
CTL Model Checking of Self Modifying Code
Tayssir Touili

LIPN, CNRS and University Paris 13
Xin Ye

Shanghai Key Lab. of Trustworthy Comput., ECNU and LIPN

Abstract—Self-modifying code is extensively used to obfuscate
malware and to make reverse engineering harder. It consists in
code that can modify its own instructions during the execution.
Being able to analyse such code is crucial nowadays. In this
paper, we consider the CTL model-checking problem of self
modifying code. To model such programs, we use Self Modifying
Pushdown Systems (SM-PDS), an extension of pushdown systems
whose set of rules can be modified during execution. We reduce
the CTL model-checking problem to the emptiness problem
of Self-Modifying Alternating Büchi pushdown systems (SM-
ABPDS). We implemented our techniques in a tool. We obtained
encouraging results. In particular, our tool was able to detect
several self-modifying malwares; it could even detect several
malwares that well-known antiviruses such as McAfee, Norman,
BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Avast,
and Symantec failed to detect.

I. INTRODUCTION

Self-modifying code is code that modifies its own instruc-
tions during its execution. It is usually used to enhance the
difficulty of disassembling in reverse engineering. It is not
only applied for software protection but also to make malwares
harder to analyze and detect by static analysis approaches.
Therefore, it is vital to analyze the programs equipped with
self-modifying codes. In [1], [2], [3], [4], [5], [6], [7], [8],
self-modifying codes implemented by packing and unpacking
techniques have been well studied. Analysis tools for such
codes are available [9], [10].

In this work, we consider another kind of implementation
of self-modifying codes: self-modifying instructions. These
are instructions that can read and write to memory, like the
mov instruction that is able to copy data from one memory
location to another. Using such self-modifying instructions can
make malware detection harder. Fig. 1 shows how malware can
use self-modifying instructions to evade from static analysis
techniques. This figure shows a fragment of the malware
Bagle.J equipped with such self-modifying instructions. First
let us recall the semantics of the mov instruction. It copies
the data item referred to by its second operand (register or
memory location) into its first operand. In Fig. 1, in the box
on the left, we give, respectively, the binary code, the addresses
of the different instructions, and the corresponding assembly
code, obtained by translating syntactically the binary code
at each address. For example, ff is the binary code of the
instruction push. Thus, the first line is translated to push
0b. The second instruction mov 0x2 0xc will replace the
first byte at address 0x2 by 0xc. Thus, at address 0x2, ff
0b is replaced by 0c 0b, i.e., the instruction push 0b is
replaced by jmp 0b. If we analyse this code without taking

into account the fact that mov 0x2 0xc is a self-modifying
instruction, then, we will obtain the Control Flow Graph “CFG
a”, and we will reach the conclusion that the Bagle malicious
behaviour implemented at address 0b by the API functions
RegCreateKeyA, RegDeleteValueA, and RegCloseKey is not
reachable. However, the actual CFG is “CFG b”, where the
malicious fragment of the malware Bagle.J that starts at
address 0b is reached and will be executed.

It can be seen from this example that self-modifying codes
can make malware detection harder, and that the mov instruc-
tion is able to modify instructions of the program successfully
via its ability to read and write the memory. Thus, it is crucial
to be able to analyse this kind of self-modifying code.

Self Modifying Pushdown Systems (SM-PDS) was pro-
posed in [11] as a perfect model to represent such self-
modifying codes. Indeed, a SM-PDS is an extension of stan-
dard Pushdown Systems (PDS) with self-modifying transition
rules that modify the set of the rules of the PDS during
the execution. This allows to represent the self-modifying
instructions of the program. Moreover, SM-PDSs allow to keep
track of the program’s stack, which is very important for mal-
ware detection. Indeed, as decribed in [12], many obfuscation
techniques rely on operations over the stack. Therefore, it is
important for malware detection to have analysis techniques
that can deal with the program stack.

[11] proposed efficient reachability analysis techniques for
SM-PDSs. However, reachability is not enough to describe
several malicious behaviors. For example, [13] showed that
the branching-time temporal logic CTL is needed to represent
several malicious behaviors. In this work, we go one step
further and consider the CTL model-checking problem for
SM-PDSs. This allows to detect CTL-like malicious behaviors
on self-modifying code. We reduce this problem to the empti-
ness checking of Self-modifying Alternating Büchi Pushdown
Systems (SM-ABPDS), and we propose an algorithm that
computes a finite automaton that characterizes the set of
configurations accepted by the SM-ABPDS. We implemented
our techniques in a tool for self-modifying code analysis. We
obtained encouraging results. Indeed, our tool was able to
detect more than 700 self-modifying malwares. Amongst these
malwares, several could not be detected by well known and
widely used commercial anti-viruses such as McAfee, Nor-
man, BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-
360, Avast, and Symantec.

Outline. The rest of the paper is organized as follows: In sec-
tion 2, we recall the definition of SM-PDS. Section 3 reviews

 0x2 push 0b
 0x4 mov 0x2 0xc

 0x7 push %ebx
 0x9 jmp 0x2

 0xb push 80000001h

 ff 0b
c6 02 0c

 ff 01
0c 02

68 01 00 00 08

Binary Codes Assemblyaddress

Bagle.J code fragment

 ff 15 00800010 0x10 call RegCreateKeyA

 ff 15 08800010 0x26 call RegCloseKey

 ff 15 00804000 0x1A call RegDeleteValueA
ŏ ŏ

ŏŏ

0x2
push 0b

0x7
push ebx

0x9
jmp 0x2

CFG b

0x2
jmp 0b

0xb
push
8000001h

0x10
call

RegCreateKey
A

… …

After executing
 mov 0x2 0xc

0x2
push 0b

0x4
mov 0x2 0xc

0x7
push ebx

0x9
jmp 0x2

CFG a

0xb
push 8000001h

0x26
call RegCloseKey

0x1A
call

RegDelete
ValueA

0x4
mov 0x2 0xc

jmp 0b

Fig. 1: An Example of Self-modifying Code

the definition of CTL and shows how CTL model checking on
SM-PDSs can be reduced to the emptiness analysis on SM-
ABPDSs. In Section 4, we give our algorithm that computes
a finite automaton representing the set of configurations ac-
cepted by a SM-ABPDS. Our experiments are described in
Sections 5. For lack of space, the proofs are ommitted. They
can be found in the full version [14]. Moreover, the full version
[14] contains also bigger experimental tables.

Related Work. Model checking and static analysis techniques
were extensively applied for the analysis of binary code [1],
[2], [3], [5], [15]. Malicious behaviors were described by
temporal Logics in [16], [5], [15], [17], [18]. However, these
works cannot deal with self-modifying code.

Formal semantics of self-modifying code was proposed
in [19], [20], [21]. However, these specifications are too
abstract to be used in practice. A new representation of self-
modifying code called State Enhanced-Control Flow Graph
(SE-CFG) was proposed in [22]. SE-CFG extends standard
control flow graphs with a new data structure, keeping track
of the possible states programs can reach, and with edges that
can be conditional on the state of the target memory location.
Unlike SM-PDSs, this representation does not allow to take
into account the stack of the program. Abstract interpretation
techniques that compute an over-approximation of the set of
reachable states of a self-modifying program were proposed
in [23]. Combining static and dynamic analysis techniques to
analyse self-modifying programs was applied in [24]. These
techniques [23], [24] cannot handle the program’s stack.
Unpacking binary code is considered in [25], [26], [27], [21].
These works do not consider self-modifying mov instructions.

CTL model-checking for pushdown systems (PDS) was
considered in [28], [13]. In [13], this problem is reduced to the
emptiness problem in Alternating Büchi Pushdown Systems.
In this work, we extend this approach to SM-PDSs. CTL
model-checking for SM-PDSs can be reduced to CTL model-
checking for PDSs. However, as witnessed by the results in the
experiments section, this reduction is not efficient. We propose
in this paper a direct and more efficient approach.

II. SELF MODIFYING PUSHDOWN SYSTEMS

In this section, we recall the definition of Self-modifying
Pushdown Systems [11].

Definition 1. A Self-modifying Pushdown System (SM-PDS)
is a tuple P = (P,Γ,∆,∆c), where P is a finite set of control
points, Γ is a finite set of stack symbols, ∆ ⊆ (P ×Γ)× (P ×
Γ∗) is a finite set of transition rules, and ∆c ⊆ P×(∆∪∆c)×
(∆ ∪∆c) × P is a finite set of modifying transition rules. If
((p, γ), (p′, w)) ∈ ∆, we also write ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆.

If (p, r1, r2, p
′) ∈ ∆c, we also write p

(r1,r2)
↪−−−−→ p′ ∈ ∆c. A

Pushdown System (PDS) is a SM-PDS where ∆c = ∅.

Intuitively, a Self-modifying Pushdown System is a Push-
down System that can dynamically modify its set of rules
during the execution time: rules ∆ are standard PDS transition
rules, while rules ∆c modify the current set of transition rules:
⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆ expresses that if the SM-PDS is in
control point p and has γ on top of its stack, then it can move
to control point p′, pop γ and push w onto the stack, while

p
(r1,r2)
↪−−−−→ p′ ∈ ∆c expresses that when the PDS is in control

point p, then it can move to control point p′, remove the rule
r1 from its current set of transition rules, and add the rule r2.

Formally, a configuration of a SM-PDS is a tuple c =
(⟨p, w⟩, θ) where p ∈ P , w ∈ Γ∗ and θ ⊆ ∆ ∪ ∆c is the
current set of transition rules of the SM-PDS. θ is called
the current phase of the SM-PDS. A SM-PDS defines a
transition relation ⇒P between configurations as follows: Let
p ∈ P, γ ∈ Γ, w ∈ Γ∗, and θ ⊆ ∆ ∪∆c, then:

1) if r ∈ ∆c is of the form r = p
(r1,r2)
↪−−−−→ p′, such that

r1 ∈ θ, then (⟨p, w⟩, θ) ⇒P (⟨p′, w⟩, θ′), where θ′ =
(θ \ {r1}) ∪ {r2}. In other words, the transition rule r
updates the current set of transition rules θ by removing
r1 from it and adding r2 to it.

