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 19 
ABSTRACT (75 words)  20 

Mycobacterium abscessus lung infections remain difficult to treat. Recent studies have 21 

recognized the power of new combinations of antibiotics such as bedaquiline and imipenem 22 

although in vitro data have questioned this combination. We report that the efficacy of the 23 

bedaquiline plus imipenem treatment relies essentially on the activity of bedaquiline in a 24 

C3HeB/FeJ mice model of infection with a rough variant of M. abscessus. The addition of 25 

imipenem contributed at clearing the infection in the spleen. 26 

 27 
 28 

 29 
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 31 
Note (1074 words) 32 

Mycobacterium abscessus is a rapidly growing mycobacterial species, whose infections 33 

remain very difficult to treat, due to the limited panel of available antibiotics (1). Among 34 

them, the -lactams, imipenem (IPM) and cefoxitin (FOX), are part of the M. abscessus 35 

multidrug therapy along with amikacin (AMK) and clarithromycin (CLR) (2-5). In addition, 36 

the development of specific -lactamase inhibitors, enhancing the efficacy of IPM in vitro and 37 

in vivo, broadens the use of IPM in M. abscessus drug therapy (6-8). Other studies highlighted 38 

the potential of testing new drug combinations that include IPM and are associated with 39 

increased efficacy against M. abscessus (6, 9, 10), yet questioning the relevance of the 40 

bedaquiline (BDQ) plus IPM combination (11). BDQ targets the ATP synthase and exhibits 41 

activity against a wide panel of M. abscessus clinical isolates in vitro and in infected 42 

zebrafish, although its effect is bacteriostatic only (12). A recent study suggested that, by 43 

reducing the intracellular pool of ATP in M. abscessus, BDQ suppresses the effect of IPM 44 

and FOX, although the effect of the BDQ plus IPM combination was considered additive 45 

(11). This led the investigators to conclude that the addition of BDQ to a -lactam-containing 46 

regimen may negatively affect the treatment outcome (11). In comparison, data from the 47 

hollow fiber model highlight that -lactam is the most active and important part of the M. 48 

abscessus regimen (13). That these studies focused exclusively on the interaction of β-lactams 49 

and BDQ in vitro, confirmatory results in a pre-clinical animal model are warranted.  50 

Herein, we explored the therapeutic efficacy of BDQ or IPM, alone or in combination, using 51 

the immunocompetent C3HeB/FeJ mouse model of M. abscessus infection. C3HeB/FeJ mice 52 

are highly susceptible to mycobacterial infections, particularly to Mycobacterium tuberculosis 53 

due to a deletion on the Ipr1 (Intracellular pathogen resistance 1) gene located in the locus 54 

called sst1 (14, 15). All animal experiments were performed according to ethical guidelines 55 

and with ethical committee (N°047 with agreement A783223) agreement APAFIS#11465. 56 

First, we evaluated, the in vitro interaction between BDQ and several β-lactams or CLR 57 

against M. abscessus CIP104536 strain in cation-adjusted Mueller-Hinton broth (CaMHB) 58 

(Becton-Dickinson, Le Pont-de-Claix, France) using a 2-dimensional microdilution 59 

checkerboard method, as previously described (16-19). Our results confirm that the -lactam 60 

plus BDQ combinations are indifferent, as it is the case with the CLR plus BDQ combination 61 

(Table 1).  62 
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Next, the performances of pulmonary and intravenous (IV) infection routes were compared in 63 

C3HeB/FeJ mice. Mice were infected intratracheally using agar bead-embedded bacteria to 64 

maintain a persistent infection, as reported previously for Pseudomonas aeruginosa (20). A 65 

significant increase in mortality was noticed when mice were infected intratracheally with a 66 

solution of agar beads containing 2.10
5
 CFUs/mouse in 50 µl, leading only to 40% of mouse 67 

survival at 14 days post-infection (dpi) (see Fig. S1A in the supplemental material) correlated 68 

with an important increase in the CFU at 14 dpi suggesting accelerated bacterial growth in the 69 

lungs (Fig. S1B). In contrast, persistence occurs for up to 25 days after IV infection with 10
6
 70 

CFU/mouse as evidenced by CFU counting after plating of the organ homogenates (Fig. 1 and  71 

Fig. S2A and S2B) although as soon as the injected dose is less than 10
6
 CFU, persistence in 72 

the organs is reduced (Fig. S2B). This represents an important asset over previously described 73 

murine models, characterized by a more rapid bacterial clearance (21-23).  74 

The IV route of infection was subsequently used to evaluate and compare the activity of BDQ 75 

and AMK. Because AMK is bactericidal against M. abscessus while BDQ is bacteriostatic in 76 

vitro, we wondered whether BDQ would be more effective than AMK in an in vivo infection 77 

model. CFU were significantly reduced in mice receiving 30 mg/kg BDQ (oral 78 

administration) as compared to mice treated with 150 mg/kg AMK (subcutaneous 79 

administration) in the lungs and the spleen at 12 and 25 dpi (Fig. 2A and 2B). No significant 80 

differences were observed between the BDQ- or AMK-treated animals in the spleen at 12 dpi, 81 

but bacterial loads in these two groups were significantly lower compared to the control group 82 

