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Multiple time scales appear in many nonlinear dynamical systems. Semiconductor lasers, in particular,

provide a fertile testing ground for multiple time scale dynamics. For solitary semiconductor lasers,

the two fundamental time scales are the cavity repetition rate and the relaxation oscillation frequency

which is a characteristic of the field-matter interaction in the cavity. Typically, these two time scales

are of very different orders, and mutual resonances do not occur. Optical feedback endows the system

with a third time scale: the external cavity repetition rate. This is typically much longer than the device

cavity repetition rate and suggests the possibility of resonances with the relaxation oscillations. We

show that for lasers with highly damped relaxation oscillations, such resonances can be obtained and

lead to spontaneous mode-locking. Two different laser types-—a quantum dot based device and a

quantum well based device—are analysed experimentally yielding qualitatively identical dynamics. A

rate equation model is also employed showing an excellent agreement with the experimental results.

Published by AIP Publishing. https://doi.org/10.1063/1.4994029

The semiconductor laser undergoing feedback is one of

the most well-studied, non-linear laser configurations. It is

of vital importance for applications given the ubiquity of

lasers in modern technology and it is also the source of

many fundamental non-linear phenomena. Semiconductor

lasers have two intrinsic timescales: the cavity repetition

rate (set primarily by the length of the laser) and the relax-

ation oscillation frequency (describing the rate at which

energy is transferred between the electric field and the

charge carriers). These two timescales are very different in

typical devices. The relaxation oscillation frequency is typi-

cally on the order of a few GHz while the cavity repetition

rate is often many tens of GHz. While nonlinear systems

involving multiple time scales often lead to resonant effects,

the vast separation in these two timescales means this is not

typically observed with semiconductor lasers. By including

delayed optical feedback, a third timescale is introduced—

the external cavity repetition rate. This is often much lower

than the solitary cavity repetition rate. We show here that

for lasers with highly damped relaxation oscillations, reso-

nances between the relaxation oscillations and the external

cavity modes can and do occur and indeed, lead to sponta-

neous mode-locking. In fact, high order locking effects are

possible with multipulse intensity trains.

I. INTRODUCTION

One of the most important and well-studied configurations

for semiconductor lasers is that of external optical feedback.1

In this configuration, light from a laser is returned to the cavity

by an external reflector after some delay time, typically of ns

order and thus relevant for semiconductor physics. The practi-

cal reasons for its study are clear: Semiconductor lasers are

ubiquitous in modern technology and since it is extremely dif-

ficult to remove all extraneous reflections, the behaviour of

such devices undergoing feedback must be examined. External

optical feedback can act as a stabilising influence on laser

emission, allowing for narrow linewidths for single section

lasers2 and reduced jitter in passively mode locked devices.3,4

However, despite this beneficial feature, feedback is generally

undesirable with conventional semiconductor lasers as typi-

cally, it leads to instabilities.1 These arise even for very low

levels of feedback and very often lead to chaotic operation.5–7

Several material and device parameters are responsible for this

sensitivity. Most notably, the linewidth enhancement factor

(the a factor) and the weakly damped relaxation oscillations

(ROs). The a factor quantifies the phase-amplitude coupling in

a semiconductor device, arising due to the dependence of the

refractive index on the carrier density of a semiconductor

material. More pertinent to this work is the latter RO based

phenomenon. If either the intensity or the carriers are perturbed

in a semiconductor laser, the return to the steady state opera-

tion is via damped harmonic oscillations known as the ROs.

They represent the back and forth exchange of energy between

the field and the carriers in the device and the frequency of

these oscillations yields one of the most important characteris-

tic timescales in any perturbative configuration (such as optical

feedback). For conventional semiconductor lasers the damping
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is typically very low. This is often quantified by the ratio of

the RO damping to the RO frequency itself (just as in the case

of the damped harmonic oscillator). For conventional devices,

this ratio can be on the order of 0.01 or less. Thus, it is rela-

tively easy to excite the ROs with an external forcing. This is

central to instabilities both in feedback and optical injection

configurations where excitation of the ROs is often the first

step to chaos.

