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Predissociation spectra of the 35Cl�(H2) complex
and its isotopologue 35Cl�(D2)†

Miguel Lara-Moreno, Philippe Halvick and Thierry Stoecklin *

The predissociation spectra of the 35Cl�(H2) and 35Cl�(D2) complexes are determined within an accurate

quantum approach and compared to those recently measured in an ionic trap at 8 K and 22 K. The

calculations are performed using an existing three-dimensional potential energy surface. A variational

approach is used for the accurate quantum calculations of the rovibrational bound states. Several

methods are compared for the search and the characterization of the resonant states. A good

agreement between the calculated and measured spectra is obtained, despite a slight shift to the red of the

calculated spectra. The comparison shows that only the ortho or para contribution is observed in the

measured 35Cl�(H2) or 35Cl�(D2) spectrum, respectively. Quantum numbers are assigned to the rovibrational

resonant states. It demonstrates that the main features observed in the measured predissociation spectra

correspond to a progression in the intermonomer vibrational stretching mode.

1 Introduction

Several combined theoretical and experimental studies have
been dedicated to the 35Cl�(H2) and 35Cl�(D2) complexes. The
predissociation infrared spectra involving the 0 - 1 vibrational
transition for H2 or D2 were first measured in 2001 by Wild
et al.1 Shortly after, Alexander2 and Buchachenko et al.3 com-
puted the first ab initio potential energy surfaces (PES) and
dipole moment surfaces for the Cl� + H2 collision. Bucha-
chenko et al. also calculated the vibrational predissociation
infrared spectra and obtained a very good agreement with the
available experimental spectra measured by Wild et al. The
photoelectron spectroscopy of Cl�(H2) complex was also studied
by Fergusson et al.4 as a probe of the ClH2 van der Waals
potential well. The most recent work on this system was
performed by Spieler et al.5 who measured the low frequency
combination bands in the region between 600 and 1100 cm�1 by
infrared predissociation spectroscopy in a cryogenic 22-pole ion
trap and using a free electron laser as a tunable light source
at the FELIX Laboratory. A qualitative computation of the

transition energies was also presented by Spieler et al., however
with only a partial agreement with the measured spectra, therefore
motivating a more accurate theoretical work.

The present predissociation spectra are calculated using the
PES of Buchachenko et al.3 and following the lines of some of our
previous works dedicated to the N2H�,6 SNH� 7 or He–C3N� 8

molecular anions.
The paper is organized as follows. Section 2 is dedicated to

the presentation of the method used to calculate the predis-
sociation spectrum and to the presentation and comparison of
the three different methods used for the determination of the
resonant states. In Section 3, the theoretical results are com-
pared with the experimental data while in Section 4 the main
conclusions of our study are presented.

2 Theory
2.1 Spectroscopic intensities

If H0 is the rovibrational Hamiltonian of the system while J and
M are the quantum numbers associated respectively with the
total angular momentum and its projection along the space-
fixed z-axis, the wave function of any bound or quasi-bound
rovibrational state i of the complex is solution of the equation:

H0C
JM
i = Ei,JC

JM
i (1)

Using this notation the contribution to the infrared absorp-
tion coefficients for the transition i, J - i0, J0 of the spin isomer
I, at temperature T and photon energy h�o, is proportional to the
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usual expression

II
i;J!i0;J 0 ðo;TÞ /

gIe
�Ei;J=kBT

ZðTÞ Ei0 ;J 0 � Ei;J

� �
Si;J!i0;J 0

� ri0 ;J 0 Ei;J þ �ho
� �

(2)

where gI is the nuclear spin statistical weight,

ZðTÞ ¼
X
I ;i; j

gI ð2J þ 1Þe�Ei;J=kBT (3)

is the rovibrational partition function of the complex and
Si;J!i0;J 0 is the line strength defined as

Si;J!i0;J 0 ¼
X
MM0

CJ 0M0
i0 j~mjCJM

i

D E��� ���2 (4)

In order to take into account the width of the final state
when it is a quasi bound state we included in eqn (2) the
density of state ri0;J 0 ðEÞ in the vicinity of any final quasi-bound

state. We furthermore use for ri0;J 0 ðEÞ the usual Breit–Wigner

distribution9 describing an isolated narrow resonance:

ri0;J 0 ðEÞ ¼
1

p
Gi0 ;J 0

�
2

Ei0 ;J 0 � E
� �2þ Gi0 ;J 0

�
2

� �2 (5)

where Ei0;J 0 ¼ Re Ei0 ;J 0
� �

and Gi0 ;J 0 ¼ �2Im Ei0 ;J 0
� �

are respec-
tively the energy and the width of the resonance. The zero of
energy was set to the energy of the ground state of the infinitely
separated monomers.