2) if r ∈ ∆ is of the form r = ⟨p, γ⟩ ↪→ ⟨p′, w′⟩ ∈ ∆,
then (⟨p, γw⟩, θ) ⇒P (⟨p′, w′w⟩, θ): the transition rule
r moves the control point from p to p′, pops γ from
the stack and pushes w′ onto the stack. This transition
keeps the current set of transition rules θ unchanged.

Let ⇒∗
P be the transitive, reflexive closure of ⇒P . A path of

P is a sequence of configurations c0c1... s.t. for every i ≥ 0,

2

ci ⇒P ci+1. Then, for every i ≥ 0, ci+1 is an immediate
successor of ci, and ci is an immediate predecessor of ci+1.

To simplify the presentation, we assume w.l.o.g. that P =
PN∪Pc s.t. PN∩Pc = ∅, and for every ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆,

p ∈ PN and for every p
(r1,r2)
↪−−−−→ p′ ∈ ∆c, p ∈ Pc (we can

always transform the rules of a given SM-PDS into equivalent
ones that meet this condition).

SM-PDS vs. PDS. Let P = (P,Γ,∆,∆c) be a SM-PDS. It
was shown in [11] that P can be translated to an equivalent
pushdown system. The basic idea is to encode phases in the
control points of the PDS (since the number of phases is finite).
However, this translation is not efficient since the number of
control points of the equivalent PDS is |P | · 2O(|∆|+|∆c|).

From Self-modifying Codes to SM-PDS. SM-PDSs can
be used to model self-modifying binary code as described
in [11]. Our translation relies on the tool Jakstab [29] to
disassemble binary code, determine indirect jumps, determine
the program’s instructions, and compute information about
the values of the registers and the memory locations at each
control point of the program. After getting the assembly
program corresponding to the binary code using Jakstab [29],
we translate it into a SM-PDS as described in [11]. In our
translation, the control locations store the control points of
the binary program and the stack mimics the program’s stack.
The non self-modifying instructions of the program define the
rules ∆ of the SM-PDS (which are standard PDS rules), and
can be obtained following the translation of [15] that models
non self-modifying instructions of the program by a PDS. As
for the self-modifying instructions of the program, they define
the set of changing rules ∆c. For more details, we refer the
reader to [11].

III. CTL MODEL-CHECKING ON SM-PDSS
A. The Computation Tree Logic CTL

Let At be a finite set of atomic propositions. CTL formulas
over At are defined as follows (where A ∈ At):

φ ::= A|¬A | φ ∨ φ| φ ∧ φ | AXφ | EXφ |
A[φUφ] |E[φUφ] | A[φŨφ] |E[φŨφ].

Given a CTL formula φ, the closure cl(φ) is the set of all
the subformulae of φ, including φ. Let P = (P,Γ,∆,∆c) be
a SM-PDS, ν : P → 2At be a labelling function mapping to
each control location p ∈ P a set of atomic propositions. The
satisfiability relation of a CTL formula φ at a configuration
(⟨p0, w0⟩, θ0) (denoted by (⟨p0, w0⟩, θ0) |=ν φ) is defined as
follows:
• (⟨p0, w0⟩, θ0) |=ν A iff A ∈ ν(p0),
• (⟨p0, w0⟩, θ0) |=ν ¬A iff A /∈ ν(p0),
• (⟨p0, w0⟩, θ0) |=ν φ1 ∨ φ2 iff (⟨p0, w0⟩, θ0) |=ν φ1 or
(⟨p0, w0⟩, θ0) |=ν φ2,
• (⟨p0, w0⟩, θ0) |=ν φ1 ∧ φ2 iff (⟨p0, w0⟩, θ0) |=ν φ1 and
(⟨p0, w0⟩, θ0) |=ν φ2,
• (⟨p0, w0⟩, θ0) |=ν AXφ iff (⟨p1, w1⟩, θ1) |=ν φ for every
successor (⟨p1, w1⟩, θ1) of (⟨p0, w0⟩, θ0),
• (⟨p0, w0⟩, θ0) |=ν EXφ iff (⟨p1, w1⟩, θ1) |=ν φ for some
successor (⟨p1, w1⟩, θ1) of (⟨p0, w0⟩, θ0),

• (⟨p0, w0⟩, θ0) |=ν A[φ1Uφ2] iff for every path

(⟨p0, w0⟩, θ0)(⟨p1, w1⟩, θ1) · · ·

of P starting from (⟨p0, w0⟩, θ0), ∃i ≥ 0 s.t. (⟨pi, wi⟩, θi) |=ν φ2

and ∀0 ≤ j < i, (⟨pj , wj⟩, θj) |=ν φ1.
• (⟨p0, w0⟩, θ0) |=ν E[φ1Uφ2] iff there exists a path

(⟨p0, w0⟩, θ0)(⟨p1, w1⟩, θ1) · · ·

of P starting from (⟨p0, w0⟩, θ0), ∃i ≥ 0 s.t. (⟨pi, wi⟩, θi) |=ν φ2,
∀0 ≤ j < i, (⟨pj , wj⟩, θj) |=ν φ1.
• (⟨p0, w0⟩, θ0) |=ν A[φ1Ũφ2] iff for every path

(⟨p0, w0⟩, θ0)(⟨p1, w1⟩, θ1) · · ·

of P starting from (⟨p0, w0⟩, θ0), ∀i ≥ 0, if (⟨pi, wi⟩, θi) ⊭ν φ2,
then ∃0 ≤ j < i, (⟨pj , wj⟩, θj) |=ν φ1.
• (⟨p0, w0⟩, θ0) |=ν E[φ1Ũφ2] iff ∃ a path
(⟨p0, w0⟩, θ0)(⟨p1, w1⟩, θ1) · · · of P starting with
(⟨p0, w0⟩, θ0), s.t. ∀i ≥ 0, if (⟨pi, wi⟩, θi) ⊭ν φ2, then
∃0 ≤ j < i, (⟨pj , wj⟩, θj) |=ν φ1.

Standard CTL operators can be expressed by the above op-
erators: EFψ = E[trueUψ], AFψ = A[trueUψ], EGψ =
E[falseŨψ], AGψ = A[falseŨψ].
B. Self-modifying Alternating Büchi Pushdown Systems

Definition 2. A Self Modifying Alternating Büchi Pushdown
System (SM-ABPDS) is a tuple BP = (P,Γ,∆,∆c, F),
where P is a finite set of control points, Γ is a finite
set of stack symbols, F is the set of final states, ∆ ⊆
(P × Γ) × 22

∆∪∆c∪{−} × 2P×Γ∗
is a finite set of transition

rules in the form ⟨p, γ⟩ ↪ [σ1,··· ,σn]−−−−−−→ {⟨p1, w1⟩, · · · , ⟨pn, wn⟩}
where [σ1, · · · , σn] is an ordered set and ∀1 ≤ i ≤ n, σi
is either a set of rules σi ⊆ ∆ ∪ ∆c or σi = −, and
∆c ⊆ P × 2∆∪∆c × 2∆∪∆c × P is a finite set of modifying

transition rules in the form p ↪
(σ,σ′)−−−−→ p′ where σ, σ′ ⊆ ∆∪∆c.

A configuration of a SM-ABPDS is a tuple of the form
(⟨p, w⟩, θ) where p ∈ P , w ∈ Γ∗ and θ ⊆ ∆ ∪ ∆c is the
current phase.

BP defines the transition relation ⇒BP⊆ (P×Γ∗×2∆∪∆c)×
2(P×Γ∗×2∆∪∆c) between configurations as follows: Let θ ⊆
∆ ∪∆c, γ ∈ Γ, w ∈ Γ∗, and p ∈ P , then:

1) If r : ⟨p, γ⟩ ↪
[σ1,··· ,σm]−−−−−−−→ {⟨p1, w1⟩, · · · , ⟨pm, wm⟩}

is a rule in ∆ ∩ θ, if either for every 1 ≤ i ≤
m,σi = − or ∃1 ≤ i ≤ m,σi ∩ θ ̸= ∅, then
(⟨p, γw⟩, θ) ⇒BP {(⟨pi, wiw⟩, θ)|σi = −, 1 ≤ i ≤
m} ∪ {(⟨pi, wiw⟩, θ)|σi ∩ θ ̸= ∅, 1 ≤ i ≤ m}.

2) If r : p ↪
(σ,σ′)−−−−→ p′ is a rule in ∆c ∩ θ , then

(⟨p, w⟩, θ) ⇒BP {(⟨p′, w⟩, θ′)}, θ′ = θ\σ ∪ σ′.
Intuitively, [σ1, · · · , σm] in the transition r :

⟨p, γ⟩ ↪
[σ1,··· ,σm]−−−−−−−→ {⟨p1, w1⟩, · · · , ⟨pm, wm⟩} ensures that

for a given configuration (⟨p, γw⟩, θ), for every 1 ≤ i ≤ n,
(⟨pi, wiw⟩, θ) is in the set of immediate successor iff

- either for every 1 ≤ j ≤ n, σj = −;
- or σi = − and ∃j ̸= i, 1 ≤ j ≤ n s.t. σj ∩ θ ̸= ∅
- or σi ∩ θ ̸= ∅

Note that − means that there is no constraint on whether θ
contains a rule in σi or not.

