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Abstract 31 

Proinsulin is a misfolding-prone protein and its efficient breakdown is critical, when β-cells are 32 

confronted with high insulin biosynthetic demands, to prevent endoplasmic reticulum stress, a key 33 

trigger of secretory dysfunction and, if uncompensated, apoptosis. Proinsulin degradation is thought 34 

to be performed by the constitutively expressed standard proteasome, while the roles of other 35 

proteasomes are unknown. We recently demonstrated that deficiency of the proinsulin chaperone 36 

GRP94 causes impaired proinsulin-handling and defective insulin-secretion associated with a 37 

compensated endoplasmic reticulum stress-response. Taking advantage of this model of restricted 38 

folding-capacity, we investigated the role of different proteasomes in proinsulin degradation, 39 

reasoning that insulin secretory dynamics require an inducible protein degradation-system. 40 

We show that expression of only one enzymatically active proteasome subunit, namely the 41 

inducible β5i-subunit, was increased in GRP94 CRISPR/Cas9 KO cells. Additionally, the level of 42 

β5i containing intermediate proteasomes was significantly increased in these cells, as was β5i-43 

related chymotrypsin-like activity. Moreover, proinsulin levels were restored in GRP94 KO upon 44 

β5i siRNA-mediated knock down. Finally, the fraction of β-cells expressing β5i subunit is increased 45 

in human islets from type 2 diabetes patients. We conclude that β5i is an inducible proteasome 46 

subunit dedicated to the degradation of mishandled proinsulin. 47 
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1. Introduction55 

The insulin secretory dynamics and associated transients in proinsulin biosynthesis endanger the 56 

pancreatic β−cells for the detrimental consequences of protein misfolding. Even in normal 57 

conditions 20 % of proinsulin is misfolded, implicating that β−cells critically depend upon a highly 58 

flexible protein degradation system to avoid endoplasmic reticulum (ER) stress, cellular dysfunction 59 

and death (24). Misfolded proinsulin is disposed from the ER through the Endoplasmic-Reticulum-60 

Associated protein Degradation (ERAD) pathway with final proteolysis performed by the 61 

proteasome (10). There are four major types of proteasomes that differ in composition of β subunits 62 

forming the enzymatically active inner rings of the 20S proteasome core: the constitutively 63 

expressed standard proteasome (composed of β1, β2, β5; s-proteasome), the immunoproteasome 64 

(β1i, β2i, β5i), the intermediate proteasome (containing a combination of standard and inducible β 65 

subunits; int-proteasome) and the thymus-specific proteasome (containing β5t subunit) (17). 66 

Inducible subunits are constitutively expressed not only in immune cells but also in the pancreatic 67 

islets, as reported recently by us and the Human Protein Atlas database (11, 26). Expression of the 68 

inducible subunits in β-cells is further upregulated by cytokines e.g. INFγ/β and IL-1β (6, 11, 15) 69 

during viral infections (16), and their constitutive expression has also been reported in e.g. heart and 70 

liver where they form int-proteasomes constituting 1-50% of total proteasomes of a cell (4, 8, 21). 71 

However, the role of non-standard proteasomes in proinsulin degradation has not been investigated. 72 

Most studies of proteasome biology employ broad-spectrum proteasome inhibitors such as MG132 73 

and lactacystin (9, 13) that cannot clarify the roles of individual proteasome subunits in protein 74 

degradation. Moreover, β-cell investigative models have focused on the fate of mutated e.g. AKITA 75 

proinsulin and not on misfolded wild-type proinsulin, as it has been assumed that the relevant 76 

degradation mechanisms are similar if not identical (9). 77 
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We recently showed that Glucose Regulated Protein 94 (GRP94), an ER resident chaperone, is 78 

critical for proinsulin handling. Deficient GRP94 activity results in substantial loss of intracellular 79 

proinsulin and a reduction in insulin secretion (7). As the loss of proinsulin in GRP94 knockout 80 

(KO) cells occurs at the level of ER (7), we hypothesized that mishandled proinsulin becomes an 81 