2.2 Rovibrational energy levels and wave functions

The geometry of the Cl�(X2) system (X = H or D) can be defined
by the space-fixed Jacobi coordinates -

r and
-

R, where -
r is the X2

internuclear vector, while
-

R is the vector between the X2 center
of mass and the atom Cl�. In these coordinates, the rovibra-
tional Hamiltonian of the Cl�(X2) system is

H0 ¼ �
�h2

2m
1

R

@2

@R2
Rþ l2

R2

� �
þHX2

þ VðR; r; yÞ (6)

where m is the reduced mass of the system, HX2
is the space-

fixed Hamiltonian of the X2 diatom, l̂ is the relative orbital
angular momentum operator and y is the angle between

-

R
and -

r. We use for V(R,r,y) the interaction potential developed
by Buchachenko et al.3 This PES is based on coupled cluster
calculations with single and double excitations and perturbative
triple excitation, with the aug-cc-pVQZ basis set and midbond
functions, and it is corrected from the basis set superposition
error. The equilibrium structure of Cl�(H2) is linear. The PES has
therefore two potential wells equivalent by symmetry, related by
the rotation of the H2 molecule by an angle of p. The two wells
are separated by a large energy barrier. Since the predissociation
spectrum involves transitions between bound states and resonant
states, we detail in the two following subsections the different
methods used to compute the bound and resonant states.

2.2.1 Bound states. We use the same variational approach
described in some of our previous works6–8 which is here briefly
reminded. The internal stretching motion of the complex is
described by the vibrational energies evj and wave-functions

wvj(r) of the diatom where the indexes j and v respectively stand
for its rotational and vibrational quantum numbers. They are
obtained by solving the diatomic Schrödinger equation

[HX2
� evj]wvj(r)Yjmj

(r̂) = 0 (7)

using Chebyshev polynomials for the radial coordinate r.
The angular basis set for the whole system is expressed in

the usual coupled angular momentum representation,

YJM
jl ðR̂; r̂Þ ¼

X
mjml

jmjlml jJM
� 	

Ylml
ðR̂ÞYjmj ðr̂Þ (8)

These functions are eigenfunctions of j2, l2, J2, Jz and of the
parity P operator with the eigenvalues p = (�1) j+l. The rovibra-
tional wave functions of the complex are then expanded in
these basis sets as:

CJM
i ð~r; ~RÞ ¼

1

rR

X
vjl

GJMi
vjl ðRÞwvjðrÞYJM

jl r̂; R̂
� �

(9)

where Chebyshev polynomials are again used to expand the
radial wave functions describing the stretching motion along
the R coordinate. Further simplification in the calculations are
obtained from the symmetry properties of the YJM

jl (R̂,r̂) wave
functions under the operations of the G4 permutation inversion
group as shown in Table 1.

Since both GJMi
vjl (R) and wvj(r) are totally symmetric under the

operations of the G4 group, the symmetry of the rovibrational
basis set (eqn (9)) can be classified using the irreps of the G4

group. The full Hamiltonian equation is then solved separately
for each irrep of the G4 group. The convergence of the bound-
state energies is checked as a function of the size of the basis
set. As can be seen in Table S1 (see ESI†) the combination of
3 vibrational and 6 rotational states of the diatom together with
a 200 point DVR grid along R spanning the [3,30]a0 interval
ensures a convergence of 0.001 cm�1.

2.2.2 Resonances. Because of their non-L2 nature, the
energies and wave functions of resonances are not straightfor-
wardly obtained by approaches limited to a finite domain of
space. We will here compare the performances of three differ-
ent methods based on the representation of the Hamiltonian
matrix in a finite-size box.