3

For every c ∈ P ×Γ∗ × 2∆∪∆c and C ⊆ P ×Γ∗ × 2∆∪∆c ,
if c ⇒BP C then c is an immediate predecessor of C and
C is an immediate successor of c. Let ⇒∗

BP⊆ (P × Γ∗ ×
2∆∪∆c) × 2(P×Γ∗×2∆∪∆c) be the reflexive transitive closure
of ⇒BP defined as follows: (1) ∀c ∈ P × Γ∗ × 2∆∪∆c ,
c ⇒∗

BP {c}, (2) if c ⇒BP C, then c ⇒∗
BP C, and (3) if

c ⇒BP {c1, ...cn} and ci ⇒BP Ci for every 1 ≤ i ≤ n, then
c ⇒∗

BP
∪n
i=1 Ci. Given a set of configurations C, we define

the sets preBP(C), pre
∗
BP(C) and pre+BP(C) as follows:

preBP(C) = {c ∈ P × Γ∗ × 2∆∪∆c |∃C ′ ⊆ C s.t. C ′ is an
immediate successor of c}, pre∗BP(C) = {c ∈ P × Γ∗ ×
2∆∪∆c , ∃C ′ ⊆ C s.t. c ⇒∗

BP C ′} and pre+BP(C) = preBP ◦
pre∗BP(C). We omit the subscript BP when it is clear from
the context.

A run ρ of BP starting from an initial configuration c0 is
a tree whose root is labelled by c0 and whose other nodes
are labelled by configurations of P × Γ∗ × 2∆×∆c . A node
of ρ labelled by configuration c has n children labelled by
c1, . . . , cn, respectively, iff c⇒BP {c1, ...cn}. A path c0c1 · · ·
of a run ρ is an infinite sequence of configurations s.t. c0 is the
root of ρ and ci+1 is one child of ci. A path is accepting iff it
visits some configurations with control locations in F infinitely
often. A run is accepting iff all its paths are accepting. A
configuration c is accepted by BP iff it is the root of a run
accepted by BP . The language of BP , L(BP), is the set of
configurations accepted by BP .

We assume w.l.o.g. that for every rule in ∆c of the form

r : p ↪
(σ,σ′)−−−−→ p′, r /∈ σ.

Representing potentially infinite sets of configurations of
SM-ABPDSs.
Alternating Multi-Automata (AMA) were introduced in [30]
to finitely represent regular sets of configurations of an alter-
nating PDS. In order to adapt AMA to represent regular sets of
SM-ABPDS, we extend this notion taking phases into account
as follows:

Definition 3. Let BP = (P,Γ,∆,∆c, F) be a SM-ABPDS.
An Extended Alternating Multi-Automaton (EAMA) is a tuple
A = (Q,Γ, T, I,QF) where I ⊆ P ×2∆∪∆c ⊆ Q is the set of
initial states, T ⊆ Q× (Γ∪{ϵ})×2Q is the set of transitions,
QF ⊆ Q is a finite set of final states.

Let →T be the transition relation defined as follows: (1)
∀q ∈ Q, q

ϵ−→T {q} where ϵ is the empty word; (2) if
(q, γ, {q1, · · · , qn}) ∈ T, q

γ−→T {q1, · · · , qn}; and (3) if
q

γ−→T {q1, · · · , qn} and qi
w−→T Qi for every 1 ≤ i ≤ n,

then q
γw−−→T

∪n
i=1Qi.

A configuration (⟨p, w⟩, θ) is accepted by the EAMA A iff
(p, θ) ∈ I and ∃ Q′ ⊆ QF such that (p, θ) w−−→TQ

′. Let L(A)
be the set of configurations accepted by A. Let C be a set of
configurations of the SM-ABPDS BP . C is regular if there
exists an EAMA A such that C = L(A).

C. From CTL Model-Checking of SM-PDSs to the emptiness
problem of SM-ABPDSs

Let P = (P,Γ,∆,∆c) be a Self Modifying Pushdown
System with an initial configuration c0 = (⟨p0, w0⟩, θ0). Given
a set of atomic propositions At, let ν : P → 2At be a labeling
function that associates each control location to a set of atomic
propositions. Let φ be a CTL formula over At. Our goal is to
check whether c0 |=ν φ. This can be done by translating the
SM-PDS into an equivalent PDS as described in Section II and
in [11], and then applying the standard CTL model-checking
algorithm for PDSs [31]. However, as will be shown in the
experiments section (Section V), this approach is not efficient.
Thus, we need a direct algorithm that operates directly on
the SM-PDS without translating it into a PDS. We provide
in this section a direct algorithm that performs CTL model-
checking on SM-PDSs. To this aim, we will compute a kind of
product of the SM-PDS with φ: we construct a Self Modifying
Alternating Büchi Pushdown System BPφ s.t. BPφ accepts
a configuration c iff c |=ν φ. Thus, determining whether
c0 |=ν φ can be reduced to checking whether c0 ∈ L(BPφ).

Let BPφ = (P ′,Γ,∆′,∆′
c, F) be the SM-ABPDS defined

as follows: P ′ = P×cl(φ) ∪P cl(φ), where P cl(φ) is the set of
control locations in the form pψ where p ∈ P and ψ ∈ cl(φ),
F = {[p, a]| a ∈ cl(φ) ∩ At and a ∈ ν(p)} ∪ {[p,¬a]|¬a ∈
cl(φ), a ∈ At and a /∈ ν(p)}∪P×clŨ (φ) where clŨ (φ) is the
set of formulae of cl(φ) in the form E[ψ1Ũψ2] or A[ψ1Ũψ2].
In what follows, to compute ∆′ and ∆′

c, every rule r ∈ ∆∪∆c

leads to a set of rules {r′1, · · · , r′n} of ∆′∪∆′
c, we call this set

of rules prod(r). Moreover, let prodE(r) ⊆ prod(r) be the
set of rules generated from r using subformulas of the form
EXψ1, E[ψ1Uψ2] or E[ψ1Ũψ2](see below for more details
about prod(r) and prodE(r)).

The transition relations ∆′ and ∆′
c (resp. the sets prod(r)

and prodE(r), for every r ∈ ∆∪∆c) are the smallest sets of
transitions (resp. of sets of rules) defined as follows: Initially,
∆′ = ∆′

c = ∅, prodE(r) = ∅ and prod(r) = ∅, ∀ r ∈ ∆∪∆c.
∀p ∈ P , ∀ψ ∈ cl(φ) and ∀γ ∈ Γ, we have:

1) if ψ = a, a ∈ At and a ∈ ν(p); ⟨[p, a], γ⟩ ↪ [−]−−→ ⟨[p, a], γ⟩ ∈
∆′

2) if ψ = ¬a, a ∈ At and a /∈ ν(p); ⟨[p, ψ], γ⟩ ↪ [−]−−→ ⟨[p, ψ], γ⟩ ∈
∆′

3) if ψ = ψ1 ∨ ψ2; ⟨[p, ψ], γ⟩ ↪ [−]−−→ ⟨[p, ψ1], γ⟩ ∈ ∆′ and

⟨[p, ψ], γ⟩ ↪ [−]−−→ ⟨[p, ψ2], γ⟩ ∈ ∆′

4) if ψ = ψ1∧ψ2; ⟨[p, ψ], γ⟩ ↪ [−,−]−−−→ {⟨[p, ψ1], γ⟩, ⟨[p, ψ2], γ⟩} ∈
∆′

5) if ψ = EXψ1, then:
a) if p ∈ PN , for every R = ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆, R′ =

⟨[p, ψ], γ⟩ ↪ [−]−−→ ⟨[p′, ψ1], w⟩ ∈ ∆′, R′ ∈ prodE(R)
and R′ ∈ prod(R) (R′ ∈ prod(R) means that R′ is
generated from R and R′ ∈ prodE(R) means that R′ is
generated from R using a formula of the form EXψ1,
E[ψ1Uψ2] or E[ψ1Ũψ2].)

b) if p ∈ PC , for every R = p
(r1,r2)
↪−−−−→ p′ ∈ ∆c, R′ =

[p, ψ] ↪
(σ,σ′)−−−−→ [p′, ψ1] ∈ ∆′

c where σ = prod(r1), σ
′ =

prod(r2), R′ ∈ prodE(R) and R′ ∈ prod(R)

6) if ψ = AXψ1, then:

4

a) if p ∈ PN , let {R1 = ⟨p, γ⟩ ↪→ ⟨p1, w1⟩, · · · , Rn =
⟨p, γ⟩ ↪→ ⟨pn, wn⟩} be the set of all the
rules of ∆ that have ⟨p, γ⟩ in the left-hand-

side. Then, R′ = ⟨[p, ψ], γ⟩ ↪
[σ1,··· ,σn]−−−−−−−→

{⟨[p1, ψ1], w1⟩, · · · , ⟨[pn, ψ1], wn⟩} ∈ ∆′, where for
every 1 ≤ i ≤ n, σi = prodE(Ri) and R′ ∈ prod(Ri).

b) if p ∈ PC , let {R1 = p ↪
(r1,r

′
1)−−−−→ p1, · · · , Rn =

p
(rn,r

′
n)

↪−−−−→ pn} be the set of all the rules of ∆c that have
p in the left-hand-side. Then, for every γ ∈ Γ, R′

⊥ =

⟨[p, ψ], γ⟩ ↪ [σ1,··· ,σn]−−−−−−−→ {⟨pψ1 , γ⟩, · · · , ⟨pψn , γ⟩} ∈ ∆′ and

for every 1 ≤ i ≤ n, R′
i : pψi ↪

(σ,σ′)−−−−→ [pi, ψ1] ∈ ∆′
c,

where for every 1 ≤ i ≤ n, σi = prodE(Ri),
σ = prod(ri), σ

′ = prod(r′i), and for every 1 ≤ i ≤ n,
R′

⊥,R
′ ∈ prod(Ri).

