal

◆
(6)

where ✏internal ⇠ N(0, �internal), and the Kalman gain would also include the internal noise

in addition to the external noise from the dot cloud

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud + �2
internal

(7)

Motor Noise

In addition to the spatial blurring of the input caused by internal noise, there will also

be spatial blurring of the output due to motor noise. That is, the cursor ct is placed

at the target’s estimated location, but the movement is corrupted by Gaussian noise

✏motor ⇠ N(0, �motor):

ct = x̂t + ✏motor (8)

An experiment that would provide an estimate of �motor is described in the next section.

Temporal Delays

It should be obvious that the cursor is not placed instantaneously on the target estimate

as soon as the dot cloud is displayed but after some time has elapsed. This temporal

lag, ⌧ , is likely the sum of several delays relating to the sensory acquisition of the display,

⌧sensory; computing the centroid of the dot cloud, ⌧centroid; and the delay in formulating,

sending, and executing a motor plan, ⌧motor. We can update equation 8 to reflect this lag
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the Kalman filter is supplied with a prior estimate x̂0 = 0 and the associated error

covariance P0 = 0, which will be updated as measurements are made.

In the one-dimensional case of horizontal tracking, the Kalman gain is simply

Kt =
Pt�1 + �2

walk

Pt�1 + �2
walk + �2

cloud

(2)

where �cloud is the standard deviation of the generating Gaussian distribution for dot
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easily able to identify their locations. However, it is still likely that internal sensory noise

is also contributing to tracking behaviour. This can be estimated in a simple 2IFC visual

discrimination task, where two dots are sequentially presented and subjects have to judge

if the second dot was to the left or right of the first. The internal sensory noise estimate

would be calculated from the Just Noticeable Di↵erence (JND)
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JNDp

2
(5)

We could adjust the Kalman filter modifying equations 1 and 2. The estimate of the
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SENSORY: DECISION MAKING: MOTOR:

compute centroid
execute movement

compute Kalman gain
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priors

Figure 3: A schematic of the proposed Kalman filter model for tracking. The three components are: 1) gathering sensory evidence to estimate
target location; 2) deciding where to move next; and finally, 3) executing the movement of the computer mouse to the intended location.
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Figure 6: Comparing metacognitive sensitivity with different error-estimation methods and
performance criteria. A: Diagram of the exponentially-smoothed perceptual model. Input:
horizontal position of the dot-cloud centroid, ct (i.e., dot midpoint on a single frame). The
perceptual system smooths the signal by convolving with an exponential to produce the
target estimate x̂. This is equivalent to the weighted sum of current input and previous
estimate, x̂t−1, according to the smoothing parameter, α. Output: perceived error deter-
mines the motor response. B: Setting of α that minimises the difference between true and
perceived target location for each difficulty level and condition. C: Tracking lag as a mea-
sure of perceptual smoothing. As per the expected effects of difficulty level on perceptual
smoothing (B), we found the corresponding X pattern in average tracking lags measured
by a cross-correlation analysis (see text for details). Note that a larger α means greater
weight on the current estimate and therefore less tracking lag. D: Metacognitive sensitivity
AUROC as measured under several error-estimation methods compared to the standard
RMSE method reported throughout. Absolute: mean absolute error between target and
cursor. Perceptual: error according to the perceptual model in (A) with α values from (B).
Centroid: RMSE calculated using dot-cloud centroid rather than true target location. Pos-
itive values indicate that this method yields higher sensitivity than the standard method.
E: Same as in (D) but testing different performance criteria, comparing to the true-average
criterion reported throughout. Cumulative: average error on a per-trial basis ignoring future
performance. Feedback: last 5-trial performance feedback as criterion. N-back: windowed
average of last N trials. Optimal calculated as N between 1 and 100 that maximises the
AUROC. F: Computed optimal N for each condition. Black: individual participants. Red:
group mean ± SEM.
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(Miall et al., 1993). However, we did find evidence of such a pattern of perceptual smoothing 435

in the tracking lags by difficulty level (Figure 6C). Tracking lag was computed per observer 436

by finding the lag that maximised the cross-correlation between the velocity signal of the 437

target and cursor. The pattern is the reverse of that seen in Figure 6B: larger α means 438

greater weight on the current estimate and therefore shorter tracking lags, as the estimate 439

is less dependent on the history of the stimulus. 440

When the AUROC was calculated from the trial RMSE according to the perceptual 441

model, however, the results are only marginally improved by at most 0.01 in the AUROC 442