ERAD and proteasome substrate.   82 

We therefore examined the activity and composition of proteasome(s) in GRP94 KO clonal cell 83 

lines derived from β-cell line Ins1-E and showed that these cells specifically overexpress the 84 

inducible β5i proteasome subunit that is incorporated into enzymatically active proteasomes. 85 

Furthermore, siRNA-based reduction of β5i expression increased intracellular levels of proinsulin. 86 

Finally, we demonstrated that the β5i subunit is expressed in an increased fraction of β-cells from 87 

type 2 diabetes patients. 88 

 89 

2. Methods  90 

Cell culture Ins1-E GRP94 KO cells were generated as described in (7). The cells were grown in 91 

RPMI-1640 (Life Technologies, Naerum, Denmark) supplemented with 10 % fetal bovine serum 92 

(FBS), 1 % Penicillin/Streptomycin (P/S), 10 mM N-2-hydroxyehtylpiperazine-N-2-ethane sulfonic 93 

acid (HEPES), 50 µM β-mercaptoethanol and 1 mM sodium pyruvate, on fibronectin coated 94 

plasticware. The GRP94 inhibitor PU-WS13 (GRP94i) was described in (19) and used as in (7). 95 

Western Blotting Cells were lysed and protein concentration calculated as in (7). Samples were run 96 

on Nu-Page 4-12 % bis-tris gels (Thermo Fisher Scientific, Hvidovre, Denmark), transferred to 97 

PVDF membranes before an overnight incubation with primary antibodies (Abcam: β5i ab183506, 98 

β2i ab3329, β1i ab243556; Sigma: β1 HPA029635, β2 HPA026322, β5 SAB210895, 99 

Thermo Fisher scientific: GRP94 MA3-016, Santa Cruz biotech: Tubulin T6074; Cell Signaling: 100 
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Insulin 8138S). Blots were developed using chemiluminescence and captured using the 101 

Azure®Saphire Biomolecular Imager. Quantification of Western blots was by ImageJ software 102 

(v.1.52a, (22)). 103 

Proteasome activity assay GRP94 KO and control cells were plated in 96-well plates, treated with 104 

50 nM ONX-0914 (Selleck Chemicals, Rungsted, Denmark, IC50:~10 nM for β5i, (18)) or vehicle-105 

containing control medium for 2 h prior to experiments. As previously described (15) 106 

chymotrypsin-, trypsin- and caspase-like activities were measured through luminescent assay using 107 

Proteasome-GloTM Assay (Promega, Nacka, Sweden). Statistical analysis was done on the average 108 

of each biological triplicate each point represented by a technical replicate. 109 

Proteasome Mass-spectrometry analysis Cells were grown to 90 % confluence, washed with 110 

Hank's Balanced Salt Solution (HBSS) before incubation with culture media supplemented with 0.1 111 

% formaldehyde for cross-linking for 15 minutes. Next, 125 mM glycine was added for 10 minutes 112 

at 37°C to quench the formaldehyde. The cells were then washed with HBSS, centrifuged and 113 

pellets stored at -80°C. Immuno-purification of the proteasomes from the in vivo cross-linked 114 

lysates, liquid chromatography mass spectrometry (LC-MS/MS) analysis, protein identification, 115 

validation and quantifications were performed as previously described (2, 4). Briefly, proteasomes 116 

were purified by incubating the lysates with CNBr sepharose beads (GE Healthcare) covalently 117 

bound to the antibody specific for the α2 subunit of the proteasome (MCP21), using 150 million 118 

cells per 50 mg of grafted beads. Two additional cycles of purification were conducted, re-119 

incubating the collected supernatant with antibody-grafted beads. All fractions were pooled and LC-120 

MS/MS analysis performed. 121 

Single-Cell RNA Sequencing of Pancreatic Islets Pancreatic islet cell subpopulations were 122 

analyzed for β5i, β1i and β2i expression with human islet single-cell sequencing data (23). FastQ 123 
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files were downloaded from ArrayExpress (accession: E-MTAB-5061). Data was analyzed with 124 

bcbio nextgen (https://github.com/chapmanb/bcbio-nextgen), using the hisat2 algorithm (12) to 125 

align reads to human genome version hg38 and the Salmon algorithm (20) for quantitation of gene 126 

counts. 127 

β5i siRNA-mediated knockdown GRP94 KO cells were grown in 6-well plates to 80 % 128 

confluence and transfected with β5i-directed SMART-POOL siRNA (Dharmacon®, Cambridge, 129 