(oral administration of DMSO) (Fig. 2C).  83 

The efficacy of BDQ in this infection model prompted us to compare it with IPM 84 

(subcutaneous administration) either alone or as a companion drug, for 15 days of treatment. 85 

No significant differences were noticed between the animals treated with BDQ alone and the 86 

animals treated with BDQ plus IPM at 12 and 20 dpi, with the exception of the liver at 12 dpi 87 

(Fig. 3A to 3C), indicating that the overall activity of the BDQ plus IPM combination was 88 

mainly due to the intrinsic activity of BDQ. In general, BDQ alone or in combination with 89 

IPM exhibited an increased activity as compared to IPM in the liver and spleen but not in the 90 

lungs (Fig. 3). The spleens of treated and untreated mice were weighed as an additional 91 

marker of the effectiveness of the various treatments. These measures indicated that only 92 

treatments with BDQ plus IPM or IPM alone were associated with lower spleen weights, as 93 

compared to those of the untreated or BDQ-treated mice (Fig. 3D). Collectively, the reduced 94 
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bacterial burden, together with the lower spleen weights represent a marker for improved 95 

outcome of the infection. 96 

BDQ is a diarylquinoline approved by the Food and Drug Administration and the European 97 

Medicines Agency for the treatment of multidrug-resistant tuberculosis. It is bacteriostatic 98 

against M. abscessus in vitro, displaying MIC50 of 0.125 µg/ml and a MIC90 > 16 µg/ml, and 99 

ECOFF values demonstrates that BDQ exhibits moderate activity (16, 24). Discordant results 100 

regarding the efficacy of BDQ were generated in various immunocompromised mouse 101 

models, raising the question of the influence of immunosuppression on antibiotic efficacy (25, 102 

26). However, efficient responses to BDQ were observed in other animal models, such as 103 

zebrafish (12). Two studies reported poor or negative results for BDQ administration against 104 

NTM infected patients (27, 28). However, recent studies showed that the activity of BDQ can 105 

be potentiated with adjunctive therapy, by so improving BDQ-based treatments (16, 29). This 106 

study provides evidence that the BDQ plus IPM combination remains superior to IPM alone 107 

and equivalent to BDQ alone as judged by the comparable bacterial clearance in the spleens 108 

of the mice treated with BDQ plus IPM as compared to BDQ alone.   109 

 110 

In summary, the IPM plus BDQ combination enhances the clearance of the infection. This 111 

supports also the importance of evaluating antibiotic activity in combination rather than 112 

separately against this highly drug-resistant mycobacterium.  113 

 114 

115 
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 252 

 253 

Table 1. Interaction between bedaquiline and other drugs against M. abscessus CIP104536
T
  254 

  Interaction with BDQ 

Compound MIC* 

(mg/l) 

FICI$ 
(mean) 

SD Outcome 

BDQ 0.125 - - - 

IPM 16&
 0.55 ±0.06 Indifferent£

 

FOX 32 0.52 ±0.03 Indifferent 

CLR 2 0.61 ±0.09 Indifferent 

AMP >512 0.57 ±0.02 Indifferent 

(*) MIC were evaluated by REMA checkerboard assay in cation-adjusted Mueller-Hinton 255 
broth (CaMHB) (Becton-Dickinson, Le Pont-de-Claix, France). 10

5
 bacteria were diluted in 256 

Mueller-Hinton media (Sigma-Aldrich). Plates were incubated for 3 days at 30°C then 20 µL 257 
(10% v/f) of Resazurin 0.025% were added to the wells and plates were incubated overnight 258 
at 30°C.  259 

($) The fractional inhibitory concentration index (FICI) was calculated as follows: FICI = 260 
(MIC drug A in combination/MIC drug A alone) + (MIC drug B in combination/MIC drug B 261 
alone), where drug A was bedaquiline (BDQ) and drug B was clarithromycin (CLR, Sigma-262 
Aldrich, France), imipenem (IPM, Mylan S.A.S, France), cefoxitin (FOX, Panpharma, 263 
France) or ampicillin (AMP, Euromedex, France). 264 

(£) Interaction between the two compounds was defined as synergistic when FICI value was 265 
≤0.5, indifferent when 0.5< FICI ≤4, and antagonistic when FICI was >4.  266 