(Figure 6D). In fact, using the RMSE based on the raw centroid signal or absolute tracking 443

error also produced similar AUROC estimates, only slightly worse than the RMSE method. 444

The relatively unchanging AUROC across these performance metrics is likely due to the 445

high correlation between all of these error measures. As compared to the RMSE method, 446

the correlations for the cloud-size condition are r = 0.98, 0.94, and 0.79 for absolute error, 447

perceptual error, and centroid error respectively. For the velocity-stability condition, these 448

are r = 0.98, 0.94, and 0.95. This is because all methods are measures of the mean 449

performance, which will change little with unbiased noise if given sufficient samples (i.e., 450

10 s of tracking). Thus, we conclude that our AUROC statistic was a robust measure and 451

that the overlap in the confidence-conditioned distributions is unlikely due to the selection 452

of RMSE as the objective-performance metric. 453

Another assumption we made in our analysis of metacognitive sensitivity was that the 454

average-performance criterion used by the participant was fixed. However, the participant 455

may have used a different strategy for judging sensorimotor confidence, such as keeping 456

a cumulative average, or relying on the most recent feedback, or considering only some 457

recent history of trials. To investigate this possibility, we tested whether the participant’s 458

categorisation of “better” and “worse” trials was more consistent (i.e., less overlap of the 459

confidence-conditioned distributions) if the error in the trial was compared only to the 460

RMSE of previous trials and not simply the fixed sessional average of RMSE. Considering 461
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only the RMSE of previous trials necessarily leads to a fluctuating average, in contrast 462

to considering both past and future performance, which leads to a fixed average RMSE. 463

To be clear, computing the relative RMSE of each trial according to a fluctuating average 464

would change the shape of the confidence-conditioned distributions (Figure 3B), but the 465

AUROC calculation would still be performed in the same manner (Figure 3C). If the partic- 466

ipant’s sensorimotor confidence response used a criterion that tracked the real fluctuations 467

in objective tracking performance, then the AUROC should be larger than our reported 468

main results (Figure 4C). We considered several potential strategies for computing rela- 469

tive performance: a trial’s RMSE could be compared to an average of all previous trials 470

(“Cumulative”), to the average RMSE used to calculate the score in the most recent 5-trial 471

performance feedback (“Feedback”), or to the RMSE average of only the most recent 5, 472

10 or best N trials (“5-Back”, “10-Back”, “Best N-Back”). The value of N for the Best 473

N-back model was computed separately for each participant and session by finding the size 474

of temporal-averaging window that maximised the AUROC. The metacognitive sensitivity 475

according to each strategy was then compared to the results reported as the main finding. 476

As shown in Figure 6E, only the Cumulative and Best N-back models improved the esti- 477

mated AUROCs for both sessions. On average, the number of trials in this latter model was 478

31.5±7.5 trials for the cloud-size session and 26.6±7.9 trials for the velocity-stability session 479

(Figure 6F). Overall, the improvement in the AUROC was only marginal (a maximum of 480

2% for any model), indicating that accounting for performance fluctuations, as a proxy for 481

fluctuations in the average-performance criterion, did little to improve the understanding 482

of the sensorimotor confidence computation. 483

Summary: In Experiment 1, we measured sensorimotor confidence for visuomotor 484

tracking, under both cloud-size and velocity-stability manipulations of difficulty, to address 485

the three goals of this study. A robust AUROC statistic, that quantified the ability of the 486

confidence judgements to distinguish objectively good from bad tracking, indicated that 487

confidence judgements were made with comparable above-chance metacognitive sensitivity 488
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for both difficulty manipulations. Furthermore, a temporal analysis revealed a recency 489