Great Britain), using the Lipofectamine 3000 transfection kit according to manufacturer’s protocol 130 

(Thermo Fisher Scientific, Hvidovre, Denmark). Supernatants were collected for measurements of 131 

proinsulin and insulin by ELISAs (Cat. #10-1232-01 and 10-1250-01, Mercodia, Uppsala, Sweden) 132 

according to manufacturer’s protocols. Cell viability assay was performed using the staining reagent 133 

AlamarBlue (Life Technologies, Naerum, Denmark) added to the cell culture for 4h, incubated at 134 

37oC. The resulting fluorescence was read at 570 nm and 600 nm (reference) on a plate reader. 135 

Thapsigargin was used at the dose of 0.1 µM for 24 h. 136 

Real-time Quantitative PCR RNA was isolated using the NucleoSpin® RNA kit (Macherey-137 

Nagel, Bethlehem, USA), followed by cDNA synthesis (iScripttm cDNA Synthesis Kit BioRad, 138 

Copenhagen, Denmark) and quantification using SYBR® Green master mix (Life Technologies 139 

Naerum, Denmark). The primers used: PSMB8 (F: CCAGGAAAGGAAGGTTCAGAT, R: 140 

ATCTCGATCACCTTGTTCAC); ins-1 (F: GGGGAACGTGGTTTCTTCTAC, R: 141 

CCAGTTGGTAGAGGGAGCAG); ins-2 (F: CAGCACCTTTGTGGTTCTCA, R: 142 

CACCTCCAGTGCCAAGGT); HPRT1 (F: GCAGACTTTGCTTTCCTT, R: 143 

CCGCTGTCTTTTAGGCTT); β-actin (F: CACCCGCGAGTACAACCTTC, R: 144 

CCCATACCCACCATCACACC); PPIA (F: AGCACTGGGGAGAAAGGATT, R: 145 

GATGCCAGGACCTGTATGCT). The best reference genes for normalization were determined as 146 
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in (1), and normalization was carried out using the 2^(-ΔCT) method to provide the relative gene 147 

expression levels. 148 

Donor human islets were received at 90 % purity from the European Consortium for Islet 149 

Transplantation (ECIT). Donor information: female, 56 y.o., BMI 19.4, cause of death was cerebral 150 

bleeding, blood group A+, HLA (A:B) 1,29 : 18,57, HLA (DR) 11,11, cold ischemia time 4 h, time 151 

for islets isolation to shipment 16 h, estimated purity 80 %. After a 24 h pre-incubation in RPMI 152 

medium supplemented with 10 % FBS, 1 % P/S and 5.6 mM glucose, 500 islets per experimental 153 

condition were transferred to RPMI medium supplemented with 1 % HS and 24 h later experiments 154 

were performed. 155 

Statistical analysis Quantified data of Western blots and proteasome assays were assessed by 156 

Bonferroni corrected two-tailed Student’s t-test. GraphPad Prism (v. 7.04, La Jolla, CA, USA) was 157 

used for all statistical analyses and data presentation. Data is presented as means ± SD with p-158 

values of ≤0.05 considered significant. 159 

3. Results 160 

Increased expression and activity of β5i in GRP94 KO cells 161 

To investigate the expression of enzymatically active proteasome β subunits, we analyzed protein 162 

contents of GRP94 KO and control clonal cell lines. We found all standard and inducible β subunits 163 

expressed to varying degrees in the tested cells (Fig. 1) but only the β5i subunit was expressed 164 

significantly more in GRP94 KO cells compared to controls (Fig. 1A-B). β5i mRNA was 165 

upregulated in a similar fashion in GRP94 KO cells (Fig. 1C). 166 

Next, we measured levels of overall substrate-specific proteasome activities. GRP94 KO cells 167 

showed increased chymotrypsin-like activity (characteristic for β5, β5i, β1i subunits (25)) compared 168 

to the control group while the other substrate-specific activities remained unchanged (Fig. 1F). 169 
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Treatment of cells for 2 h with 50 nM of ONX-0914, a β5i specific inhibitor, reduced 170 

chymotrypsin-like activity in the GRP94 KO to the levels observed in control cells treated with 171 