7) if ψ = E[ψ1Uψ2], then ⟨[p, ψ], γ⟩ ↪ [−]−−→⟨[p, ψ2], γ⟩ ∈ ∆′ and:
a) if p ∈ PN , for every R = ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆,

R′ = ⟨[p, ψ], γ⟩ ↪ [−,−]−−−→{⟨[p, ψ1], γ⟩, ⟨[p′, ψ], w⟩} ∈ ∆′,
R′ ∈ prodE(R) and R′ ∈ prod(R).

b) if p ∈ PC , for every R = p ↪
(r1,r

′
1)−−−−→ p′ ∈ ∆c,

then for every γ ∈ Γ, R′
⊥ = ⟨[p, ψ], γ⟩ ↪

[−,−]−−−→
{⟨[p, ψ1], γ⟩, ⟨pψ, γ⟩} ∈ ∆′ and pψ ↪

(σ,σ′)−−−−→ [p′, ψ] ∈ ∆′
c

where σ = prod(r1), σ
′ = prod(r′1), R′

⊥, R
′ ∈

prodE(R) and R′
⊥, R

′ ∈ prod(R).

8) if ψ = A[ψ1Uψ2], then ⟨[p, ψ], γ⟩ ↪
[−]−−→⟨[p, ψ2], γ⟩ ∈ ∆′,

and:
a) if p ∈ PN , let {R1 = ⟨p, γ⟩ ↪→ ⟨p1, w1⟩, · · · , Rn =

⟨p, γ⟩ ↪→ ⟨pn, wn⟩} be the set of all the
rules of ∆ that have ⟨p, γ⟩ in the left-hand-

side. Then, R′ = ⟨[p, ψ], γ⟩ ↪
[−,σ1,··· ,σn]−−−−−−−−→

{⟨[p, ψ1], γ⟩, ⟨[p1, ψ], w1⟩, · · · , ⟨[pn, ψ], wn⟩} ∈ ∆′

where for every 1 ≤ i ≤ n, σi = prodE(Ri), and
R′ ∈ prod(Ri).

b) if p ∈ PC , let {R1 = p
(r1,r

′
1)

↪−−−−→ p1, · · · , Rn =

p
(rn,r

′
n)

↪−−−−→ pn} be the set of all the rules of ∆c

that have p in the left-hand-side. Then, ∀1 ≤ i ≤ n,
for every γ ∈ Γ, R⊥ : ⟨[p, ψ], γ⟩ ↪

[−,σ1,··· ,σn]−−−−−−−−→
{⟨[p, ψ1], γ⟩, ⟨pψ1 , γ⟩, · · · , ⟨pψn , γ⟩} ∈ ∆′ and R′

i :

pψi ↪
(σ,σ′)−−−−→ [pi, ψ] ∈ ∆′

c where for every 1 ≤ i ≤
n, σi = prodE(Ri), σ = prod(ri), σ′ = prod(r′i) and
R⊥, R

′
i ∈ prod(Ri).

9) if ψ = E[ψ1Ũψ2], then ⟨[p, ψ], γ⟩ ↪
[−,−]−−−→

{⟨[p, ψ2], γ⟩, ⟨[p, ψ1], γ⟩} ∈ ∆′ and:
a) if p ∈ PN , then for every R = ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆,

R′ = ⟨[p, ψ], γ⟩ ↪ [−,−]−−−→{⟨[p, ψ2], γ⟩, ⟨[p′, ψ], w⟩} ∈ ∆′,
R′ ∈ prodE(R) and R′ ∈ prod(R).

b) if p ∈ PC , then for every R = p
(r1,r

′
1)

↪−−−−→ p′ ∈
∆c, for every γ ∈ Γ, R⊥ = ⟨[p, ψ], γ⟩

[−,−]
↪−−−−→

{⟨[p, ψ2], γ⟩, ⟨pψ, γ⟩} ∈ ∆′ and R′ : pψ ↪
(σ,σ′)−−−−→

[p′, ψ] ∈ ∆′
c where σ = prod(r1), σ

′ = prod(r′1),
R⊥, R

′ ∈ prodE(R) and R⊥, R
′ ∈ prod(R).

10) if ψ = A[ψ1Ũψ2], then ⟨[p, ψ], γ⟩ ↪
[−,−]−−−→

{⟨[p, ψ2], γ⟩, ⟨[p, ψ1], γ⟩} ∈ ∆′, and:
a) if p ∈ PN , let {R1 = ⟨p, γ⟩ ↪→ ⟨p1, w1⟩, · · · , Rn =

⟨p, γ⟩ ↪→ ⟨pn, wn⟩} be the set of all the rules of ∆ that
have ⟨p, γ⟩ in the left-hand-side. Then for every 1 ≤
i ≤ n, σi = prodE(Ri), R′ = ⟨[p, ψ], γ⟩ ↪ [−,σ1,··· ,σn]−−−−−−−−→

{⟨[p, ψ2], γ⟩, ⟨[p1, ψ], w1⟩, · · · , ⟨[pn, ψ], wn⟩} ∈ ∆′ and
R′ ∈ prod(Ri).

b) if p ∈ PC , let {R1 = p
(r1,r

′
1)

↪−−−−→ p1, · · · , Rn =

p
(rn,r

′
n)

↪−−−−→ pn} be the set of all the rules of
∆c that have p in the left-hand-side. Then, for
every γ ∈ Γ, R⊥ = ⟨[p, ψ], γ⟩ ↪

[−,σ1,··· ,σn]−−−−−−−−→
{⟨[p, ψ2], γ⟩, ⟨pψ1 , γ⟩, · · · , ⟨pψn , γ⟩} ∈ ∆′, ∀1 ≤ i ≤
n, σi = prodE(Ri) and for every 1 ≤ i ≤ n,R′

i :

pψi ↪
(σ,σ′)−−−−→ [pi, ψ] ∈ ∆′

c where σ = prod(ri), σ
′ =

prod(r′i) and R⊥, R
′
i ∈ prod(Ri).

Let prod(∆) = {r′ ∈ ∆′ | ∃r ∈ ∆, r′ ∈ prod(r)} be the set
of rules of ∆′ that are generated from ∆. Let δ = ∆′\prod(∆)
be the set of rules of ∆′ that are not generated from any rule
of ∆ nor ∆c (e.g., the rules computed by items 1, 2, 3 and 4
are in δ). These rules δ are independent of ∆ and ∆c. They are
introduced by the structure of φ. Thus, they need to be present
in all the phases of BPφ. Let then θ ⊆ ∆ ∪ ∆c be a phase
of P . Its corresponding phase in BPφ is β(θ) = prod(θ)∪ δ,
where prod(θ) = {r′ ∈ ∆′ ∪∆′

c | ∃r ∈ θ, r′ ∈ prod(r)}.
Let us explain the above construction intuitively. The above

automaton BPφ can be seen as a kind of product of the SM-
PDS P with the formula φ. For ψ ∈ cl(φ), (⟨p, w⟩, θ) |=ν ψ
iff BPφ accepts a configuration

(
⟨[p, ψ], w⟩, β(θ)

)
. We give

in what follows the intuition behind all the items above:
If ψ = a ∈ At, then ∀w ∈ Γ∗, θ ⊆ ∆∪∆c, (⟨p, w⟩, θ) |=ν ψ

iff a ∈ ν(p). Hence, the automaton BPφ should accept a run
starting from (⟨[p, a], w⟩, β(θ)) iff a ∈ ν(p). [p, a] ∈ F iff
a ∈ ν(p). Thus, the loop added in (⟨[p, a], w⟩, β(θ)) by Item
1 makes sure that BPφ accepts this run.

If ψ = ¬a, then ∀w ∈ Γ∗, θ ⊆ ∆ ∪ ∆c, (⟨p, w⟩, θ) |=ν ψ
iff a /∈ ν(p). Hence, the automaton BPφ should accept a run
starting from (⟨[p,¬a], w⟩, β(θ)) iff a /∈ ν(p). [p,¬a] ∈ F iff
a /∈ ν(p). Thus, the loop in (⟨[p,¬a], w⟩, β(θ)) added by Item
2 ensures that BPφ accepts this run.

If ψ = ψ1∨ψ2, then ∀w ∈ Γ∗, θ ⊆ ∆∪∆c, (⟨p, w⟩, θ) |=ν ψ
iff ((⟨p, w⟩, θ) |=ν ψ1 or (⟨p, w⟩, θ) |=ν ψ2). Thus, BPφ
accepts a run starting from (⟨[p, ψ1 ∨ ψ2], w⟩, β(θ)) iff BPφ
has an accepting run starting from (⟨[p, ψ1], w⟩, β(θ)) or
(⟨[p, ψ2], w⟩, β(θ)). This is ensured by Item 3. Item 4 is similar
to Item 3, it handles the case ψ = ψ1 ∧ ψ2 where (⟨p, w⟩, θ)
satisfies ψ iff it satisfies both ψ1 and ψ2.

