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Luminescent Eu(III) downshifters [3, 4, 5]

Spectral modification for 3rd generation
solar cells [1]

Lumogen dyes in LDS Layers [6, 7]

CdSe/ZnS Quantum Dots in LDSL [6, 7]

Analytical model in description of 
LDS layers – figures of merit [2]

Conclusions

Luminescent Eu(III) LDS Layers [5]

The reflectance spectra as well I-V curves registered for the cells with LDS layer composed
of Eu(III) luminescent complex with the highest QY. EQE plots for the CIGS without and 

with LDS layers encapsulated in different types of polymers.

The solar spectrum AM1.5G (red line) 
compared to the absorption spectrum of 

silicon (black line). The UV photons can be 
efficiently shifted into region of maximum 

absorbance by downconversion (DC) or
dowshifting (DS) while the NIR photons by 
upconversion (UC); shown on the scheme.

The chemical structure of the ligands and complexes of Eu3+ used to produce the LDS 
layers.[3, 4, 5] Rectangles denote the type of co-ligand and circle denotes the R

substitution in tris-ligand of the complex in reference to QY plot below.

The QY of the complexes of Eu3+, measured in 
solid state at room temperature. The labels
(circle+rectangle) represent combination of 

ligands in the Eu3+ complexes depicted above.

Representation of down-shifting
effect of the LDS layers based on 
Eu3+ complexes presented in this
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Legend: EQE – external quantum efficiency; PLQY – photoluminescence quantum yield; ASM – absorption
spectral matching; RO – radiative overlap; ESM – emission spectral matching; PA – parasitic absorption; Jsc –
short circuit current; Rc – average reflection at the air cover interface; Q – collection probability; P –
probablility of the downshifted photon emitted within the escape cone; r – probability of the downshifted
photon being reabsorbed by another dye molecule; n – refractive index of the medium.
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Radar graph comparing the 
figures of merit[2] for the 
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• The cascades of lumogen dyes are considered to improove RO and ASM figures of
merit of the lumogen single-dye LDSL [6, 7]

• Among studied LSDL the most promising results with CIGS were found for Eu(III)
luminescent down-shifters [3, 4, 5]

• The overall gain in efficiency of the CIGS solar cells with europium down-shifters
reached 0.8% [5]

• Further work on development of supramolecular down-converting layers is ongoing
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The photograph of emission of 
solutions of CdSE/ZnS QDs in 
acetone upon UV excitation at

room temperature.

3rd GENERATION SOLAR CELLS
Solar cells overcoming the Shockley 

Queisser limit

Different technologies are developed:
- Concentrator solar cells
- Multijunctions
- Hot carriers
- frequency conversion : DC/DS, UC

DS/DC and UC realisation:
- inclusion of fluorophores in a matrix
- encapsulation of fluorophores in 

top/middle/bottom layers
- fluorophores: organic dyes, lanthanide

compounds, quantum dots, 
nanoparticles