A second important timescale is given by the delay time

T: the time taken for the light to travel from the device to the

external reflector and back to the device again. The external

cavity induced by this configuration leads to the creation of

external cavity modes (ECMs). For large delay time, these

ECMs are separated by approximately 2p/T.

In conventional cases, the ROs of the device are excited

by the feedback and become self-sustained. Further increases

of the feedback strength then lead to coherence collapse

(CC), a dramatic broadening of the laser linewidth distin-

guished by chaotic intensity pulsations.5,8 We are not con-

cerned with CC in this work but we simply note that there

are several routes to CC, including both period doubling

and quasiperiodic9–11 and that in some cases this involves an

interaction between ECMs and excited ROs and in other

cases it might not. Further, the route to chaos is influenced

by the initial conditions as shown recently in Ref. 12. In this

work, we consider the possibility of mode-locking and opti-

cal comb generation via mutual resonances between the RO

frequency (or harmonics) and ECMs.

With devices based on InAs QD material, the RO damp-

ing is significantly higher than with conventional devices and

this leads to much more stable operation when undergoing

optical feedback.13,14 The threshold feedback strength for the

appearance of any instabilities rises dramatically and some

phenomena including low frequency fluctuations (LFF)7,15 do

not arise at all. Recently, it has been observed that quantum

cascade (QC) lasers also display a very high stability in feed-

back configurations and in fact may be overdamped and

potentially even Class A lasers that do not display relaxation

oscillations at all.16–18

In Ref. 19, a resonance between the ROs and the ECMs

was observed using a long external cavity and an InAs based

QD device. It led to a resonant mode-locking where the RO

frequency and a harmonic of the round-trip frequency coin-

cided yielding a periodic train of pulses. As the pump current

is increased, the RO frequency increases and thus, by exam-

ining the system at different pump currents one should obtain

different resonance conditions. This evolution was investi-

gated and, indeed, ratios from 1:5 to 1:11 were obtained. In

this work, we go much further. We examine the evolution of

the pulse train found in Ref. 19 as the feedback strength is

increased, finding a splintering of modal groups leading

eventually to chaos. To investigate the generality of the phe-

nomenon, we also examine a different device type—a multi-

quantum well device with a high RO damping. Again, we

find the generation of mode-locked traces via resonances

between the ROs and ECMs. We reproduce our findings

using a rate equation model and explain the observations

physically.

II. QUANTUM DOT DEVICE

A. Experiment

For the first configuration, we use a quantum dot based

device as in Ref. 19 with a threshold of 67 mA. It operates

from a single longitudinal mode with a side mode suppres-

sion ratio of greater than 40 dB. The linewidth of the device

was on the order of 1 MHz as measured using a heterodyne

technique. The external cavity is 48 cm long so that the

external cavity repetition rate (ECRR)—the ECM separa-

tion—is approximately 313 MHz. The feedback strength e is

adjusted using a variable neutral density optical filter. The

output is analysed using a realtime digital oscilloscope and a

fast photodetector of 12 GHz bandwidth. A schematic of the

setup is shown in Fig. 1.

The laser was biased at 79 mA and the feedback strength

varied. As the filter is made progressively more transparent

eventually, an instability is observed at a feedback strength of

approximately -16 dB. This manifests as a small amplitude,

almost harmonic, intensity time series which we interpret as

arising via a Hopf bifurcation. Figures 2(a) and 2(b) show the

intensity and the associated RF spectrum. The RF spectrum is

dominated by peaks at the RO frequency and harmonics

thereof. By measuring the frequency of this series as the

pump current is increased, one can thus, in principle, find the

Hopf frequency. Naively, one might expect this to map out a

simple square root plot following the RO frequency depen-

dence on the current. Indeed, in a preliminary examination of

this frequency, this is indeed what was found.19 However, by

measuring more closely and with a finer current step size, the

situation is actually more detailed, as shown in Fig. 3.