If ψ = EXψ1, then ∀w ∈ Γ∗, θ ⊆ ∆∪∆c, (⟨p, w⟩, θ) |=ν ψ
iff an immediate successor (⟨p′, w′⟩, θ′) of (⟨p, w⟩, θ) satisfies
ψ1. Thus, BPφ has an accepting run from (⟨[p, ψ], w⟩, β(θ))
iff it can accept a run from (⟨[p′, ψ1], w

′⟩, β(θ′)) . There are
two cases depending on whether p ∈ PN or p ∈ Pc, because
the form of the rules of the SM-PDS depends on whether p ∈
PN or p ∈ Pc: if p ∈ PN , then necessarily, the rules that can be
applied from p are of the form ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆, whereas
if p ∈ Pc, then necessarily, the rules that can be applied from

p are of the form r : p
(r1,r2)
↪−−−−→ p′ ∈ ∆c. Thus, if p ∈ PN ,

then BPφ has an accepting run from (⟨[p, ψ], γu⟩, β(θ)) iff
there exists a rule ⟨p, γ⟩ ↪→ ⟨p′, w⟩ ∈ ∆ such that BPφ has
an accepting run from (⟨[p′, ψ1], wu⟩, β(θ)). This is ensured
by Item 5(a). If p ∈ Pc, then BPφ has an accepting run

5

from (⟨[p, ψ], γu⟩, β(θ)) iff there exists a rule r : p
(r1,r2)
↪−−−−→

p′ ∈ ∆c ∩ θ such that BPφ has an accepting run from
(⟨[p′, ψ1], γu⟩, β(θ′)), where θ′ = (θ\{r1}) ∪ {r2}. This is
ensured by Item 5(b).

If ψ = AXψ1, then ∀w ∈ Γ∗, θ ⊆ ∆ ∪ ∆c,
(⟨p, w⟩, θ) |=ν ψ iff every immediate successor (⟨p′, w′⟩, θ′)
of (⟨p, w⟩, θ) satisfies ψ1. Thus, BPφ has an accepting run
from (⟨[p, ψ], w⟩, β(θ)) iff it can accept a run from all its
immediate successors (⟨[p′, ψ1], w

′⟩, β(θ′)). As previously,
there are two cases depending on whether p ∈ PN or p ∈ Pc:
if p ∈ PN , let γ ∈ Γ and u ∈ Γ∗ such that w = γu. Let then
{⟨p, γ⟩ ↪→ ⟨p1, w1⟩, · · · , ⟨p, γ⟩ ↪→ ⟨ pm, wm⟩} be the set of
all the rules of ∆ ∩ θ that have ⟨p, γ⟩ in the left-hand-side.
Then, BPφ has an accepting run from (⟨[p, ψ], γu⟩, β(θ)) iff
BPφ has an accepting run from every (⟨[pi, ψ1], wiu⟩, β(θ)),
1 ≤ i ≤ m. This is ensured by Item 6(a). Note that Item 6(a)
considers all the rules Ri : ⟨p, γ⟩ ↪→ ⟨pi, wi⟩ that are in ∆
(even those that are not in θ), then the constraints [σ1, · · · , σn]
of the rule R′ of Item 6(a) ensures that only the Ri’s that are
in θ are applied. Note also that in R′, σi = prodE(Ri) ensures
that σi ∩β(θ) ̸= ∅ iff Ri ∩ θ ̸= ∅. Here taking σi = prod(Ri)
is not correct because R′ ∈ prod(Ri) and so in this case,
σi ∩ β(θ) would always be nonempty. On the other hand,

if p ∈ Pc, let {p ↪
(r1,r

′
1)−−−−→ p1, · · · , p

(rm,r
′
m)

↪−−−−→ pm} be the
set of all the rules of ∆c ∩ θ that have p in the left-hand-
side. Then BPφ has an accepting run from (⟨[p, ψ], γu⟩, β(θ))
iff BPφ has an accepting run from (⟨[pi, ψ1], γu⟩, β(θi)), for
every 1 ≤ i ≤ m, where θi = (θ\{ri}) ∪ {ri′}. This is
ensured by Item 6(b). As previously, Item 6(b) considers

all the rules Ri : p
(ri,r

′
i)

↪−−−−→ pi that are in ∆c (even those
that are not in θ), then the constraints [σ1, · · · , σn] of the

rule R′
⊥ = ⟨[p, ψ], γ⟩ ↪ [σ1,··· ,σn]−−−−−−→ {⟨pψ1 , γ⟩, · · · , ⟨pψn , γ⟩} of

Item 6(b) ensures that only the Ri’s that are in θ are applied.

Then R′
i : p

ψ
i ↪

(σ,σ′)−−−−→ [pi, ψ1] ensures BPφ has an accepting
run from (⟨pψi , γu⟩, β(θ)) iff BPφ has an accepting run
from (⟨[pi, ψ1], γu⟩, β(θi)) where θi = (θ\{ri}) ∪ {ri′} for
1 ≤ i ≤ n. Note that σ′ = prod(ri) and σ′ = prod(r′i),
then β(θi) = β(θ) \ σ ∪ σ′. Thus, BPφ has an accepting run
from (⟨[p, ψ], γu⟩, β(θ)) iff BPφ has an accepting run from
(⟨[pi, ψ1], γu⟩, β(θi)) for every 1 ≤ i ≤ n.

If ψ = E[ψ1Uψ2], then ∀w ∈ Γ∗, θ ⊆ ∆ ∪ ∆c,
(⟨p, w⟩, θ) |=ν ψ iff either it satisfies ψ2 or it satisfies ψ1

and there exists an immediate successor satisfying ψ. Thus,
BPφ has an accepting run from (⟨[p, ψ], w⟩, β(θ)) iff:

1) BPφ has an accepting run from (⟨[p, ψ2], w⟩, β(θ)).
This is handled by the rules ⟨[p, ψ], γ⟩
↪
[−,−]−−−→{⟨[p, ψ2], γ⟩, ⟨[p, ψ1], γ⟩} introduced by Item 7.

2) or BPφ has an accepting run from both
(⟨[p, ψ1], w⟩, β(θ)) and
(⟨[p′, ψ], w′⟩, β(θ′)) where (⟨p′, w′⟩, θ′) is an immediate
successor of (⟨p, w⟩, θ)). There are two cases depending
on whether p ∈ PN or p ∈ PC : the case p ∈ PN is
handled by Item 7(a). Its intuition is similar to the intu-
ition behind the previous items. Let then p ∈ PC . Then

there exists a rule r : p
(r1,r

′
1)

↪−−−−→ p′ ∈ θ ∩∆c such that
BPφ has an accepting run from both (⟨[p, ψ1], w⟩, β(θ))
and (⟨[p′, ψ], w⟩, β(θ′)), where θ′ = θ\{r1) ∪ {r1′}.

This is ensured by the rule R⊥ = ⟨[p, ψ], γ⟩
[−,−]

↪−−−−→
{⟨[p, ψ2], γ⟩, ⟨pψ, γ⟩} ∈ ∆′ and R′ : pψ ↪

(σ,σ′)−−−−→ [p′, ψ] ∈
∆′
c added by Item 7(b).

The case ψ = A[ψ1Uψ2] is handled in a similar way using
Items 8. If ψ = E[ψ1Ũψ2], then ∀w ∈ Γ∗, θ ⊆ ∆ ∪ ∆c,
(⟨p, w⟩, θ) |=ν ψ iff it satisfies ψ2 and either it satisfies
also ψ1, or it has a successor (⟨p′, w′⟩, θ′) that satisfies ψ.
Then, BPφ has an accepting run from (⟨[p, ψ], w⟩, θ) iff
BPφ has an accepting run from both ((⟨[p, ψ2], w⟩, β(θ)) and
(⟨[p, ψ1], w⟩, β(θ))), or it has an accepting run from both
((⟨[p, ψ2], w⟩, β(θ)) and (⟨[p′, ψ], w′⟩, β(θ′))). This case is
handled by Items 9. To ensure that the runs on which ψ2

always holds are accepted, we add [p, ψ] in F . The case where
ψ = A[ψ1Ũψ2] is handled similarly by Items 10.

We can show that (the proof is in the full version [14]):

Theorem 1. Let (⟨p, w⟩, θ) be a configuration of the SM-
PDS P . (⟨p, w⟩, θ) |=ν φ iff BPφ has an accepting run from
(⟨[p, φ], w⟩, β(θ)).

Therefore, CTL model-checking for SM-PDSs can be re-
duced to the problem of determining whether a SM-ABPDS
has an accepting run (emptiness analysis).

IV. COMPUTING THE LANGUAGE OF A SM-ABPDS

From now on, we fix a SM-ABPDS BP = (P,∆,∆c,Γ, F).
We show in this section that the set of configurations accepted
by BP is regular and can be effectively represented by
an EAMA (extended Alternating Multi-automaton). To this
aim, we first characterize the set of configurations L(BP)
from which BP has an accepting run. Then we use this
characterization to compute an EAMA that accepts it.

A. Characterizing L(BP)

Let (Xi)i≥0 be the following sequence: X0 = P × Γ∗ ×
2∆∪∆c , and for every i ≥ 0, Xi+1 = Pre+BP

(
Xi ∩ (F ×Γ∗ ×

2∆∪∆c)
)
. Let YBP =

∩
i≥0Xi. We can show that L(BP) =

YBP :

Theorem 2. A SM-ABPDS BP has an accepting run starting
from a configuration (⟨p, w⟩, θ) iff (⟨p, w⟩, θ) ∈ YBP .

Proving this theorem is based on the following lemma:

Lemma 1. BP has a run ρ starting from a configuration
(⟨p, w⟩, θ) s.t. each path of ρ visits configurations with control
locations in F at least k times iff (⟨p, w⟩, θ) ∈ Xk.

Indeed, let c ∈ X1. Then c has a successor C ⊆ F ×
Γ∗ × 2∆∪∆c (since X1 = Pre+BP(X0 ∩ (F × Γ∗ × 2∆∪∆c))).
Therefore, BP has a run starting from c that visits some
configuration p ∈ F at least once. X2 = Pre+BP

(
X1 ∩ (F ×

Γ∗×2∆∪∆c)
)
, thus ∀c′ ∈ X2, a run starting from c′ will visit

configurations in X1 ∩ (F × Γ∗ × 2∆∪∆c) at least once; and
thus, it visits configurations with control locations in F at least

6

twice. Thus, we can get by induction that ∀k ≥ 1, for every
configuration c in Xk, BP has a run that visits configurations
with control locations in F at least k times.