2.2.2.1 Stabilization method. Within this approach the unper-
turbed Hamiltonian H0 is repeatedly diagonalized in basis sets of
ever larger scattering coordinate R extension10,11 while the angular
and radial basis set associated with the r coordinate remain
unchanged. In practice, we increase the size of the box, denoted
by the parameter L, but keep the same number of DVR points,

Table 1 Classification of the symmetry-adapted angular basis set according
to the values of j, l and p

j l p Grovib

e e + A1
e o � A2

o e � B1

o o + B2
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provided that the number of points is large enough to compute
accurate wave functions even for the largest box size.

Three kind of solutions are obtained which are associated
with bound, resonant and continuum states. The latter are
separated by an energy gap inversely proportional to the size of
the box. The wave function of a resonance can be partitioned
into an inner and an outer part. The inner part is the wave
function of a quasi-bound state supported by the effective
potential, then localized at short range, while the outer part
is a wave function belonging to the continuum. The ratio of
outer to inner amplitudes is usually proportional to the width
of the resonance. The energy of the resonance is essentially
determined by the inner part of the wave function, which can
be stabilized within a finite-size box approach. Indeed, in the
stabilization diagram (Fig. 1), the energies of the continuum
states appear as decreasing functions of L, while the energies
of resonances remain constant. Furthermore, the crossings
between the continuum and the resonance energies are avoided
crossings since both kind of states are coupled by the Hamilto-
nian. The energy gap of a given avoided crossing is directly
related to the magnitude of the Hamiltonian matrix element
between the two crossing states. Thus, a largely avoided cross-
ing means a resonance with a large width and inversely, a
narrowly avoided crossing means a small width.

This method give a good estimate of the resonance position
E while only a qualitative information about the width G can be

drawn from the energy shift of the avoided crossings. When
G - 0, the energy gap of the avoided crossings is also very
small and thus the resonance position can be accurately
obtained from the stable energy plateau. A few schemes10–12

have been proposed to extract the resonance parameters from
the stabilization diagram through the calculation of the density
of states r(E). Mandelshtam et al.11 have shown that the density
of states can be computed as:

rJLðEÞ
� 	

¼ 1

DL

X
i

dEi;JðLÞ
dL











�1

Ei;J ðL0Þ¼E
(10)

where the derivatives of the energies Ei, J vs. L are evaluated at
the intersections of the Ei, J(L) curves with the constant E line,
i.e. Ei;J L0ð Þ ¼ E, with L0 in the range L � DL/2 o L0 o L + DL/2.
Each resonance is then fitted to the Lorentzian form of eqn (5)
(see Fig. 2). The resulting positions and widths of the first low
lying resonances are given in Table 2.

However, since the outer part of the resonance is not
correctly calculated in a finite-size box, a small error on the
resonance parameters can be expected. Another drawback of
this method is its lack of information about the resonance wave
function. These difficulties can be overcome by the complex
absorbing potential (CAP) method.

Fig. 1 Eigenvalues of H0 for J = 0 and symmetry A1 as a function of the
size of the box spanned by the basis set. The red lines correspond to the
asymptotic energy levels Cl�+ p-H2 (v = 0,j).

Fig. 2 Density of states for J = 0 and symmetry A1. A zoom into the first
resonance is shown in the upper panel.
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2.2.2.2 Complex absorbing potential method. It has been
shown recently13 that this method gives results in good agree-
ment with the direct extraction of the resonance parameters
from close-coupling scattering calculations. Within this
approach a non-Hermitian complex symmetric Hamiltonian
matrix is built by adding an imaginary potential to H0:

H(Z) = H0 � iZW(R) (11)

where Z is the strength of the CAP and W(R) is a real positive
function of the scattering R coordinate, which take here the
simple form

W(R) = (R � R0)2y(R � R0) (12)

where R0 is the starting point of the CAP and y(x) is the
Heaviside function. The addition of the CAP transforms the
finite-size box into an infinite one since almost all reflections
of the wave function on the outer bound of the box are
suppressed. The resonance energies and wave functions are
then obtained from the diagonalization of H(Z) in any L2-basis
set. We here use the eigenfunctions of H0 defined by eqn (9).
Hence the matrix elements of H(Z) are

CJ 0M0
i0 jHðZÞjCJM

i

D E
¼ Ei;Jdii0dJJ 0dMM0

�iZ
X
jklv

GJMi
ujl Rkð ÞGJMi0

ujl Rkð ÞW Rkð ÞdJJ 0dMM0

(13)

where Rk denotes the Chebyshev DVR grid points. In order to
reduce the computational effort, we removed the bound state
eigenfunctions from the basis set {CJM

i }. We assume they are
not coupled by the CAP with the continuum and resonant states
if R0 is larger than the external turning points. Also, we reduced
the set of discretized continuum eigenfunctions to those lying
below a given threshold Ecut chosen to ensure that the energy
gap between the computed resonances and any state above the
threshold is big enough to make sure that they are uncoupled.