effect, where tracking error later in the trial was found to disproportionately influence 490

sensorimotor confidence. We propose that this is due to imperfect performance monitoring 491

and not prospective confidence based on heuristic cues to difficulty (i.e., cloud size, velocity 492

stability). 493

3 Experiment 2 494

The goal of Experiment 2 was to further investigate the recency effect. To this end, we re- 495

peated the task keeping the stimulus statistics fixed (σcloud and σwalk) and instead varied the 496

duration of the stimulus presentation in an interleaved design. This made the time when the 497

sensorimotor-confidence judgement was required less predictable. Thus, participants would 498

be encouraged to sample error evidence for their confidence throughout the trial instead of 499

waiting until the final portion of the stimulus duration. If a response-expectation strategy 500

was the cause of the recency effect, we would expect to see flatter temporal AUROCs for this 501

mixed-duration design. Otherwise, if the recency effect is due to a processing limitation of 502

sensorimotor confidence, we would expect error in the last few seconds to largely determine 503

sensorimotor confidence regardless of the duration condition. Additionally, this experiment 504

allowed us to investigate sensorimotor confidence in the context of a fixed difficulty setting 505

that encourages participants to monitor their performance. This is because prospective 506

judgements of confidence, based on cues to sensorimotor uncertainty, are uninformative 507

when the stimulus statistics are unchanging. 508

3.1 Methods 509

Participants: There were seven new participants in Experiment 2 (21–31 years old, one 510

left-handed, four female). All participants had normal or corrected-to-normal vision and 511

no self-reported motor abnormalities. Participants were naive to the purpose of the studies 512
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except one author. Prior to the experiment, the task was described to the participants 513

and consent forms were collected. Participants were tested in accordance with the ethics 514

requirements of the Institutional Review Board at New York University. 515

Apparatus: All experiments were conducted on a Mac LCD monitor (Apple, Cuper- 516

tino, CA; late 2013 version, 60 x 34 cm, 1920 x 1080 pixels, 60 Hz), with participants seated 517

57 cm from the monitor. Participants operated a Kensington M01215 wired optical mouse 518

(60 Hz sampling rate, standard acceleration profile for Mac OS X) with their right hand 519

when manually tracking the stimulus. Subjective performance evaluations were collected 520

on a standard computer keyboard. Experiments were conducted using custom-written code 521

in MATLAB version R2014a (The MathWorks, Natick, MA), using Psychtoolbox version 522

3.0.12 (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). 523

Task: Stimulus presentation duration was manipulated with an interleaved design and 524

three levels (6, 10, and 14 s) while the stimulus statistics remained fixed at σcloud = 2 deg 525

and σwalk = 0.15 deg/s. Data were collected over three 1-hour sessions, with each session 526

composed of 15 training trials (5 per duration, randomised order) followed by 225 test trials 527

(75 per duration, randomised order). Again, after each stimulus presentation, participants 528

rated their subjective sense of their tracking performance as either “better” or “worse” 529

than their session average. As shown in Experiment 1, tracking before 2 s in this task has a 530

different error profile, due to the target and cursor both starting at the same location from 531

stationary (Figure 4D). We opted to not count these initial 2 s of tracking in the final score 532

so that trial duration could not serve as a difficulty manipulator in this experiment (e.g., 533

a 6 s trial is more likely to have lower RMSE than a 14 s trial). In order to signal when 534

the tracking contributed to the final score, the cursor was initially red (not contributing) 535

and switched to green (contributing to the score) after 2 s. Furthermore, to ensure that 536

all trials had the same stimulus statistics (e.g., position on screen, velocity), all trajectories 537

were initially sampled as a 14 s stimulus and accepted or rejected before being temporally 538