B. Computing YBP

In this section, our goal is to compute YBP . We show
that this set can be effectively represented by an EAMA
A = (Q,Γ, T, I,Qf), where Q ⊆ P × 2∆∪∆c × N ∪ {qf},
I ⊆ P × 2∆∪∆c × N is the set of initial states and qf is
the final state (Qf = {qf}). Following [13], we propose
a saturation procedure to compute A iteratively. Algorithm
1 below computes A. Intuitively, it computes the different
Xi’s iteratively. Each iteration step i computes an EAMA
Ai. States of Ai are of the form (p, θ)i, where p ∈ P and
θ ⊆ ∆ ∪∆c. There are two loops in the algorithm: the outer
loop (loop1) and the inner loop (loop2). As will be explained
later, if the sequence (Xi) is strictly decreasing, the outer
loop won’t terminate. So we introduce two projections to force
termination as follows: for every S ⊆ P ×2∆∪∆c ×N∪{qf}:

π−1(S) =

{
{qi|qi+1 ∈ S} ∪ {qf} if qf ∈ S or ∃q1 ∈ S

{qi|qi+1 ∈ S} else.

πi(S) = {qi|∃1 ≤ j ≤ i s.t. qj ∈ S} ∪ {qf |qf ∈ S}

1: Initially: i = 0, T = {(qf , γ, {qf})}, ∀γ ∈ Γ, p ∈ P, θ ⊆
∆ ∪∆c, (p, θ)

0 = qf .
2: Repeat (we call this loop loop1)
3: i := i+ 1;
4: ∀(p, θ)i−1 in the current automaton s.t. p ∈ F ,

add (p, θ)i
ϵ−→ (p, θ)i−1 to T

5: Repeat (we call this loop loop2)
6: if r : ⟨p, γ⟩↪ [σ1,··· ,σn]−−−−−−→{⟨p1, w1⟩, · · · , ⟨pn, wn⟩} ∈ ∆∩θ
7: if (∃k, 1 ≤ k ≤ n : σk ∩ θ ̸= ∅ or

∀k, 1 ≤ k ≤ n, σk = −)

8: Add (p, θ)i
γ−→ SQ to T ,

where SQ = {q ∈ Qk|(pk, θ)i
wk−−→T Qk, 1 ≤ k ≤ n s.t.

σk = − or σk ∩ θ ̸= ∅}.

9: if r : p ↪
(σ,σ′)−−−−→ p′ ∈ ∆c ∩ θ, s.t.

10: (p′, θ′)i
γ−→T Q and θ′ = θ\σ ∪ σ′

11: Then, add (p, θ)i
γ−→ Q to T .

12: Until No new transition rule can be added.
13: Remove from T the transition rules (p, θ)i

ϵ−→
(p, θ)i−1, for every p ∈ F.

14: Replace every (p, θ)i
γ−→ S in T by (p, θ)i

γ−→
πi(S),∀p ∈ P, γ ∈ Γ, S ⊆ Q

15: Until i > 1 and for every p ∈ P, γ ∈ Γ, θ ∈
2∆∪∆c , S ⊆ P × 2∆∪∆c × {i} ∪ {qf}, (p, θ)i

γ−→ S ∈
T ⇐⇒ (p, θ)i−1 γ−→ π−1(S) ∈ T.

Algorithm 1: Computation of YBP

Intuitively, at each step i, every state (p, θ) is represented
by state (p, θ)i in Ai. For every (p, θ) ∈ I , Ai recognizes a

configuration (⟨p, w⟩, θ) if (p, θ)i
ω−→T qf . A0 is the automa-

ton obtained by Line 1. It accepts X0 = P × Γ∗ × 2∆∪∆c .
At the beginning of each iteration, an ϵ-transition in the
form (p, θ)i

ϵ−→T (p, θ)i−1 is added in Line 4 for every
(p, θ) ∈ F × 2∆∪∆c in the current automaton. This allows
to get L(Ai−1)∩(F ×Γ∗×2∆∪∆c). Lines 5-12 (loop2) is the
saturation procedure that computes Pre∗BP

(
L(Ai−1) ∩ (F ×

Γ∗ × 2∆∪∆c)
)
. They ensure that if θ is a phase such that

⟨p, γ⟩↪ [σ1,··· ,σn]−−−−−−→{⟨p1, w1⟩, · · · , ⟨pn, wn⟩} ∈ ∆ ∩ θ

, s.t. either ∃k, 1 ≤ k ≤ n, σk ∩ θ ̸= ∅ or ∀k, 1 ≤ k ≤
n, σk = −, and for every k s.t. σk ∩ θ ̸= ∅ or σk = −,
(⟨pk, wkw⟩, θ) ∈ L(Ai) (i.e., (pk, θ)

i wkw−−−→T qf), then
(⟨p, γw⟩, θ) should also be in L(Ai) (since it is a predecessor
of {(⟨pk, wkw⟩, θ), 1 ≤ k ≤ n}). I.e., T should contain the
path (p, θ)i

γw−−→T qf . This path is added thanks to Line 8.

Moreover, if θ is a phase such that ⟨p, γ⟩ ↪(σ,σ
′)−−−−→ p′ ∈ ∆c ∩ θ

and (⟨p′, γw⟩, θ′) ∈ L(Ai) (i.e., (p′, θ′)i
γw−−→T qf), where

θ′ = θ\σ∪σ′; then (⟨p, γw⟩, θ) should also be in L(Ai) (since
it is a predecessor of (⟨p′, γw⟩, θ′)). I.e., T should contain the
path (p, θ)i

γw−−→T qf . This path is added thanks to Line 11.
Line 13 removes the ϵ-transition added by Line 4. This leads
to Pre+BP

(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
.

Let Algorithm A be Algorithm 1 without Line 14. Then,
if Algorithm A terminates, it computes YBP . However, if the
sequence Xi is strictly decreasing, Algorithm A never termi-
nates. Lines 14-15 are then used to force termination. Indeed,
thanks to the substitution of Line 14, at the end of step i,
states of the form (p, θ)j , for j < i become useless and can be
removed. Line 15 checks then whether at step i, the transitions
of Ai are “the same” than those of Ai−1. If this is the case,
the algorithm terminates. Termination of the algorithm then
follows from the fact that step i adds less transitions than step
i−1. Intuitively, this is due to the fact that L(Ai) ⊆ L(Ai−1),
because step i computes Pre+BP

(
L(Ai−1)∩(F×Γ∗×2∆∪∆c)

)
and A0 accepts P × Γ∗ × 2∆∪∆c .

Thus, we can show that (a detailed proof can be found in
the full version [14]):

Theorem 3. Algorithm 1 always terminates and produces
YBP .

Thus, it follows from Theorems 1, 2 and 3 that:

Corollary 1. Let P be a SM-PDS, ν : P → 2At be a
labelling function, and φ be a CTL formula over At. Then,
we can compute an EAMA A that characterizes the set of
configurations (⟨p, w⟩, θ) of P such that (⟨p, w⟩, θ) |=ν φ.

V. EXPERIMENTS
A. Our algorithm vs. standard CTL on PDSs

We implemented our algorithm in a tool and we compared
its performance with the approach that consists in translating
the SM-PDS to an equivalent standard PDS, and then applying
the standard CTL model checking algorithm implemented in
the PDS model-checker tool PuMoC [31]. All our experiments

7

|∆|+ |∆c|
formula

size
SM-PDS
time (s) To PDS PDS Total Time Result1 Result2

6 + 4 5 0.36s 0.21s 0.45s 0.66s Y Y
8 + 4 12 2.88s 0.35s 3.41s 3.76s Y Y
20 + 4 15 3.84s 0.62s 3.94s 4.56s N N
500 + 8 6 20.51s 17.02s 29.25s 46.27s N N
600 + 9 8 23.34s 295.24s 57.79s 353.03s Y Y

1000 + 10 6 35.11s 3251.02s 7127.41s 10378.43s N N
1100 + 10 45 83.63s 3251.02s - - N -
1500 + 8 30 60.71s 2182.78s 13821.34s 16004.12s N N
2000 + 10 18 49.48s 5529.30s - - Y -
2000 + 10 36 61.13s 5529.30s - - N -
2100 + 10 15 60.74s 5544.69s - - Y -
3800 + 10 30 99.06s 9295.24s - - N -
3850 + 10 8 93.20s 9308.01s - - Y -
3850 + 10 30 115.52s 9308.01s - - N -
4800 + 11 10 142.13s 42184.85s - - Y -
4800 + 11 15 153.22s 42184.85s - - Y -
5500 + 10 20 196.46s 45745.44s - - Y -
10180 + 16 5 782.91s 2134643.52s - - N -
10180 + 16 8 1041.87s 2134643.52s - - N -
10180 + 16 10 1129.36s 2134643.52s - - Y -

TABLE I: Our approach vs. standard CTL model checking for PDSs

were run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of
memory. To perform this comparision, we randomly generate
several SM-PDSs and CTL formulas. Our results (CPU Execu-
tion time) are shown in Table I. Column |∆|+ |∆c| indicates
the size of the transition rules. Column formula size shows
the size of the CTL formula. Column SM-PDS is the cost
of our direct algorithm. Column To PDS reports the cost it
takes to get the equivalent PDS from the SM-PDS. Column
PDS is the cost used to run standard CTL model checking
for the equivalent PDS in PuMoC. Column Total Time is the
whole cost it takes to translate the SM-PDS into a PDS, and
then apply the PDS CTL model-checking algorithm of PuMoC
[31] (Total Time= To PDS + PDS). Column Result1 is the
result of our approach and Result2 is the result of PuMoC
[31], where Y means yes the formula is satisfied and N means
no, the formula is not satisfied. “-” means out of memory. It
can be seen that our direct approach is much more efficient,
and that it terminates in all the cases, whereas going through
CTL model-checking of PDSs gets out of memory in most
of the cases. Translating the SM-PDS to a standard PDS
may take more than 24 days, whereas our direct algorithm
takes only a few seconds. More results can be found in the
full version [14].
B. Malicious Behavior Detection on Self-Modifying Code

1) Specifying malicious behaviors using CTL.: We applied
our tool to detect several self-modifying malwares. Indeed, as
shown in [32], several malicious behaviors can be described
by CTL formulas. We give in what follows two examples of
such malicious behaviors. More examples can be found in the
full version [14].