Since we use a finite basis set, the resonance energies are
found to vary as function of the strength Z of the complex
potential W(R). The complex eigenvalues Ei, J(Z) of H(Z) com-
puted for different values of Z produce trajectories in the
complex plane (see Fig. S1 in ESI†). A resonance is associated
with a stability point which in the complex plane appears as a
loop, a cusp or a sharp turn. This stability point provides
the best approximation to the resonance position and width.
The latter quantities for a few selected resonances are shown in

Table 2 and a very good agreement with the results of the
stabilization method is observed. The widths calculated here
are larger by one or two orders of magnitude than those of the
vibrational predissociation resonances3 obtained by the vibra-
tional excitation of H2. This suggest that the inter-monomer
modes of motion are more coupled with the continuum than
the intra-monomer mode of motion.

However, both methods require to perform a large number
of diagonalizations in order to achieve a good accuracy, thus
requiring lengthy computational time. In the case of the CAP
method, one can substantially reduces the size of the matrix to
be diagonalized and save computer time, but the calculations
have to be performed for each resonance. A cheaper alternative
is fortunately available for the determination of the resonance
energies as shown in the next section.

2.2.2.3 Rotational constant method. The widths of the com-
puted resonances shown in Table 2 are much smaller than the
energy gaps between resonance positions. Thus we can neglect
them and, instead of the Breit–Wigner distribution for r(E)
defined in eqn (5), approximate r(E) by a delta function
centered at �ho ¼ Ei0 ;J 0 � Ei;J . Since the stabilization calcula-
tions showed that the variation of the eigenvalues Ei, J(L) of H0

near a resonance is small when Gi, J - 0, we can also take
Ei, J = Ei, J. We then assume that the energies of the resonant
states are well approximated by the energies obtained by
solving the eqn (1) in a finite domain of space. Finally, we
use the fact that conversely to continuum states, narrow
resonances are localized at short range. We can then clearly
distinguish the resonant states from the continuum states in
the discretized spectrum of H0 by computing the average value
of R�2. The computed values represented in Fig. 3 are seen to
be large for resonances while remaining small for the states
of the continuum. The accuracy of the resonance energies
calculated with this method (see Table 2) is seen to be better
than 0.01 cm�1. As a summary, two different approaches, the
stabilization method and the CAP method, are in excellent
agreement. This provide reference values for the positions of
resonances on which the positions calculated with the more
approximate rotational constant method can be compared. The
good agreement observed in Table 2 validates the latter method
which is easier to implement and was then used for computing
the spectra.

2.2.3 Labeling of the states. In order to tentatively assign
vibrational quantum numbers to each computed energy level,
we made contour plots in the (R, y) Jacobi coordinates of the
associated wave functions and counted the number of nodes in
each direction. We also additionally performed an harmonic
normal mode analysis. The Cl�(X2) (X = H, D) complexes have
two equivalent linear equilibrium structures, related by the
exchange of identical atoms. Four normal modes of vibration
can be associated to each of these structures: the DR stretching
mode, the doubly degenerate Dy bending mode, and the Dr
stretching mode, labeled respectively by the v1, v2, and v3

quantum numbers. Besides these three quantum numbers,
the vibrational wave function is defined by a fourth quantum

Table 2 Comparison of the different approaches for determining the
position E and width G of resonances belonging to the A1 irrep and for J =
0. These parameters are given in cm�1

Stabilization CAP h1/R2i

E G E G E

80.139 0.0013 80.139 0.0013 80.143
175.049 0.0048 175.049 0.0046 175.051
245.289 0.0082 245.290 0.0082 245.295
293.608 0.0086 293.609 0.0088 293.600
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number associated with the doubly degenerate bending mode.
It is denoted here by l2 and defines the projection of the
vibrational angular momentum along the principal axis of the
linear equilibrium structure. Lets us note that since the projec-
tion of the electronic orbital momentum along the latter axis is
L = 0, then l2 is equal to the projection of the total angular
momentum J. Consequently for J = 0, only l2 = 0 and even values
of v2 are possible.