(&) Values showed in the table are the mean of four independent experiments ±SD. 267 

 268 

269 
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 270 

Legend to figures 271 

Figure 1. Bacterial persistence of M. abscessus CIP 104536
T
 (rough variant) in  the  lungs, 272 

spleen and liver of C3HeB/FeJ mice after infection in the tail vein with 10
6
 CFU/mouse in a 273 

total volume of 200 µl of water containing 0.9% sodium chloride. The following day, three 274 
mice were euthanized and whole organs were harvested to determine baseline bacterial 275 
burden. Mouse lungs, spleens and livers were  homogenized, serially diluted and plated onto 276 
VCAT (Vancomycin, Colistin sulfate, Amphotericin B, and Trimethoprim) chocolate agar 277 
plates (BioMérieux, France) and incubated for 5-6 days at 37°C prior to CFU count. Results 278 
are expressed as the log10 units of CFU at 1, 12 and 25 dpi. 279 

 280 
 281 
 282 
Figure 2. M. abscessus R-infected C3HeB/FeJ mice (9.2×10

5
 CFU/mouse) treated with 283 

Bedaquiline (BDQ) or Amikacin (AMK). Bacterial counts in the lungs (A), liver (B) and 284 
spleen (C) of C3HeB/FeJ mice infected IV, as described in Fig. 1. Antibiotic treatment began 285 
at 2 dpi. Mice were treated starting on day 2 for 7 days (D12) or 17 days (D25) by daily 286 
subcutaneous injections of 150 mg/kg AMK (Mylan laboratories) in saline solution or daily 287 
oral gavage of 30 mg/kg BDQ at in a total volume of 200 µl (BDQ solution in DMSO was 288 
diluted in 20 % 2-hydroxypropyl--cyclodextrin). A control group received a daily 289 
subcutaneous injection of saline and oral gavage of DMSO containing 20 % 2-hydroxypropyl-290 
-cyclodextrin. All solutions were administered five times weekly for latter time point. Mice 291 
were euthanized 3 days after antibiotic cessation to allow antibiotic clearance. Furthermore, 292 
given the long half-life and high protein binding capacity of BDQ, spleens, livers and lungs 293 
from drug-treated and control mice were homogenized in water supplemented with 10% 294 
bovine serum albumin (30) before dilution. Experimental groups of mice were evaluated for 295 
bacterial burden on day 1 (before treatment started), 12 and 25 as described in Fig. 1. n = 5 296 
mice were used per experiment and bacterial load in each group are expressed as log10 units of 297 
CFU (± SD) cells. Differences between means were analyzed by two-way ANOVA and the 298 
Tukey post-test, allowing multiple comparisons. n.s. = non-significant, * P<0.05, ** P<0.01, 299 
*** P<0.001, **** P<0.0001. Experiment was realized once.   300 
 301 
 302 
 303 
Figure 3. M. abscessus R-infected C3HeB/FeJ mice treated (2.7×10

5
 CFU/mouse) by 304 

Bedaquiline (BDQ), Imipenem (IPM) or BDQ plus IPM. Bacterial loads in the lungs (A), 305 
liver (B) and spleen (C) were determined as reported in Fig. 1. Relative weight of spleen to 306 
mouse weight are shown in (D). Antibiotic treatment began 2 days after infection. Mice were 307 
treated starting on day 2 for 7 days (D12) or 13 days (D20) with twice daily (i.e. every 12 h) 308 
subcutaneous injection of IPM (MSD laboratories, France) in saline solution at 100 mg/kg or 309 
daily oral gavage of BDQ as described in Fig. 2 or both IPM plus BDQ. Experimental groups 310 
of mice were evaluated for bacterial burden on day 1 (before treatment started), 12 and 20 as 311 
described in Fig. 1. (D) Mouse spleens were weighed at 1, 12 and 20 dpi. The value 312 
represents the relative weight of each spleen relative to the weight of the mouse from which 313 
they were collected. n = 5 mice were used per experiment and bacterial load in each group are 314 
expressed as log10 units of CFU (± SD) cells. Differences between means were analyzed by 315 
two-way ANOVA and the Tukey post-test, allowing multiple comparisons. n.s. = non-316 
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significant, * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. Experiment was realized 317 
once.   318 
 319 
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Figure 1. Bacterial persistence of M. abscessus CIP 104536T (rough variant) in  the  lungs, spleen and liver 

of C3HeB/FeJ mice after infection in the tail vein with 106 CFU/mouse in a total volume of 200 µl of water 

containing 0.9% sodium chloride. The following day, three mice were euthanized and whole organs were 

harvested to determine baseline bacterial burden. Mouse lungs, spleens and livers were  homogenized, 

serially diluted and plated onto VCAT (Vancomycin, Colistin sulfate, Amphotericin B, and Trimethoprim) 

chocolate agar plates (BioMérieux, France) and incubated for 5-6 days at 37°C prior to CFU count. Results 

are expressed as the log10 units of CFU at 1, 12 and 25 dpi. 
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Figure 2. M. abscessus R-infected C3HeB/FeJ mice (9.2×105 CFU/mouse) treated with Bedaquiline (BDQ) 

or Amikacin (AMK). Bacterial counts in the lungs (A), liver (B) and spleen (C) of C3HeB/FeJ mice infected 