Rather than in a smooth square root fashion, the fre-

quency evolves in a series of discrete steps. Along each

step, the frequency is almost constant and the frequency dif-

ference between consecutive steps corresponds to the round

trip frequency. By fitting to the average frequency of each

step, an overlaying square root dependence is found. The

interpretation of the result is clear. The unlocking (Hopf)

frequency is primarily governed by the RO frequency just as

in the standard QW system. However, there is a mutual fre-

quency pulling between the ROs and the underlying ECMs

and this forces the frequency to almost coincide with the

closest ECM frequency yielding a stepwise evolution. The

FIG. 1. Schematic of the experimental setup. OSA is an optical spectrum

analyser. The feedback strength e is controlled by the transmission of the

variable neutral density filter (labelled as e). PD is a photodetector.
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frequency hardly changes along any one step before under-

going a discrete hop to the next step. It should be noted that

experimentally it is extremely difficult to identify the exact

point of the instability and so one cannot easily conclude on

the exact Hopf frequency. Rather, one can only say that

very close to the instability, the frequency of the time series

is pinned and forced to lie on one of the observed steps.

1. Time series evolution

Returning to the 80 mA bias current and further increas-

ing the feedback strength, the time series is modified. First, a

train of single pulses separated by the round trip time is

obtained as shown in Fig. 2(b).20 There is a distinctive shape

to the pulses with a familiar trailing edge plateau as seen in

several previous studies of quantum dot lasers.21,22 The RF

spectrum now contains many peaks, separated by the round

trip frequency.

As the feedback is further increased the intensity evolves

to progressively more complicated multipulse trains as shown

in Figs. 4 and 5. Moving from (a) through (c) in Fig. 4, one

can see a double pulse train, a triple pulse train, and a quadru-

ple pulse train. Figure 5 shows the corresponding RF spectra.

In each case, the period of the train seems to be the round-trip

delay. We interpret these trains as corresponding to winding

rotations around a torus resulting from multiple Hopf bifurca-

tions arising, as the feedback strength is increased. We note

that by varying the operating current we have observed even

higher orders of multipulse trains. The RF spectra changes

in each case although not in any dramatic way. All the peaks

in the RF spectra are narrow, indicating a high level of

coherence.

Increasing the feedback further, the output is a train of

oscillations with a frequency close to that of the ROs. For

even higher levels of feedback, the system displays complex,

likely chaotic, fluctuations as shown in Fig. 6(a). The associ-

ated RF spectrum in Fig. 6(b) is very broad, supporting the

claim of chaos. Very small round trip peaks just higher than

the broad pedestal are visible. There is clear evidence of

multistability at high levels of feedback with different traces

observed for different experimental runs. Multistability is

also clearly visible at high currents even for moderate feed-

back levels.

As with the previous studies of such trailing edge pla-

teau pulse trains in QD lasers,21,22 we interpret the shape as

arising from modal groupings; in this case, groupings of

ECMs. In this interpretation, one (or a few) main modes

(close to the free-running mode) are associated with the pla-

teau in each pulse while the other modes then contribute to

the peak. As the feedback strength is further increased, the

FIG. 3. The frequency of the first insta-

bility as a function of the pump current

divided by the threshold current. There

is a stepwise evolution with an over-

arching square root dependence. The

circles label the measurements. The

blue circles represent the “midpoints”

of each step and these were the points

used for the square root fit in red.

FIG. 2. (a) The low amplitude, almost

harmonic intensity arising from the

first instability. (b) A single pulse train

with approximately round trip period.

(c) The FFT spectrum corresponding

to (a). (d) The FFT spectrum corre-

sponding to (d). The arrow indicates

the position of the RO frequency in

this spectrum.
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groups splinter into smaller subgroups leading to a breakup

of the plateau and multipulse trains. We verify this interpre-

tation in the model via numerical frequency filtering.