Appending Viruses. An appending virus is a virus that inserts
a copy of its code at the end of the target file. To achieve this,
since the real OFFSET of the virus’ variables depends on the
size of the infected file, the virus has to first compute its real
absolute address in the memory. To perform this, the virus

has to call the sequence of instructions: l1: call f ; l2:; f :
pop eax;. The instruction call f will push the return address l2
onto the stack. Then, the pop instruction in f will put the value
of this address into the register eax. Thus, the virus can get
its real absolute address from the register eax. This malicious
behavior can be described by the following CTL formula:
ϕav =

∨
EF

(
call ∧ EX(top-of-stack = a) ∧ AG¬

(
ret ∧

(top-of-stack = a)
))

where the
∨

is taken over all possible return addresses a, and
top-of-stack=a is a predicate that indicates that the top of the
stack is a. The subformula call∧EX(top-of-stack = a) means
that there exists a procedure call having a as return address.
Indeed, when a procedure call is made, the program pushes its
corresponding return address a to the stack. Thus, at the next
step, a will be on the top of the stack. Therefore, the formula
above expresses that there exists a procedure call having a as
return address, such that there is no ret instruction which will
return to a.

Note that this formula uses predicates that indicate that the
top of the stack is a. Our techniques work for this case as well:
it suffices to encode the top of the stack in the control points
of the SM-PDS. Our implementation works for this case as
well and can handle appending viruses.

Spyware (Scanning the Disk). The aim of a spyware is to
steal information from the host. To do this, it has to scan
the disk of the host in order to find the interesting file that
he wants to steal. If a file is found, it will run a payload to
steal it, then continues searching the next file. If a directory
is found, it will enter this path and continues scanning. This
malicious behaviour is present e.g. in the notorious spyware
Flame: It first calls the function FindFirstFileW to search the
first object in the given path, then, it will check whether the
function call succeeds or not. If the function call fails, it will
call the function GetLastError. Otherwise it will call either
the function FindFirstFileW again if it finds a directory or the

8

Example Size Result cost Example Size Result cost Example Size Result cost
calculation.exe 9952 No 76.34s cisvc.exe 4105 No 31.22s simple.exe 52 No 3.17s
shutdown.exe 2529 No 23.52s loop.exe 529 No 11.78s cmd.exe 1324 No 19.36s
notepad.exe 10529 No 68.77s java.exe 800 No 19.17s java.exe 21324 No 122.07s

sort.exe 8529 No 74.12s bibDesk.exe 32800 No 243.79s interface.exe 1005 No 18.25s
ipv4.exe 968 No 24.43s TextWrangler.exe 14675 No 65.09s sogou.exe 45219 No 301.14s
game.exe 34325 No 234.14s cycle.tex 9014 No 75.44s calender.exe 892 No 25.39s

Adson.1651 39 Yes 0.44s Adson.1734 42 Yes 0.43s Alcaul.d 40 Yes 0.48s
Adon.1703 37 Yes 0.39s Adon.1559 37 Ye s 0.35s Alcaul.i 48 Yes 0.44s

Alcaul.o 33 Yes 0.29s Alcaul.d 845 Yes 0.165s Alaul.c 355 Yes 0.109s
Alcaul.j 45 Yes 0.56s Alcaul.m 23 Yes 0.19s Evol.a 53 Yes 7.09s
Alcaul.e 32 Yes 1.93s Alcaul.h 34 Yes 3.95s Alcaul.g 25 Yes 4.18s
Alcaul.b 19 Yes 0.12s Alcaul.f 23 Yes 1.99s Alcaul.k 28 Yes 2.31s
Alcaul.l 27 Yes 0.95s Klinge 45 Yes 64.15s Akez.Win32.5 490 Yes 53.18s
Netsky.a 45 Yes 19.12s Mydoom.c 155 Yes 4.14s MyDoom-N 16980 Yes 343.93s
Netsky.x 55 Yes 21.85s Netsky.y 68 Yes 29.06s Netsky.z 115 Yes 43.37s

Netsky.gen 5508 Yes 59.24s Netsky.p 6015 Yes 76.32s Netsky.m 6805 Yes 73.77s
Netsky.r 230 Yes 8.83s Netsky.k 6115 Yes 79.79s Netsky.e 6245 Yes 79.44s

Mydoom.y 26902 Yes 452.77s Mydoom.j 22355 Yes 211.93s klez-N 6281 Yes 63.07s
klez.c 30 Yes 2.79s Mydoom.v 5965 Yes 283.11s Netsky.b 45 Yes 29.51s

LdPinch.dd 8230 Yes 48.17s LdPinch.gw 2050 Yes 39.92s LdPinch.dh 3744 Yes 41.01s
LdPinch.c 7363 Yes 52.46s LdPinch.ck 8228 Yes 49.77s LdPinch.gen 7245 Yes 62.19s
LdPinch.ld 6631 Yes 29.70s LdPinch.er 3910 Yes 32.73s LdPinch.cf 4366 Yes 27.26s

Muma.c 15915 Yes 114.47s LdPinch.au 8245 Yes 92.24s LdPinch.fi 3138 Yes 74.39s
Gismor 1140 Yes 23.56s Botter.a 5030 Yes 71.42s Navidad.a 3750 Yes 46.59s

Bagle.ab 5690 Yes 89.42s Bagle.ef 995 Yes 54.11s Bagle.eg 380 Yes 25.49s
Atak.f 2005 Yes 11.35s Atak.g 2498 Yes 16.69s Atak.l 1914 Yes 10.37s

Newapt.C 11730 Yes 924.92s Krynos.b 18370 Yes 893.45s Jeans.a 6490 Yes 188.36s
Bagle.m 5111 Yes 39.92s Bagle.k 35 Yes 1.92s Bagle.t 3345 Yes 45.64s

LdPinch.aaz 4145 Yes 41.05s LdPinch.c0 8230 Yes 65.17s LdPinch.ee 6501 Yes 71.30s
LdPinch.v 7235 Yes 51.69s LdPinch.fk 4906 Yes 47.11s LdPinch.awp 195 Yes 17.97s
LdPinch.bb 8145 Yes 63.13s LdPinch.br 3645 Yes 33.52s LdPinch.hb 1645 Yes 21.08s
LdPinch.by 970 Yes 42.92s Generic.2026199 433 Yes 32.83s LdPinch.arr 1250 Yes 49.84s
Mydoom.M 5965 Yes 75.19s MyDoom.54464 5935 Yes 45.78s Mydoom.e 138 Yes 46.53s

Mydoom.ACQ 19210 Yes 439.57s Mydoom.ba 19423 Yes 238.77s Mydoom.ftde 19495 Yes 339.29s
Sramota.avf 240 Yes 11.01s Mydoom 238 Yes 2.01s Mydoom.288 248 Yes 3.12s
Mydoom.R 230 Yes 30.22s Mydoom.dlnpqi 235 Yes 1.99s Mydoom.o 235 Yes 2.01s

klez.e 27 Yes 3.94s Magistr.b 4670 Yes 231.97s Magistr.a.poly 36989 Yes 469.63s
Kelino.g 470 Yes 22.08s Plage.b 395 Yes 1.96s Urbe.a 123 Yes 9.17s
Kelino.l 495 Yes 21.01s Kipis.t 20378 Yes 121.11s klez.d 31 Yes 0.95s
Netsky.d 45 Yes 1.87s Ardurk.d 1913 Yes 12.08s klez.f 27 Yes 0.73s
Repah.b 221 Yes 12.76s Gibe.b 5358 Yes 37.01s Magistr.b 4670 Yes 43.59s

NGVCK1 329 Yes 2.33s NGVCK2 455 Yes 2.89s NGVCK3 2300 Yes 111.20s
NGVCK4 550 Yes 9.19s NGVCK5 1555 Yes 10.25s NGVCK6 1698 Yes 21.07s
NGVCK7 6902 Yes 14.24s NGVCK8 2355 Yes 54.76s NGVCK9 281 Yes 12.31s
NGVCK10 2980 Yes 23.51s NGVCK11 5965 Yes 51.92s NGVCK12 4529 Yes 36.14s
NGVCK13 2210 Yes 18.12s NGVCK14 5358 Yes 120.04s NGVCK15 970 Yes 42.12s
NGVCK16 658 Yes 6.59s NGVCK17 913 Yes 2.03s NGVCK18 90 Yes 0.89s
NGVCK19 1295 Yes 16.58s NGVCK20 4378 Yes 32.41s NGVCK21 31 Yes 0.77s
NGVCK22 370 Yes 2.08s NGVCK23 3955 Yes 36.74s NGVCK24 6924 Yes 92.03s

TABLE II: Partial Experimental Results

our tool McAfee Norman BitDefender Kinsoft Avira eScan Kaspersky Qihoo360 Avast Symantec
100% 38.0% 33.3% 48.5% 31.4% 11.6% 21.9% 70.4 % 1.4% 2.3% 57.1%

TABLE III: Our tool v.s. well known anti-viruses

function FindNextFileW to search for the next object. We can
specify this behavior in CTL as follows:

ϕspy = EF
(
call F indF irstF ileW ∧ AF

(
call GetLastError

∨call F indF irstF ileW ∨ call F indNextF ileW
))

This formula states that there exists a path where the func-
tion FindFirstF ileW is called, then, in all the future paths,
the program either calls GetLastError (if FindFirstF ileW
failed) or calls FindFirstF ileW (if a directory is found) or
calls FindNextF ileW (to search for the next file). Scanning

a disk can be a behavior of a benign program. To avoid false
alarms, we can combine this CTL formula with other formulas
describing other malicious behaviors expressing the payload
(such as sending a file) to determine whether the binary code
is a malware or not. Note that, the formula is branching time
and cannot be described as a LTL formula.