The symmetry group of the rovibrational states of a linear
heteronuclear molecule is the CNv(M) group14 which is of order
two. The two irreducible representations are labeled + and �
depending on the eigenvalue p of the parity operator P. This
group applies to rigid molecules, i.e. to the molecular vibra-
tions of a single equilibrium structure, while the G4 group also
contains the exchange of identical nuclei. A given level is
labeled + if for l2 Z 0, J + l2 is even or if for l2 o 0, J + l2 is
odd. Conversely a level is labeled� if for l2 Z 0, J + l2 is odd or if
for l2 o 0, J + l2 is even. The symmetry of the vibrational wave
functions is denoted S, P, D,. . . for l2 equal to 0, �1, �2,. . ..

The correspondence between the irreducible representa-
tions of the CNv(M) and G4 groups is shown in Table 1. We
can see in this table that to each energy level calculated in the
harmonic approximation and belonging to an irrep of the
CNv(M) group, is corresponding a pair of degenerate levels
belonging to the irreps of the G4 group. The degeneracy of these
levels is lifted when the complete double minimum PES is
taken into account, owing to tunneling through the barrier
separating the two equivalent linear equilibrium structures.

2.3 Dipole moment and line strength

We take the dipole moment to lie along the intermolecular
vector

-

R and to be proportional to R. This approximation has

proved to be quite accurate in our previous studied dedicated to
other atomic ion-diatom complexes like H�(N2),6 H�(CO)15 or
Na+(H2).16 In the present case, this approximation is further-
more supported by the results obtained by Buchachenko et al.3

The interested reader can find in any of these previous studies
the expression of the dipole moment matrix elements from which
result the selection rules: Dp = 0, DJ = 0, �1, Dj = 0, Dl = �1.

2.4 Nuclear spin statistics: ortho and para states

The total wave function Crovib � Cspin � Celec must be anti-
symmetric with respect to the interchange of the H atoms and
symmetric with respect to the interchange of the D atoms.
Therefore in the case of the Cl�(H2) complex the total wave
function symmetry is either B1 or B2 while in the case of Cl�(D2)
it is either A1 or A2. The electronic wave function Celec of both
complexes belongs to the totally symmetric representation A1.
The rovibrational wave function can belong to any of the G4

irreducible representations and its symmetry is determined by
the one of the rotational basis set functions (see Table 1), which
is independent of the nature of the complex.

There are (2ICl + 1)(2IH + 1)2 = 16 spin wave functions for the
35Cl�(H2) complex, 12 are of symmetry A1 corresponding to
states with total spin I = 5/2, 3/2, 1/2 while the four remaining
are of B2 symmetry corresponding to states with total spin
I = 3/2. This can be written Gspin = 12A1"4B2.

In the case of the 35Cl�(D2) complex, there are (2ICl + 1)
(2ID + 1)2 = 36 spin wave functions. 24 are of A1 symmetry
corresponding to states with I = 7/2, 5/2, 3/2, 1/2 while the
remaining are of B2 symmetry corresponding to states with
I = 5/2, 3/2, 1/2 This can written as: Gspin = 24A1"12B1.

The statistical weights needed in eqn (2) are then straight-
forwardly obtained and are gathered in Table 3. Let us note that
for both complexes, the ortho and para notation always refers
respectively to the A1 and B2 irreps of the spin wave function.
Since transitions between ortho and para states are forbidden
one can consider them as two different species of the complex.

3 Results

The dissociation energies of 35Cl�(p-H2), 35Cl�(o-H2), 35Cl�(p-D2)
and 35Cl�(o-D2) are found to be 416.5 cm�1, 526.3 cm�1,
581.1 cm�1, and 521.7 cm�1, respectively. Since the para/ortho
parity is conserved by the dissociation process, the ground
states of 35Cl�(o-H2) and 35Cl�(p-D2) correlate with the j = 1
rotational state of the diatomic product, of which the energy is
included in the dissociation energy. The energy gap between
the rovibrational ground state of the ortho and para species is

Fig. 3 Expected values of h1/R2i for the H0 eigenstates with the symmetry
A1 and J = 0, for the Cl�(H2) complex.