2. Coherence

While the traces described and displayed thus far all

appear to be round-trip periodic, it is instructive to analyse

the coherence of the trains. We do this by analysing the line-

width of the main peaks in the RF spectra. The results are

somewhat illuminating.

Figure 7 shows a zoom of the main peak in the

single pulse RF spectrum and an associated best fit assuming

a Lorentzian shape. The width of the fit is approximately

8.7 kHz. This suggests an excellent phase-locking of the

ECMs. In fact, it is comparable with (and potentially lower

than) the RF linewidth of the main peak obtained for free-

running, passively mode locked semiconductor lasers.3,23

Figure 8 shows a Lorentzian fit to the main peak in the RF

spectrum for the double pulse train. A dramatic broadening is

evident with a linewidth of almost 100 kHz obtained in this

case. By analysing the main peaks in the other multipulse

trains a similar broadening is also obtained. (We also ana-

lysed the peak corresponding to the round trip frequency in

each case and qualitatively identical results were obtained.)

This suggests that the plateau breakup induces a decoherence

in the pulse train, reminiscent of a previous result using a pas-

sively mode locked QD based laser.22 Regardless of interpre-

tation, it is clear that the single pulse train is significantly

more coherent than the subsequent multipulse trains.

In fact, further evidence of this can be obtained by direct

inspection of the intensity trains. While extremely long

traces can be found with one and only one multipulse type

present, evolving trains are also observed. Figure 9 shows

one such case where a triple pulse evolves into a double

pulse via the disappearance of the leading peak. No such

observations were found for the single pulse train. Thus, we

conclude that the single pulse train is both more stable and

more coherent than the more complex multipulse trains typi-

cally associated with higher feedback strength.

FIG. 4. (a) A round trip periodic dou-

ble pulse train, (b) a round trip periodic

triple pulse train, and (c) a round trip

periodic quadruple pulse train.

FIG. 5. (a)–(c) The respective FFT spectra corresponding to the intensity traces shown in Fig. 4.
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B. Model

We model the behaviour using a dimensionless delay

differential equation system. The semiconductor laser itself

of length Lint is short and contains the gain medium. The

external cavity, of length Lext� Lint, is empty. The evolution

of the normalized complex amplitude of the electric field

E(t) is given by

c�1 dE

dt
þ EðtÞ ¼

ffiffiffi
j
p

exp ð1� iaÞGðt� sð Þ=2þ iuÞ

� E t� sð Þ þ e exp ðð1� iaÞGðt� s� TÞ=2

þ iwÞE t� s� Tð Þ; (1)

as introduced in Ref. 19 as a generalization of the field equa-

tion in Refs. 4 and 24. Time t is normalized by the short cav-

ity round trip time. The dimensionless time delays s and T

correspond to the short and long cavity round trip times,

determined by the cavity lengths Lint and Lext, respectively.

The attenuation factor j < 1 describes total non-resonant

linear intensity losses per cavity round trip, c is the dimen-

sionless narrow bandwidth of the short laser cavity that

matches the condition of single mode operation, and a is the

linewidth enhancement factor. e quantifies the feedback

strength. u is a control parameter that describes the differ-

ence between the frequency at which the gain is maximum

and the optical frequency of the closest short cavity mode. w
is a control parameter that describes the difference between

the frequency at which the gain is maximum and the optical

frequency of the closest external cavity mode. G(t) is the

normalized gain defined by G(t)� 2gLint [2qg(t) – 1], where

g is the effective gain factor. The evolution of the occupation

probabilities satisfies the following equations:

FIG. 6. (a) The intensity in a chaotic regime. (b) The corresponding FFT spectrum.

FIG. 7. Zoom of the main peak in the single pulse spectrum (red) with the

best fit Lorentzian (blue) overlaid. The inset shows a small portion of the

intensity time series. The legend shows the linewidth of the fit.