2) Applying our tool for malware detection.: We applied
our tool to detect several malwares. We use Jakstab [29] as
disassembler. We consider 400 email-worms, 30 worms and
100 viruses from VX heaven[33] and 260 new malwares gener-
ated by NGVCK, one of the best malware generators. We also

9

choose 19 benign samples from Windows XP system (win32).
We consider self-modifying versions of these programs. In
these versions, the malicious behaviors are unreachable if the
semantics of the self-modifying instructions are not taken into
account, i.e., if the self-modifying instructions are considered
as “standard” instructions that do not modify the code, then the
malicious behaviors cannot be reached. First, we abstract away
the semantics of the self-modifying instructions and model
such programs as standard PDSs as described in [32], and
perform CTL model-checking for PDSs to determine whether
the programs contain any malicious behavior. In this case,
none of the programs was declared as malicious. Then, we
use SM-PDSs to model these programs, thus, taking self-
modifying instructions into consideration. Then, we check
whether these SM-PDSs satisfy any malicious CTL formula
in our database (CTL formulas described above and in the
full version). If yes, the program is declared as malicious. If
not, it is declared as benign. In our experiments (we have
790 malwares), our tool was able to detect all these programs
as malicious (whereas when we model these programs using
standard PDSs and abstract away self-modifying instructions,
none of these programs was detected as malicious). Our tool
was also able to determine that benign programs are benign.
We report in Table II some of the results we obtained. More
results can be found in the full version. Column Size gives the
number of control locations, Column Result shows the result
of our algorithm: Y means malicious and N means benign;
and Column cost gives the cost in seconds. You can see that
our CTL model checking approach allows to detect all the
malicious programs in a few seconds.

3) Comparision with well-known antiviruses.: We compare
our tool against well-known and widely used antiviruses
such as McAfee, Norman, BitDefender, Kinsoft, Avira, eScan,
Kaspersky, Qihoo-360, Avast, and Symantec. To have a fair
comparision, we need to consider unknown malwares. Thus,
we generated 105 malwares that include self-modifying codes.
We use the sophisticated malware generator NGVCK available
at VX Heavens [33] to obtain malicious codes and we obfus-
cate them using self-modifying instructions. Our tool was able
to detect all these programs as malicious, whereas none of the
well-known antiviruses was able to detect all these malwares.
Table III shows the detection rates of our tool v.s. the well-
known anti-viruses.

REFERENCES

[1] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie,
N. Tawbi et al., “Static detection of malicious code in executable
programs,” Int. J. of Req. Eng, vol. 2001, no. 184-189, p. 79, 2001.

[2] G. Balakrishnan, T. W. Reps, N. Kidd, A. Lal, J. Lim, D. Melski,
R. Gruian, S. H. Yong, C. Chen, and T. Teitelbaum, “Model checking
x86 executables with codesurfer/x86 and WPDS++,” in CAV, 2005, pp.
158–163.

[3] P. K. Singh and A. Lakhotia, “Static verification of worm and virus
behavior in binary executables using model checking,” in IAW, 2003,
pp. 298–300.

[4] M. Christodorescu and S. Jha, “Static analysis of executables to detect
malicious patterns,” University of Wisconsin-Madison Department of
Computer Sciences, Tech. Rep., 2003.

[5] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting
malicious code by model checking,” in DIMVA, 2005, pp. 174–187.

[6] F. Song and T. Touili, “Pushdown model checking for malware detec-
tion,” STTT, vol. 16, no. 2, pp. 147–173, 2014.

[7] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” in S&P, 2005, pp. 32–46.

[8] G. Bonfante, H. Godfroy, and J.-Y. Marion, “A construction of a self-
modifiying language with a formal correction proof,” in MALWARE.
IEEE, 2017, pp. 99–106.

[9] E. R. Team, “Self-modifying code unpacking tool using dynamorio,”
https://github.com/BreakingMalware/Selfie.

[10] Karl, “Automated unpacking: A behaviour based approach,” https://
github.com/malwaremusings/unpacker.

[11] T. Touili and X. Ye, “Reachability analysis of self modifying code,” in
ICECCS. IEEE, 2017, pp. 120–127.

[12] A. Lakhotia, E. U. Kumar, and M. Venable, “A method for
detecting obfuscated calls in malicious binaries,” IEEE Trans. Software
Eng., vol. 31, no. 11, pp. 955–968, 2005. [Online]. Available:
https://doi.org/10.1109/TSE.2005.120

[13] F. Song and T. Touili, “Efficient ctl model-checking for pushdown
systems,” Theoretical Computer Science, vol. 549, pp. 127–145, 2014.

[14] T.Touili and X.Ye, “Ctl model checking of self modifying code,” https:
//lipn.univ-paris13.fr/∼xin/ctl full.pdf.

[15] F. Song and T. Touili, “Efficient malware detection using model-
checking,” in FM, 2012, pp. 418–433.

[16] P. Beaucamps, I. Gnaedig, and J.-Y. Marion, “Behavior abstraction in
malware analysis,” in International Conference on Runtime Verification.
Springer, 2010, pp. 168–182.

[17] F. Song and T. Touili, “Ltl model-checking for malware detection,” in
TACAS. Springer, 2013, pp. 416–431.

[18] H. Nguyen and T. Touili, “CARET model checking for malware
detection,” in SPIN 2017, H. Erdogmus and K. Havelund, Eds.
ACM, 2017, pp. 152–161. [Online]. Available: https://doi.org/10.1145/
3092282.3092301

[19] G. Bonfante, J.-Y. Marion, and D. Reynaud-Plantey, “A computability
perspective on self-modifying programs,” in SEFM, 2009, pp. 231–239.

[20] H. Cai, Z. Shao, and A. Vaynberg, “Certified self-modifying code,” ACM
SIGPLAN Notices, vol. 42, no. 6, pp. 66–77, 2007.

[21] S. K. D. K. P. Coogan and G. M. Townsend, “On the semantics of
self-unpacking malware code,” Citeseer, Tech. Rep., 2008.

[22] B. Anckaert, M. Madou, and K. De Bosschere, “A model for self-
modifying code,” in IH, 2006, pp. 232–248.

[23] S. Blazy, V. Laporte, and D. Pichardie, “Verified abstract interpretation
techniques for disassembling low-level self-modifying code,” Journal of
Automated Reasoning, vol. 56, no. 3, pp. 283–308, 2016.

[24] K. A. Roundy and B. P. Miller, “Hybrid analysis and control of
malware,” in International Workshop on Recent Advances in Intrusion
Detection. Springer, 2010, pp. 317–338.

[25] K. Coogan, S. Debray, T. Kaochar, and G. Townsend, “Automatic static
unpacking of malware binaries,” in WCRE, 2009, pp. 167–176.

[26] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code
extractor for packed executables,” in WORM. ACM, 2007, pp. 46–
53.

[27] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “Polyunpack:
Automating the hidden-code extraction of unpack-executing malware,”
in ACSAC, 2006, pp. 289–300.

[28] I. Walukiewicz, “Model checking ctl properties of pushdown systems,”
in International Conference on Foundations of Software Technology and
Theoretical Computer Science. Springer, 2000, pp. 127–138.

[29] V. H. Kinder.J., “Jakstab: A static analysis platform for binaries,” in
CAV. Springer, 2008, pp. 423–427.

[30] A. Bouajjani, J. Esparza, and O. Maler, “Reachability Analysis of
Pushdown Automata: Application to Model Checking,” in CONCUR,
1997.

[31] F. Song and T. Touili, “Pumoc: a ctl model-checker for sequential
programs,” in ASE, 2012, pp. 346–349.

[32] ——, “Efficient malware detection using model-checking,” in Interna-
tional Symposium on Formal Methods. Springer, 2012, pp. 418–433.

[33] V.Heaven, “V.heavens,” http://vxer.org/lib/.

10

https://github.com/BreakingMalware/Selfie
https://github.com/malwaremusings/unpacker
https://github.com/malwaremusings/unpacker
https://doi.org/10.1109/TSE.2005.120
https://lipn.univ-paris13.fr/~xin/ctl_full.pdf
https://lipn.univ-paris13.fr/~xin/ctl_full.pdf
https://doi.org/10.1145/3092282.3092301
https://doi.org/10.1145/3092282.3092301
http://vxer.org/lib/

	Introduction
	Self Modifying Pushdown Systems
	CTL Model-Checking on SM-PDSs
	The Computation Tree Logic CTL
	Self-modifying Alternating Büchi Pushdown Systems
	From CTL Model-Checking of SM-PDSs to the emptiness problem of SM-ABPDSs

	Computing the language of a SM-ABPDS
	Characterizing L(BP)
	Computing YBP

	Experiments
	Our algorithm vs. standard CTL on PDSs
	Malicious Behavior Detection on Self-Modifying Code
	Specifying malicious behaviors using CTL.
	Applying our tool for malware detection.
	Comparision with well-known antiviruses.

	References