truncated to 6 or 10 s if the duration condition required. For example, this prevented an 539
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Figure 7: Effect of variable stimulus-presentation duration on tracking error and sensorimo-
tor confidence in Experiment 2 (n = 7). A: Mean objective tracking performance for each
duration condition averaged across observers. B: Sensorimotor-confidence accuracy for each
duration condition. C: Metacognitive sensitivity for each duration condition. D: ROC-style
curves for individual participants for AUROC pooled across durations. Dashed line: the
no-sensitivity lower bound. Error before 2 s was excluded from the calculations in panels A-
D. E: Temporal AUROCs calculated for 1 s time bins for each duration condition averaged
across participants for Experiment 2 (black). For comparison, the results in Figure 4A are
replotted (orange: cloud-size session; blue: velocity-stability session). The recency effect
found in Experiment 1 is replicated here for Experiment 2. Vertical dashed line at 2 s
indicates the timing of cursor colour-change cue to begin evaluating tracking. Horizontal
dashed line the no-sensitivity line. Error bars in all graphs are SEM.

over-representation in shorter duration trials of the target approaching the screen boundaries 540

quickly or rapidly accelerating after trial onset. Note that, as in Experiment 1, the criterion 541

for rejecting trajectories was based on proximity of the target to the screen edge; any 542

trajectory was resampled if at any point during the 14 s the target moved closer than 543

2 × σcloud to the edge. Tracking performance was scored and feedback given in the same 544

manner as the previous experiment. 545
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3.2 Results 546

In Experiment 2, we manipulated the duration of stimulus presentation with three inter- 547

leaved conditions of 6, 10, or 14 s. The consequence of duration on objective tracking per- 548

formance was a small increase in RMSE for longer durations (Figure 7A). The sensorimotor 549

confidence judgements also showed slightly lower metacognitive accuracy (Figure 7B) and 550

sensitivity (Figure 7C) for longer durations. Overall, the average AUROC from pooling 551

data across durations was 0.68 ± 0.04 SEM (Figure 7D) and all participants had above- 552

chance metacognitive sensitivity according to bootstrapped confidence intervals calculated 553

as per the same procedure as Experiment 1. When split by session, the AUROCs were 554

0.68 ± 0.04, 0.68 ± 0.03, and 0.71 ± 0.02, suggesting that metacognitive performance was 555

relatively unchanging across the sessions. Note that for these analyses we discarded the 556

initial 2 s of tracking that the participants were instructed to ignore. 557

Figure 7E shows the temporal profile of metacognitive sensitivity for each duration as 558

well as the results from Experiment 1. Participants were instructed to ignore tracking 559

error occurring before 2 s, when the cursor changed colour, for estimating sensorimotor 560

confidence, and we observed low metacognitive sensitivity for these time points. Due to 561

RMSE being partially correlated between adjacent time bins (Figure 4F), slightly elevated 562

sensitivity for the time bin at 2 s does not necessarily indicate non-compliance with task 563

instructions. For the remainder of the trial, later time points tend to have higher metacogni- 564

tive sensitivity, consistent with the recency effect observed in Experiment 1. The steepness 565

of the temporal AUROC was also greater for shorter trial durations. This is to be expected 566

as the contribution of a 1 s time bin to the final RMSE is greater when the trial is short. A 567

recency effect is also consistent with the observed lower overall metacognitive performance 568

for longer durations, because a smaller percentage of the total error signal contributes to 569

sensorimotor confidence. 570

We attempted to compare the temporal AUROCs quantitatively with mixed success 571

(see Supplementary Information). We found evidence for a stronger recency effect for 572
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Experiment 2 than Experiment 1. Furthermore, in our supplementary analyses, accounting 573

for the recency effect and/or external noise via our perceptual model in Figure 5A gave little 574

benefit when attempting to predict sensorimotor confidence for either experiment (at most 575

∼ 2% increase in predictive accuracy). However, we caution against strong conclusions from 576

these supplementary analyses as certain properties of the obtained data set were not ideal 577

for these quantitative model fits. 578

In sum, We replicated the recency effect of Experiment 1 for all stimulus durations. 579

Thus the final few seconds of tracking had the greatest influence on sensorimotor confi- 580

dence regardless of whether the participant knew when the stimulus would terminate. This 581

suggests that response expectation is unlikely to be the source of the recency effect. 582