ONX-0914, indicating that increase in this type of activity is β5i dependent (Fig. 1F). 172 

Increased incorporation of β5i subunit into active proteasomes in GRP94 KO cells  173 

Next, we investigated the cellular composition of proteasomes through immunoprecipitation (IP) of 174 

the 20S α2 proteasome subunit followed by LC-MS/MS analysis. We identified the presence of two 175 

types of proteasomes: the s-proteasome and int-proteasome, containing β1, β2, β5 and β1, β2, β5i 176 

subunits respectively, with no other detectable inducible subunits incorporated (Fig. 2A). The s-177 

proteasome was the dominant form present in control (83.2 %) and GRP94 KO cells (79.9 %). Int-178 

proteasome represented 16.8% of proteasomes in control group while its presence was increased to 179 

20.1% in GRP94 KO cells. Furthermore, we identified a significant increase in the 11S regulatory 180 

particles (PA28αβ and PA200), known to be part of the immunoproteasomes (3), in active 181 

proteasomes of GRP94 KO cells (Fig. 2B). 182 

Inhibition of β5i activity increases proinsulin levels in GRP94 KO cells 183 

As β5i was the only proteasome subunit upregulated in GRP94 KO cells and incorporated into 184 

active proteasomes to a higher degree, we evaluated the possible role of the β5i subunit in 185 

proinsulin degradation in GRP94-deficient cells. β5i was knocked down with three individual 186 

siRNAs (Fig. 2C). Concurrently, levels of intracellular proinsulin and mature insulin increased as 187 

compared to siRNA control treated cells (Fig. 2D) with no apparent upregulation in Ins1-2 genes 188 

transcription (Fig. 2E). The observed increase was accompanied by higher amount of constitutively 189 

secreted proinsulin but not insulin (experiment was performed in 2 mM glucose containing media; 190 

Fig. 2F). Finally, β5i KD induced partial loss of cell viability (Fig. 2G). 191 

β5i expression is increased upon glucose stimulation and GRP94 ATP-ase inhibition 192 
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In order to mimic increased insulin demand conditions and increased proinsulin production, Ins1-E 193 

cells and human islets were cultured in the presence of 20 mM glucose. As expected, intracellular 194 

proinsulin levels increased accompanied by the smaller increase in insulin levels, presumably 195 

because mature insulin is secreted at 20 mM glucose concentration. After 24 and 48 h we observed 196 

10-25 % increase in the β5i expression (Fig. 3A, n=3 and 3B, n=1), induced further by the addition 197 

of 5-20 µM of GRP94i (Fig. 3C; n=1). Off note, proinsulin and insulin levels were diminished after 198 

treatment with GRP94i, as reported previously (7). At this point, human islets results should be 199 

taken with a reservation as they represent only a single experiment with a single islet donor. 200 

β5i expression is increased in pancreatic islet cells in type 2 diabetes 201 

To investigate whether inducible β subunits are overexpressed in islets of type 2 diabetes (T2D) 202 

patients, we analyzed RNA-sequencing data of single-cells dispersed from pancreatic islets (23). 203 

We found that 20 % more of α-, and 40 % more of β- and δ-cells from T2D patients tested positive 204 

for expression of the β5i subunit compared to non-diabetic controls (Fig. 4A). Similarly, 10 % more 205 

of all islet cell-types were β1i-positive in T2D compared to control cases (Fig. 4B) with no 206 

significant changes observed for β2i (Fig. 4C). When β5i- (and β2i-) positive cells were analyzed 207 

for expression levels of β subunits, we found no significant changes (Fig 4D) between control and 208 

T2D cases. The β1i subunit exhibited lower expression in T2D cases but significance was reached 209 

only in α-cells (Fig. 4E). 210 

Next, we analyzed the inter-dependence between GRP94 and β5i expression and found statistically 211 

significant correlation only in β-cells but the correlation was weak (R2=0.2) indicating that only a 212 

fraction of β-cells exhibited the inter-dependence in expression of these genes (Fig. 4G-I). 213 