FIG. 8. Zoom of the main peak in the double pulse spectrum (red) with the

best fit Lorentzian (blue) overlaid. The inset shows a small portion of the

intensity time series. The legend shows the linewidth of the fit.
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g�1
dqg

dt
¼ �qg þ 2F qg; qeð Þ � eG � 1ð ÞjEj2; (2)

g�1 dqe

dt
¼ �qe � F qg; qeð Þ þ D qe;Nð Þ; (3)

g�1 dN

dt
¼ N0 � N � 4D qe;Nð Þ; (4)

where qg(t) and qe(t) describe the ground (GS) and excited

(ES) state dot occupation probabilities and N(t) describes the

carrier density in the wetting layer, scaled to the QD carrier

density. g � ss�1
c � 1 where sc denotes the carrier recombi-

nation time. The dimensionless parameter N0 describes the

pumping process in the gain section. The factors 2 and 4 in

Eqs. (2) and (4) account for the spin degeneracy in the quan-

tum dot energy levels. The functions D(qe, N) and F(qg, qe)

describe the carrier exchange rate between the wetting layer

and the ES of the dots and the carrier exchange between the

GS and ES of the dots:

D qe;Nð Þ ¼ Rcap
w 1� qeð Þ � Resc

w qe; (5)

F qg; qeð Þ ¼ Rcap 1� qg

� �� Resc 1� qeð Þ; (6)

where Rcap
w � BN describes the carrier capture from the wet-

ting layer to the dots with rate B. Resc
w is a temperature-

dependent coefficient that corresponds to the carrier escape

from the dots to the wetting layer. Rcap�Bqe and Resc � Cqg

define the energy exchange between the GS and ES. The

(1 – qe,g) factors describe Pauli blocking in the expressions

(5) and (6).

The numerical parameters were chosen in order to match

the RO frequency and the external cavity roundtrip time of

the QD laser configuration used in the experiment: g ¼ ss�1
c

¼ 0:01, where s¼ 10 ps is the short cavity roundtrip time

and sc� 1000 ps is the recombination time. For the other

parameters, we use a¼ 4, B¼ 1000, C¼ 100, c¼ 1.2,

Resc
w ¼ 10, 2gLint ¼ 4, s¼ 1, and sþT¼ 21� s.

Direct simulations reproduce the experimental findings

extremely well. For low feedback strengths, the output has a

constant intensity. At the onset of the first instability, a Hopf

bifurcation occurs, roughly corresponding physically to an

undamping of the relaxation oscillations. This yields coher-

ent sidebands around the central optical frequency. The fre-

quency of the resulting trains is close to the RO frequency

but is in resonance with external cavity mode frequencies

explaining the stairlike dependence in Fig. 4. The amplitude

of the oscillations in the sinusoidal trace at the RO frequency

is small and remains small with increasing pump current.

A second Hopf bifurcation then arises at the roundtrip fre-

quency and the sidebands that result here can inject and

excite neighbouring external cavity modes. It leads to quasi-

periodic oscillations with the slow envelope frequency being

the ECRR similar to that discussed experimentally.

The resonance between the RO frequency and the

ECRR yields a trailing edge pulse (TEP) train21 in Fig. 10.

As with the experiment, the ratio between the RO frequency

and the external cavity frequency can be varied depending

on the cavity length and pump current, but the correspon-

dence with the experiment is excellent.

As the pump current is increased, more complex patterns

were obtained. These include the evolution from single to

multipulse trains similar to those observed in the experiment.

Figure 10 shows a numerically calculated duplet and evolving

traces of multipulse trains. There is a period doubling between

the first trace and the second which is observable in the

changing height of the second peak in each double pulse. We

note that experimentally, such subtle changes may not be visi-

ble due to noise. Numerically, we find that the system is

highly multistable with different pulse trains possible for the

same control parameters. This issue is extremely complex and

FIG. 9. An example of an evolving multipulse train. (a) A section where a triple pulse transforms into a double pulse, while (b) and (c) zooms of the two multi-

pulse types.
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we do not attempt to analyse it further in this work. We note

that variations of the phases u and w and u may affect the

pulse shapes and the locking ranges. However, our aim in this

work is to demonstrate that the experimentally observed phe-

nomenon is also found in the theory, rather than an in-depth

analysis of the locking ranges and the detailed effects of vary-

ing these phases.