4 Discussion 583

In two experiments, participants completed a visuomotor tracking task where trials were fol- 584

lowed by a sensorimotor confidence judgement of “better” or “worse” than average tracking 585

performance. We calculated the degree to which these judgements predicted objective track- 586

ing for manipulations of task difficulty (Experiment 1) and trial duration (Experiment 2), 587

with an AUROC metacognitive-sensitivity statistic that ranged from no sensitivity at 0.5 588

and perfect sensitivity at 1. In both experiments we found above-chance metacognitive 589

sensitivity and a temporal profile that suggested that error later in the trial contributed 590

more to sensorimotor confidence. 591

4.1 Performance monitoring 592

Our primary aim was to establish if humans would actively monitor their own performance 593

to judge sensorimotor confidence. An alternate strategy would have been to use cues to 594

uncertainty (e.g., cloud size) to predict task difficulty and thus the likelihood of perform- 595

ing well. From our experiments, we found several indicators of performance monitoring. 596
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First, in Experiment 1, we manipulated task difficulty systematically with two methods, 597

varying either the cloud-size parameter (σcloud) or the velocity stability parameter (σwalk) 598

of the procedure to generate our dynamic stimulus. The manipulation of σcloud was very 599

noticeable, with all participants reporting the stimulus manipulation in their debriefing in- 600

terviews, whereas varying σwalk was more subtle and participants had difficulty identifying 601

the manipulation (supplementary media files are provided to illustrate the difficulty manip- 602

ulations). Thus, if the strategy was to rely exclusively on cues to uncertainty, and given that 603

the manipulations had sizeable and comparable effects on tracking performance, we would 604

expect higher metacognitive sensitivity for the cloud-size session than the velocity-stability 605

session. We did not find supporting evidence for this hypothesis as there was no significant 606

difference in sensitivity between the sessions. 607

Stronger supporting evidence for performance monitoring was found in Experiment 2, 608

where task difficulty was kept the same for all trials by fixing the stimulus statistics. In this 609

scenario, there are no explicit uncertainty cues for the participant to use. Yet, metacog- 610

nitive sensitivity was slightly better than that observed in Experiment 1 (AUROC of 0.68 611

in Experiment 2 versus 0.64 for cloud-size and 0.64 for velocity-stability in Experiment 1). 612

However, several factors complicate direct comparisons. Variability in tracking performance 613

is not the same for fixed- and variable-difficulty designs; RMSE differences are likely to be 614

lower for a fixed-difficulty design, complicating the comparison. Furthermore, the difficulty 615

manipulation in Experiment 1 may have permitted a mixed strategy, combining performance 616

monitoring and uncertainty heuristics. Thus, our results from Experiment 2 supporting the 617

performance-monitoring hypothesis are a better indicator of how well performance moni- 618

toring captures true tracking performance than the results of Experiment 1. 619

The best evidence for performance monitoring is the recency effect we observed in both 620

experiments. We found that sensorimotor confidence was most influenced by the error in last 621

few seconds of the trial. Such a result is unlikely from the prospective use of uncertainty cues 622

because it shows that the error occurring during the trial matters, with some moments being 623
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treated differently from others. That is, for the cloud-size session, all time points equally 624

signal the uncertainty from cloud size, so there is no reason that the final seconds should 625

be privileged. Similarly, for the velocity-stability session, the behaviour of the target would 626

have to be observed for some period of time to assess velocity stability, but this could be done 627

at any point during the trial. One possibility is that participants were waiting until the end 628

of the trial to make these assessments, but the results of Experiment 2 argue against this, as 629

the recency effect was still found when stimulus-presentation duration was randomised. If 630

instead participants were using some other heuristic strategy (e.g., average velocity, amount 631

of leftward motion, etc.), this would also not produce a recency effect unless it predicted 632

performance later in the trial but not early performance. From an information-processing 633

standpoint, performance monitoring is likely to exhibit temporal sub-optimalities due to 634

either leaky accumulation of the error signal during tracking (Busemeyer and Townsend, 635