Table 3 Statistical weight (SW) of the rovibrational states

Cl�(H2) Cl�(D2)

Grovib Gspin SW Grovib Gspin SW

para A1 B2 4 B1 B2 12
A2 B2 4 B2 B2 12

ortho B1 A1 12 A1 A1 24
B2 A1 12 A2 A1 24
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8.89 cm�1 and 0.39 cm�1 for 35Cl�(H2) and 35Cl�(D2), respectively,
showing that the mass effect on tunneling is significant here.
For the levels with larger vibrational energy, the tunneling
becomes easier as one get closer to the top of the isomerization
barrier, and consequently the energy splitting increases, up to
more than 100 cm�1. Tables gathering the calculated energy,
the assigned quantum numbers and the symmetry of the lowest
lying levels are provided in the ESI† for both complexes and for
J = 0 and J = 1.

The theoretical spectra presented in Fig. 4 and 5 have been
obtained by assuming that the initial populations of the
rovibrational levels of 35Cl�(H2) or 35Cl�(D2) are in thermal
equilibrium at 8 or 22 K. Furthermore we assume that the
experimental cooling down to 8 or 22 K is fast enough such that
the ortho to para population ratios remain equal to the natural
ratios at room temperature, namely 3 : 1 for H2 and 2 : 1 for D2.
The rovibrational partition functions which are necessary for
evaluating the Boltzmann distributions have been calculated
with a maximal value of the total angular momentum Jmax = 20.
This value ensure the convergence of the partition functions
(see Fig. S2 and S3 in ESI†) for both temperatures and thus an
accurate calculation of the spectrum.

Fig. 4 shows a comparison between the calculated and
experimental predissociation spectra of the Cl�(H2) complex
at 8 K. The energy differences between the calculated ortho and
para bands results from the tunneling splitting which is quite
large in the case of H atoms. As expected at this low tempera-
ture, all the transitions are departing from the ground state and
we consequently labeled the bands by giving only the final
states. Most of the bands are of S-type (l2 = 0) and are
associated with an increase of the number of quanta in the
stretching mode v1. The main contribution to the experimental
spectrum is due to the ortho complex. We can also see on Fig. 4
that the theoretical spectrum is shifted to the red by about
8 cm�1. This discrepancy between theory and experiment which
was already noticed by Buchachenko et al.3 might be attributed
to a lack of accuracy of the PES.

In the case of the Cl�(D2) spectrum, the comparison
between theory and experiment at a temperature of 22 K is
shown in Fig. 5 Again most of the bands are of S-type although
compared to Cl�(H2) there is an increase in the number of
P-type bands which might be simply due to the higher tem-
perature. Again the progression in the bands are associated
with an increase of the number of quanta in the stretching
mode v1 and the theoretical bands are also shifted to the red by
about 8 cm�1. As expected the separation between the ortho
and para bands is much smaller than for Cl�(H2) due to the
heavier mass of the D atoms which have a lower probability of
tunneling.

In order to finalize the comparison between theory and
experiment, the theoretical spectra were shifted by 8 cm�1

and convolved using a linewidth broadening of 1 cm�1. The
comparison between theory and experiment is now easier to
observe in Fig. 6 and 7. The contributions of both the para and
ortho species are shown, as well as the resulting Boltzmann
averaged spectrum. The agreement between theory and experi-
ment is quite good and the main contributions to the spectra
appear clearly to be provided by the Cl�(o-H2) and Cl�(p-D2)
species. A second comparison of the Cl�(H2) and Cl�(D2) predis-
sociation spectra was also made for the temperatures of 22 K and
8 K, respectively, showing a qualitative good agreement between
theory and experiments (see Fig. S4 and S5 in ESI†).