 214 

4. Discussion 215 
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Here, we report that the expression of the inducible proteasome subunit β5i was significantly higher 216 

in GRP94 KO cells, a β-cell model of restricted ER folding capacity and proinsulin mishandling, 217 

and in islets of T2D patients. Moreover, we have shown that proteasomes containing the β5i subunit 218 

are engaged in proinsulin degradation. 219 

Misfolded proinsulin has been thought to be degraded by the s-proteasome but the experimental 220 

procedures employed have not been able to distinguish proteasome subtypes involved in the process 221 

(9, 10, 13). Low levels of intracellular proinsulin, accompanied by unaffected preproinsulin 222 

transcription in GRP94 KO (7) indicate enhanced proinsulin degradation. We expected a broad 223 

upregulation of expression of proteasome subunits to counteract a higher load of mishandled 224 

proinsulin. Unexpectedly, we show that limiting folding capacity (GRP94 KO) induces 225 

upregulation of only β5i expression (Fig. 1A). The increase in β5i expression was accompanied by 226 

an increase in chymotrypsin-like activity in GRP94 KO that was reduced as a result of the treatment 227 

with a β5i selective small-molecule inhibitor, ONX-0194 (Fig. 1F). The particular position of the 228 

β5i in the inducible proteasomal response in β-cells was confirmed by mass spectrometry showing 229 

increased presence of β5i-containing int-proteasomes in GRP94 KO cells (Fig. 2A). We did not 230 

detect incorporation of other inducible β subunits despite their demonstrated expression in control 231 

and GRP94 KO cells (Fig. 1). Finally, we showed that β5i can be upregulated in response to 232 

prolonged exposure to high glucose concentration and ATP-ase inhibition of GRP94 activity that 233 

mimics the limited β-cell folding capacity (Fig. 3, note that human islets experiments represent n=1 234 

and thus should be viewed with caution). 235 

The increased presence of the β5i subunit containing int-proteasomes likely signifies the evolution 236 

of a positive and inducible adaptive response dedicated to proinsulin degradation under conditions 237 

of biosynthetic stress. Conversely, we showed that β5i KD results in an increase in intracellular 238 

proinsulin and insulin (Fig. 2C and D) and loss of cell viability (Fig. 2G). 239 
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What signaling processes could be responsible for the changes in subunits expression? Our 240 

experiments were performed with Ins-1E cells in vitro and therefore the upregulation of the 241 

expression of β5i had to occur in non-stimulated conditions with cells employing internal 242 

mechanisms to upregulate it. Theoretically, constitutive activation of NACHT, LRR and PYD 243 

domains-containing protein 3 (NLRP3)-inflammasome may be involved. Classically, this activation 244 

requires signal-1 that increases intracellular pro-interleukin (IL)-1β concentration in response to 245 

binding of ligands to toll-like receptors (TLR) and signal-2 that triggers inflammasome-dependent 246 

activation of caspase-1 that in turn processes pro-IL-1β into the mature biologically active cytokine. 247 

Some substances can provide both signal-1 and 2 (27) and these include ER stress-inducing drugs 248 

such as thapsigargin (14). We have previously reported that GRP94 KO cells mount a compensated 249 

ER stress, with a limited PERK response (7) that would lead to increased inflammasome activity 250 

through TXNIP (as in (5)), and production of IL-1β. We have recently showed that externally 251 

provided non-toxic concentrations of IL-1β induce expression of β5i and β1i in Ins-1E cells and 252 

mouse and human islets (11). How that result relates to those reported here, with overexpression of 253 

only β5i, remains to be clarified. 254 

T2D patients exhibited increased fractions of α-, β- and δ-cells expressing β5i mRNA (Fig.4A) and 255 

weak but significant correlation between increased GRP94 and β5i mRNAs in T2D. As the demand 256 

for insulin biosynthesis increases during the progression of T2D, β-cells respond by increasing 257 

proinsulin synthesis and upregulating folding machinery. Despite that compensation, T2D patients 258 

display increased proinsulin misfolding. The observed β5i upregulation is therefore likely a positive 259 

adaptive mechanism that through the increased degradation of mishandled proinsulin contributes to 260 