1993; Smith and Ratcliff, 2004) or the temporal limitations of memory for retrospective 636

judgements (Atkinson and Shiffrin, 1968; Davelaar et al., 2005). 637

Before we examine the recency effect, we first comment on the possibility of a mixed 638

strategy of performance monitoring and uncertainty heuristics. Metacognitive judgements 639

based on a mixed strategy combining actual performance and cues to uncertainty have 640

been reported for sensorimotor confidence (Mole et al., 2018), motor-awareness confidence 641

(Charles et al., 2020), and perceptual confidence (De Gardelle and Mamassian, 2015; Spence 642

et al., 2015), with some exceptions (e.g., Barthelmé and Mamassian, 2010). Yet, it is 643

unclear if a mixed strategy was used in Experiment 1 of the present study. The anecdotal 644

differences in detecting the difficulty manipulations (cloud-size obvious, velocity-stability 645

subtle) coupled with comparable metacognitive performance in these sessions lends support 646

to a performance-monitoring strategy, but are weak evidence as difficulty detectability was 647

not rigorously tested. An ideal test for use of a mixed strategy would involve keeping 648

performance constant by fixing the difficulty while also varying likely uncertainty cues (e.g., 649

titrating the mean and variability of the sensory signal; De Gardelle and Mamassian, 2015; 650
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Spence et al., 2015). This is more difficult in sensorimotor tasks as motor variability will 651

introduce noise into the error signal, hindering any attempt to match performance. One 652

way around this problem would be to have participants judge sensorimotor confidence for 653

replays of previously completed tracking and artificially adjust uncertainty cues. However, 654

this would rely on metacognition acting similarly for active tracking and passive viewing, 655

which has only been confirmed for motor-awareness confidence (Charles et al., 2020). 656

Finally, we acknowledge that the current study is limited in that it is unable to answer 657

how participants are achieving performance monitoring. We cannot separate the contri- 658

bution of visual information, knowledge of motor commands, and proprioception to the 659

confidence judgements. This is because motor uncertainty could be directly assessed in 660

our task by visually inspecting the movements of the cursor, making it possible that visual 661

information was actually the primary cue used in our task. The contribution of visual in- 662

formation could be addressed to some extent if we replicated the experiments under poor 663

viewing conditions, or by asking participants to track a stimulus in a different sensory 664

modality, or after removing the cursor altogether. However, changing these experimental 665

conditions would entail taking into account the potential increase in attentional resources 666

required to perform well, the lower sensitivity to other sensory modalities, and the role of 667

the sense of agency. While all these issues are important to understand how individual cues 668

to sensorimotor performance influence confidence, they are beyond the scope of the present 669

study. 670

4.2 The recency effect 671

In the sensorimotor feedback process, incoming error signals inform upcoming action plans 672

and quickly become irrelevant (Todorov, 2004; Bonnen et al., 2015). In contrast, the goal 673

of performance monitoring for sensorimotor confidence is to accumulate error signals across 674

time, much like the accumulation of sensory evidence for perceptual decisions with a fixed 675

viewing time. In fact, in the accumulation-of-evidence framework, considerable effort has 676
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been made to incorporate a recency bias termed “leaky accumulation” (Busemeyer and 677

Townsend, 1993; Usher and McClelland, 2001; Brunton et al., 2013; Matsumori et al., 2018). 678

The main arguments for including a temporal-decay component is to account for memory 679

limitations of the observer (e.g., from neural limits of recurrent excitation) or intentional 680

forgetting for adaptation in volatile environments (Usher and McClelland, 2001; Nassar 681

et al., 2010; Norton et al., 2019). For our task, memory constraints are a more likely 682

explanation of the recency effect than intentional forgetting, because we have long trials of 683

6-14 s with no changes of stimulus statistics during a trial. One contributor to the error 684

signal we have no control over, however, is the participant’s motivation to do the task. 685

Even though tracking performance was constant when averaged across trials, fluctuations 686

in motivation during a trial could lead to fluctuations in sensorimotor performance that 687

do cause volatility in the error signal. Thus, alternating between bouts of good and poor 688

performance could bias the participant to be more forgetful. 689

Previous efforts to characterise the time course of a metacognitive judgement have been 690

limited to the perceptual domain. Using the reverse-correlation technique, Zylberberg et al. 691