The lack of experimental transitions belonging to the Cl�(p-H2)
and Cl�(o-D2) complexes could be explained on the basis of the
rapid ligand exchange reactions

Cl�(p-H2) + o-H2 - Cl�(o-H2) + p-H2 (14)

Cl�(o-D2) + p-D2 - Cl�(p-D2) + o-H2 (15)

as it was first proposed by Wild et al.1 and subsequently
investigated in more detail by Buchachenko et al.3 and by
Grinev et al.17

Using the dissociation energies calculated in this work, the
reactions (14) and (15) are found to be exoergic by 109.8 cm�1

Fig. 4 Experimental (top) and theoretical (bottom) predissociation spectra of Cl�(H2) at 8 K. Since all transition occur from the vibrational ground state,
the bands have been labeled using the final state vibrational quantum numbers (v1,v2,l2). Both spectra are normalized to unity at the maximum.
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and 60.2 cm�1, respectively. At a given temperature T, the
products/reactants abundance ratio is given by the equilibrium
constant K(T) which can be easily calculated with the relative
partition functions of the reactants and products,17,18 QR and
QP respectively,

KðTÞ ¼ exp � DE
kBT

� �
QPðTÞ
QRðTÞ

(16)

where DE is the energy of the products minus the energy of the
reactants. The partition functions for the ortho and para species
of the complexes are nearly equal since only a few rotational
levels contribute to the partition functions at T r 22 K and the
rotational constants of the ortho and para species are very close.
The partition functions for the ortho and para species of the
diatomic molecules are in a 1 : 3 ratio since only the ground
rovibrational levels contribute with the degeneracy factor 2j + 1.

Thus at low temperature, the temperature dependence of the
ligand exchange equilibrium constants is almost only deter-

mined by the exponential exp � DE
kBT

� �
. Table 4 (and Fig. S6 in

the ESI†) gives the accurately calculated values of the equili-
brium constants by using the rovibrational energy levels
obtained in this work by solving the Schrodinger eqn (1).

If we assume that the ortho to para abundance ratio is 3 : 1
for H2 and 2 : 1 for D2, the large values of the equilibrium
constant imply that the abundance of 35Cl�(p-H2) and 35Cl�(o-D2)
are negligible with respect to the abundance of 35Cl�(o-H2) and
35Cl�(p-D2), respectively, except for the deuterated reaction at 22 K
since the 35Cl�(p-D2) to 35Cl�(o-D2) abundance ratio is expected to
be 8. In Fig. 7, the para contribution appears to be much closer to
the experimental spectrum than the Boltzmann average. This
suggest that the para species of Cl�(D2) is significantly more

Fig. 5 Experimental (top) and theoretical (bottom) predissociation spectra of Cl�(D2) at 22 K. Since all transition occur from the vibrational ground state,
the bands have been labeled using the final state vibrational quantum numbers (v1,v2,l2). Both spectra are normalized to unity at the maximum.

Fig. 6 Comparison between the experimental and convolved theoretical
predissociation spectrum of Cl�(H2) at 8 K assuming a linewidth broad-
ening of about 1 cm�1. The calculated spectra are shifted to the blue by
8 cm�1 to match the first experimental band. All spectra are normalized to
unity at the maximum.

Fig. 7 Comparison between the experimental and convolved theoretical
predissociation spectrum of Cl�(D2) at 22 K assuming a linewidth broad-
ening of about 1 cm�1. The calculated spectra are shifted to the blue by
8 cm�1 to match the first experimental band. All spectra are normalized to
unity at the maximum.
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abundant than the ortho species, in agreement with the
chemical equilibrium resulting from the D2 ligand exchange
reaction.

4 Conclusions

The predissociation spectra of the 35Cl�(H2) and 35Cl�(D2)
complexes were calculated by an accurate quantum method.
To this aim, an existing 3D PES was used. The bound states
were computed using a variational approach in the space-fixed
frame while several methods were compared for the computa-
tions of the resonant quasi-bound states. The quantum num-
bers associated with the lower transitions were attributed using
symmetry arguments. The rovibrational transition spectra were
calculated for both isotopologues and compared with the
recently measured experimental spectra respectively at 8 K
and 22 K. The very good agreement obtained between theory
and experiment validates the quality of both the PES and the
quantum method selected for performing the bound and
resonant states calculations. This comparison also shows that
the ortho component is dominating the measured 35Cl�(H2)
spectra, while it is the para component for 35Cl�(D2). This result
is attributed to the rapid para 2 ortho conversion of the
complexes by collision with H2 or D2 molecules inside the
trap at low temperature. The main experimental bands are
eventually assigned to the 35Cl�(o-H2) combination bands 2v2,
v1 + 2v2, 2v1 + 2v2, and to the 35Cl�(p-D2) combination bands
v1 + 2v2, 2v1 + 2v2, 3v1 + 2v2.
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