β-cell homeostasis.  261 

The role of specific proteasomes in proinsulin degradation remains to be uncovered in detail and 262 

our results do not preclude involvement of s-proteasomes in this process. However, the perspective 263 
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that in a compromised ER folding environment in islets of T2D patients, β-cells specifically 264 

overexpress and incorporate the β5i proteasome subunit into inducible int-proteasomes that 265 

contributes to proinsulin degradation warrants further investigation into its significance for human 266 

cases. 267 
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387 

Figure 1. Expression and activity of proteasome β subunits.  388 

SDS-PAGE and Western blot analysis with quantification of relative levels of expression of β 389 

inducible (A-B) and (D-E) standard proteasome subunits in Ins-1E derived GRP94 KO and control 390 

clonal cells (n=3). C. mRNA levels of β5i gene were analyzed by quantitative reverse transcription-391 

PCR (qRT-PCR) in control and GRP94 KO cells (n=6, individual clones data shown). F. 392 

Proteolytic-specific activities exhibited by proteasome subunits treated with β5i subunit specific 393 

inhibitor ONX-0914 (2 h, 50 nM). Proteasome activity was evaluated in cultured cells and the data 394 

is shown as luminescence per cell. Statistical analysis performed by Bonferroni corrected unpaired 395 

two-tailed Student’s t-test. The data are presented as means±SD. 396 

397 

Figure 2. Proteasome activity and structure in GRP94 KO clonal cells and an effect of β5i KD 398 

on proinsulin/insulin contents.  399 

A-B Proteasomes were precipitated with anti-MCP21 from 4x108 cells and analyzed by LC-400 

MS/MS. The absolute quantities of each of the β subunits and regulatory particles measured by the 401 

LC-MS/MS method were computed to calculate the stoichiometry of 20S proteasome subtypes and 402 

20S proteasome-associated regulators, n=4. Statistical analysis performed by Bonferroni corrected 403 

unpaired two-tailed Student’s t-test. C-G siRNA KD of β5i in GRP94 KO cells was analyzed 72 h 404 

post siRNA delivery via: C. SDS-PAGE and Western blot analysis of proinsulin and insulin 405 

expression; D. quantification of WB data from six independent experiments; data depicted as 406 

percentage of control; E. mRNA levels of β5i and Ins-1-2 genes were analyzed by qRT-PCR in 407 

control and GRP94 KO cells (n=4); F. evaluation by ELISA assays of proinsulin and insulin 408 

secretion after additional 2 h culture in 2 mM glucose containg medium (n=3); G. Cell viability 409 

evaluated with AlamarBlue reagent. Thapsigargin was used at the dose of 0.1 µM for 24 h (n=4). 410 

Statistical analysis performed by Bonferroni corrected paired two-tailed Student’s t-test. The data is 411 

presented as means±SD. 412 

413 
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Figure 3. β5i expression is increased upon glucose stimulation and GRP94 ATP-ase inhibition. 414 

A-C Ins1-E cells and human islets from deceased donor were cultured in depicted glucose 415 

conditions for 24-48 h and their protein content analyzed by SDS-PAGE and Western blotting (3A: 416 

n=3 and 3B: n=1). C. Human islets were cultured for 24 h in the presence of 20 mM glucose and 20 417 

µM of GRP94i and their content analyzed (n=1). 418 

  419 

Figure 4. Proteasome inducible subunits expression in islets of control and T2D patients. A-C 420 

Single cell RNA sequencing analysis of β5i (A), β1i (B) and β2i (C) gene expression in human 421 

pancreatic islets α-, β- and δ-cells from healthy individuals (n=6) and T2D patients (n=4). D-F 422 

Expression levels of inducible subunits were quantified as expression values (CPM, log2) per 423 

individual cell. Data is presented as means±SD. G-I Pair-wise expression correlation between 424 

GRP94 (HSP90B1) and inducible subunit β5i (PSMB8) expression in α-, β- and δ-cells from healthy 425 

and T2D patients (Pearson’s correlation coefficients are shown; blue: healthy, green: T2D). 426 

Statistical analysis was performed using ANOVA with Bonferroni correction for multiple 427 

comparisons of T2D versus healthy donors. 428 
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