(2012) measured the temporal weighting function for confidence in two perceptual tasks and 692

found a primacy effect: the initial hundreds of milliseconds of stimulus presentation had the 693

greatest influence on perceptual confidence. Their finding and associated modelling suggests 694

evidence accumulation for the metacognitive judgement stops once an internal bound for 695

decision commitment has been reached. Our results suggest that sensorimotor confidence 696

does not follow the same accumulation-to-bound structure, otherwise early error would have 697

been more predictive of confidence than late error. One reason we may not have found a 698

primacy effect is that the participant interacts with the stimulus to produce the errors that 699

determine performance, allowing them a sense of agency that they can change or modify 700

performance. As a result, there is no reason to settle on a confidence judgement based 701

on initial performance. A contradictory finding to Zylberberg et al. (2012) is that sensory 702

evidence late in the trial, during the period between the sensory decision and the metacog- 703
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nitive decision, can influence perceptual confidence in what is termed post-accumulation of 704

evidence (Pleskac and Busemeyer, 2010), but this finding is hard to apply to our visuomotor 705

task. Evaluating tracking is different from a single perceptual decision, because tracking is 706

a series of motor-planning decisions (Wolpert and Landy, 2012). The error signal used to 707

plan the next tracking movement is also the feedback of the error from the last moment 708

of tracking. Additionally, subsequent estimates of target location could theoretically pro- 709

vide additional information about previous locations of the target. Identifying the source 710

of the error signal for sensorimotor confidence, either by computational modelling or brain 711

imaging, would help clarify the nature of the accumulation process. 712

So far we have considered an online computation of sensorimotor confidence that ac- 713

companies sensorimotor decision making. Another alternative is that the evaluation of 714

performance is computed retrospectively. Baranski and Petrusic (1998) showed that reac- 715

tion times for confidence responses differed for speeded and unspeeded perceptual decisions, 716

leading to the conclusion that perceptual confidence is computed online unless time pressure 717

forces it to be evaluated retrospectively. It is reasonable to assume that the continual de- 718

mand of cursor adjustment to track an unpredictable stimulus is taxing, leaving participants 719

no choice but to introspect on their performance upon termination of the trial. If this were 720

the case, we would likely see temporal biases consistent with memory retrieval. In the mem- 721

ory literature, there has been extensive evidence of both primacy and recency effects, which 722

are thought to be associated with long-term and short-term memory processes respectively 723

(Atkinson and Shiffrin, 1968; Innocenti et al., 2013). Thus, the observed recency effect 724

in our experiment could be interpreted as short-term memory limitations constraining the 725

time constant. Another reason observers may delay performance evaluation until after the 726

trial is because tracking is typically a goal-directed behaviour, which can be evaluated by 727

its success (e.g., catching the prey after a chase, hitting the target in a first-person shooter 728

game, or correctly intercepting a hand in a handshake). Still, one may want to introspect 729

about performance while tracking to decide whether the tracking was in vain. We did not 730
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incentivise participants to adopt a particular strategy in the task, so they may have treated 731

error towards the end of the trial as their success in “catching” the target. 732

4.3 Metacognitive efficiency 733

We quantified metacognitive sensitivity for sensorimotor tracking with an AUROC metric 734

that reflected the separation of the objective-performance distributions conditioned on sen- 735

sorimotor confidence. This approach superficially shares some similarities with the metacog- 736

nitive metric meta-d′ in perceptual confidence. For meta-d′, an ROC curve, relating the 737

probability of a confidence rating conditioned on whether the observer was correct vs. incor- 738

rect, is computed as part of the analysis to obtain a bias-free sensitivity metric that reflects 739

the observer’s ability to distinguish between correct and incorrect perceptual responses 740

(Fleming and Lau, 2014; Mamassian, 2016). However, the area under this ROC curve 741