For the higher order pulse trains, the stability and coher-

ence degrade. This is visible in direct simulation of the inten-

sity via the loss of periodicity and also, as shown in Fig. 10,

where a triple pulse becomes a double pulse, in an excellent

agreement with the experimental result of Fig. 9.

The similarity of the fundamental train with the pulses

obtained in Ref. 21 is very suggestive and motivates a modal

analysis. We use a numerical filter to analyse the contribution

to the output from different parts of the optical spectrum. For

numerical expediency, we use a Lorentzian filter placed at dif-

ferent frequencies. The lower (red and blue) curves in Fig. 11

show the results of filtering different sections. When the filter

is located at the highest power modes, the output matches the

plateaux to a good approximation while there is almost no

contribution to the peak. When the filter is located at one side

of the spectrum, a more traditional mode-locked trace is

obtained with short pulses followed by almost constant and

closer to zero intensity. Thus, we conclude that the plateaux

and peaks are formed by different groups of modes. Each

group may have its own particular phase relationship between

the modes, different in general to other groups. Nonetheless,

the relative phases are fixed across the spectrum. This mode

grouping phenomenon appears to be somewhat generic for

QD lasers: as well as being observed in Ref. 21, it has also

recently again been observed with QD passively mode-locked

lasers in Ref. 22 where it leads to the formation of a chimera

state. In this work, it represents a spontaneous mode-locking,

resulting in a periodic pulse-train.

FIG. 10. Numerical traces. (a) A single

pulse train with approximately round

trip period. (b) A periodic double pulse

train with approximately doubled round

trip period. The period doubling can be

seen by examining the height of the

second peak in each double pulse. (c)

An evolving multipulse train where tri-

ple pulse (d) transforms into a double

pulse (e). The parameters are N0¼ 100

(a); N0¼ 200 (b); N0¼ 250 (c);

j¼ 0.3125, e¼ 0.25, and u¼w¼ 0.

FIG. 11. Numerically obtained fundamental pulse train (a) and duplet trace

(b). In both (a) and (b), the upper (black) curve shows the full intensity of

the system. The lower (red) curve shows the filtered intensity for the filter

located at the most powerful modes. The lowest (blue) curve shows the fil-

tered intensity with the filter located on one wing of the spectrum centred at

zero frequency. In each case, the filter had a bandwidth of 0.5.
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III. QUANTUM WELL DEVICE

In this section, we demonstrate the generality of the phe-

nomenon by investigating the behaviour of a different device

type. The device used is a multi-quantum well device with a

threshold of 9 mA pumped at 25 mA. Its relaxation oscilla-

tion frequency is found to be 7.6 GHz at this current. Again,

the output is analyzed using a fast real-time oscilloscope

with a 12 GHz photodetector. The setup is schematically rep-

resented by Fig. 1 just as for the QD case. The cavity used

has a length of �34 cm which corresponds to an ECRR of

440 MHz. The feedback is controlled by rotating a quarter-

wave plate relative to a fixed linear polarizer which is

aligned to the natural polarization of the laser.

The evolution of the output with increasing feedback

strength depends strongly on the initial conditions12 and the

ECM chosen, in particular. We show in Figs. 12 and 13 the

sequence of behaviour observed in our experiment. In Fig.