IV, as described in Fig. 1. Antibiotic treatment began at 2 dpi. Mice were treated starting on day 2 for 7 days 

(D12) or 17 days (D25) by daily subcutaneous injections of 150 mg/kg AMK (Mylan laboratories) in saline 

solution or daily oral gavage of 30 mg/kg BDQ at in a total volume of 200 µl (BDQ solution in DMSO was 

diluted in 20 % 2-hydroxypropyl-b-cyclodextrin). A control group received a daily subcutaneous injection of 

saline and oral gavage of DMSO containing 20 % 2-hydroxypropyl-b-cyclodextrin. All solutions were 

administered five times weekly for latter time point. Mice were euthanized 3 days after antibiotic cessation 

to allow antibiotic clearance. Furthermore, given the long half-life and high protein binding capacity of 

BDQ, spleens, livers and lungs from drug-treated and control mice were homogenized in water 

supplemented with 10% bovine serum albumin (30) before dilution. Experimental groups of mice were 

evaluated for bacterial burden on day 1 (before treatment started), 12 and 25 as described in Fig. 1. n = 5 

mice were used per experiment and bacterial load in each group are expressed as log10 units of CFU (± SD) 

cells. Differences between means were analyzed by two-way ANOVA and the Tukey post-test, allowing 

multiple comparisons. n.s. = non-significant, * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. 

Experiment was realized once.   
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Figure 3 

Figure 3. M. abscessus R-infected C3HeB/FeJ mice (2.7×105 CFU/mouse) treated by Bedaquiline (BDQ), 

Imipenem (IMP) or BDQ plus IPM. Bacterial loads in the lungs (A), liver (B) and spleen (C) were 

determined as reported in Fig. 1. Relative weight of spleen to mouse weight are shown in (D). Antibiotic 

treatment began 2 days after infection. Mice were treated starting on day 2 for 7 days (D12) or 13 days 

(D20) with twice daily (i.e. every 12 h) subcutaneous injection of IPM (MSD laboratories, France) in saline 

solution at 100 mg/kg or daily oral gavage of BDQ as described in Fig. 2 or both IMP+BDQ. Experimental 

groups of mice were evaluated for bacterial burden on day 1 (before treatment started), 12 and 20 as 

described in Fig. 1. (D) Mouse spleens were weighed at 1, 12 and 20 dpi. The value represents the relative 

weight of each spleen relative to the weight of the mouse from which they were collected. n = 5 mice were 

used per experiment and bacterial load in each group are expressed as log10 units of CFU (± SD) cells. 

Differences between means were analyzed by two-way ANOVA and the Tukey post-test, allowing multiple 

comparisons. n.s. = non-significant, * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001. Experiment was 

realized once.   
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Figure 1. (A) Survival of C3HeB/FeJ mice infected intratracheally or intravenously (IV) with M. abscessus

CIP 104536T (smooth variant). (B) Persistence of M. abscessus in the lungs of intratracheally-infected 

C3HeB/FeJ mice. Agar beads where prepared as described previously (1). Mice were infected with a 

solution of agar beads containing 2.105 CFUs/mouse in 50 µl. Survival curves were generated over a 14 

days post-infection experiment. Mouse lungs were collected and homogenized, serially diluted and plated 

onto VCAT (Vancomycin, Colistin sulfate, Amphotericin B, and Trimethoprim) chocolate agar plates 

(BioMérieux, France) and incubated for 5-6 days at 37°C prior to CFU count. Results are expressed as log10

units of CFU at 1, 14 and 29 dpi. Results are representative of one of two independent experiments (A and 

B) with similar results.



Supplementary Figure 2
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Supplementary Figure 2. Bacterial persistence of M. abscessus CIP 104536T (rough variant) in  the  lungs, 

spleen and liver of C3HeB/FeJ mice after infection in the tail vein with 4.8×106 (A) and 3.1×105

CFU/mouse (B) in a total volume of 200 µl of water containing 0.9% sodium chloride. The following day, 

three mice were euthanized and whole organs were harvested to determine baseline bacterial burden. CFU 

were determined as described in Fig.S1. Results are expressed as the log10 units of CFU at 1, (6), 13 and 20 

dpi. 
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