(AUROC) has little meaning, as it is highly dependent on the sensitivity of the primary 742

perceptual judgement (Galvin et al., 2003). Instead, the appropriate comparison is between 743

the perceptual sensitivity, d′, and the metacognitive sensitivity, meta-d′. Typically, a ratio 744

of these sensitivities is computed, with a value of 1 being considered ideal metacognitive 745

efficiency (i.e., the best the observer can do given the identical sensory evidence available 746

for the metacognitive judgement as the perceptual judgement). Empirically, ratios less 747

than 1 are most often observed, indicating less efficient, more noisy decision-making at the 748

metacognitive level (Maniscalco and Lau, 2012, 2016). 749

The purpose of our AUROC metric is not to quantify how well the sensory information 750

is used for the sensorimotor control versus sensorimotor confidence, but as a non-parametric 751

way of quantifying how sensitive an observer is to their true performance. The metric ranges 752

from no sensitivity (i.e., chance performance) at 0.5 to perfect classification performance 753

at 1. As with perceptual confidence, we do expect that the AUROC will depend to some 754

degree on the variance in the performance of the primary task (e.g., tracking), even if it 755

wasn’t observed in our task. For example, if there is little variance, then it should be diffi- 756
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cult to identify well executed from poorly executed trials, whereas a large variance means 757

performance could be more easily categorised. A second use of the AUROC metric was to 758

quantify the degree to which a model of metacognitive behaviour could predict sensorimo- 759

tor confidence (see Supplementary Information). By replacing the objective-performance 760

axis with an internal decision-variable axis according to a model, a model’s explanatory 761

power can be measured on a scale from none at 0.5 to perfect at 1. While we were unsuc- 762

cessful at improving performance more than 2% in any of our experiments, which we did 763

by accounting for both the recency effect and the effect of external sensory noise instead 764

of simply computing RMSE using the true target location, the method of analysis nicely 765

complemented our goal of quantifying how well sensorimotor confidence reflected objective 766

performance. 767

We examined metacognitive efficiency by determining what error information contributed 768

to sensorimotor confidence. The recency effect we observed constitutes an inefficiency in 769

that not all information used for the primary sensorimotor decision-making was used for 770

the metacognitive judgement as was instructed. Based on the similarity in shape of the 771

recency effect for the duration conditions of Experiment 2, we can conclude that efficiency 772

is inversely proportional to the duration of tracking. However, given long, multi-action se- 773

quences, it is not that surprising to find that some part of the perceptual information about 774

error is lost. Some amount of forgetting is likely advantageous in real-world scenarios. For 775

future metacognitive studies of action, it would be informative to examine estimates of 776

sensorimotor confidence during action and how sensorimotor confidence interacts with goal 777

planning, explicit learning, and expertise. For example, it would be worthwhile to investi- 778

gate how sensorimotor confidence relates to cognitive control functions such as switching or 779

abandoning motor tasks (Alexander and Brown, 2010), or how athletes and novices judge 780

sensorimotor confidence (MacIntyre et al., 2014). 781
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4.4 Conclusion 782

In sum, we found considerable evidence that humans are able to compute sensorimotor con- 783

fidence, that is, they are able to monitor their motor performance in relationship to a goal. 784

However, they do so inefficiently, in particular because of the recency effect that we revealed, 785

disproportionately weighting the tracking error at the end of the trial to judge whether their 786

performance was better than average. We replicated this effect with unpredictable stimulus- 787

presentation durations to confirm that it was not the result of a response-preparation strat- 788

egy. In our analyses, we have introduced the AUROC statistic, which we found useful 789

for two purposes. First, it allowed us to quantify the relationship between sensorimotor 790

confidence and objective tracking performance, and second, it provided a model-fit met- 791

ric for elaborated decision models (see Supplementary information). Our results, obtained 792

from a relatively simple goal of visuomotor tracking, raise many questions for future stud- 793

ies on sensorimotor confidence. For example, is the recency effect a key characteristic of 794

sensorimotor confidence? And, does it result from leaky online evidence accumulation or 795

biased retrospective memory retrieval? What factors determine the strength of the recency 796

effect for sensorimotor confidence (i.e., attention, sensorimotor goals, etc.)? Further work 797

will help provide a clearer link between models of sensorimotor behaviour and models of 798

sensorimotor metacognition. 799
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