12(a), a stable limit cycle appears with an oscillation close to

the RO frequency just as in the QD case. In Fig. 12(b), a

periodic trace is obtained with round trip period. Within

each round trip is a packet of oscillations at the RO fre-

quency. Each packet is separated by the absence of a single

oscillation in the intensity. We believe this to be analogous

to the trace in Fig. 2(b). The round trip period is found in

each case and while there are marked differences in the

behaviours within each round trip we attribute this to the dif-

ferent physics of the device type. In the QD case, the typical

TEP shape is observed. In the QW case, prominent RO fre-

quency oscillations are found, potentially indicative of the

weaker damping of such devices or related to different phase

relationships between the ECMs.

Increasing the feedback strength, the output is modified.

Figure 12(d) is a period doubled version of (a). Figure 12(c)

shows an alternating pattern of the period doubling and the

regular limit cycle oscillations as found in (a).

Figure 13 shows the FFT for each time series shown in

Fig. 12. The peak in the FFT is around the RO frequency of

the laser in each case and the shortest separation between

peaks is the ECRR frequency. The separation between the

FIG. 12. Times series of the QW laser are shown for increasing feedback.

FIG. 13. FFTs of the time series from the QW laser. These subplots correspond to the subplot of the same letter in Fig. 12.
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main peaks in the FFT for (c) and (d) is given by 1/3 and 1/2

of the RO frequency, respectively, suggesting locking at sub-

multiples of the RO frequency in the dynamics. Increasing

the feedback still further yields a chaotic output.

A. Relaxation oscillation damping

In the case of the QD devices, the high damping of the

ROs is known to endow the devices with an enhanced stabil-

ity under feedback.13 It is this enhanced stability that allows

the observation of the resonance phenomenon. With high

damping, it takes a significant amount of feedback to undamp

the ROs. This means that the feedback can be sufficiently

high to allow the generation of ECMs before the RO undamp-

ing and the resonant features can thus emerge. For weakly

damped devices, the ROs become undamped at low feedback

levels, before the ECMs arise and this prevents the mutual

locking of the frequencies. A small signal modulation analy-

sis of our device allowed us to calculate the RO frequency

and damping. As already stated, for the pump current in this

work, the RO frequency is approximately 7.6 GHz and we

approximate the damping at 22 GHz. This is significantly

higher than that of conventional devices and is what allows

the requisite high feedback levels. This strongly suggests that

our resonance locking phenomenon should be visible with

other devices with similarly high damping levels.

IV. CONCLUSION

As shown in Ref. 19, a spontaneous resonant mode-

locking can be obtained with single mode QD lasers undergo-

ing optical feedback. We have analysed this effect in much

greater detail here. The first Hopf bifurcation of the steady

state is at a frequency close to the RO frequency but seems to

occur at a nearby ECM frequency. Further increasing the feed-

back strength leads to increasingly complicated multipulse

trains before finally yielding a chaotic output. This appears to

arise via a splintering of modal groups (and consequently the

trailing edge plateaux) similar to that shown in Ref. 22.

To demonstrate that the underlying physics of the lock-

ing is not unique to QD devices, we also analysed a QW

device. This device also has a high damping compared with

conventional semiconductor lasers. Similar dynamics were

obtained with an initial instability close to the RO frequency

followed by increasingly complicated pulse trains. In contrast

to the QD results, trailing edge plateaux were not observed

with this device confirming the identification of QD physics

in their creation. In both cases, we confirmed that the experi-

mental results are qualitatively unchanged for slight changes

in the optical phase by making slight changes in the mirror

position.

The most important feature for the devices seems to be

the high RO damping. In addition to this, having a long

external cavity is beneficial for the locking since the ECMs

are relatively close and thus the RO frequency is always rela-

tively close to an ECM. We suggest that the phenomenon is

generic once these two criteria hold. An analysis of other

highly damped (yet still Class B) lasers would be very inter-

esting in this regard. We note that a phase-locking of ECMs

was recently obtained in a theoretical model for QC lasers.18

The absence of ROs was cited as a major contributing factor

in this work suggesting that it is a similar phenomenon to the

results in this paper.

The novel, staircase-like evolution of the instability fre-

quency suggests that the dependence of the RO frequency on

the feedback level may warrant further analysis.25
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