. Anonymous, The WHO/IUALTD Global Project on Antituberculosis Drug Resistance Surveillance, 2000.

. Anonymous, , 2002.

C. Asselineau, J. Asselineau, G. Lanéelle, and M. Lanéelle, The biosynthesis of mycolic acids by Mycobacteria: current and alternative hypotheses, Progress in Lipid Research, vol.41, issue.6, pp.501-523, 2002.

A. Banerjee, E. Dubnau, A. Quemard, V. Balasubramanian, K. S. Um et al., inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis, Science, vol.263, issue.5144, pp.227-230, 1994.

A. Banerjee, M. Sugantino, J. C. Sacchettini, and W. R. Jacobs, The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3lketoacyl reductase that fails to confer isoniazid resistance, Microbiology, vol.144, issue.10, pp.2697-2704, 1998.

J. H. Blum, S. L. Dove, A. Hochschild, and J. J. Mekalanos, Isolation of peptide aptamers that inhibit intracellular processes, Proceedings of the National Academy of Sciences, vol.97, issue.5, pp.2241-2246, 2000.

G. Caponigro, M. R. Abedi, A. P. Hurlburt, A. Maxfield, W. Judd et al., Transdominant genetic analysis of a growth control pathway, Proceedings of the National Academy of Sciences, vol.95, issue.13, pp.7508-7513, 1998.

K. H. Choi, L. Kremer, G. S. Besra, and C. O. Rock, Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis, J Biol Chem, vol.275, pp.28201-28207, 2000.

M. Cohen-gonsaud, S. Ducasse, F. Hoh, D. Zerbib, G. Labesse et al., Crystal Structure of MabA from Mycobacterium tuberculosis, a Reductase involved in Long-chain Fatty Acid Biosynthesis, Journal of Molecular Biology, vol.320, issue.2, pp.249-261, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02359522

P. Colas, B. Cohen, T. Jessen, I. Grishina, J. Mccoy et al., Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2, Nature, vol.380, issue.6574, pp.548-550, 1996.

M. Daffé and P. Draper, The Envelope Layers of Mycobacteria with Reference to their Pathogenicity, Advances in Microbial Physiology, vol.39, pp.131-203, 1997.

A. Dessen, A. Quemard, J. S. Blanchard, W. R. Jacobs, and J. C. Sacchettini, Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis, Science, vol.267, issue.5204, pp.1638-1641, 1995.

S. Ducasse, M. Cohen-gonsaud, H. Marrakchi, M. Nguyen, D. Zerbib et al., In vitro inhibition of the Mycobacterium tuberculosis bketoacyl-acyl carrier protein reductase MabA from M. tuberculosis by isoniazid, Antimicrob Agents Chemother, vol.48, pp.242-249, 2004.

N. Dyson, The regulation of E2F by pRB-family proteins, Genes & Development, vol.12, issue.15, pp.2245-2262, 1998.

P. Edwards, J. Sabo-nelsen, J. G. Metz, and K. Dehesh, Cloning of the fabF gene in an expression vector and in vitro characterization of recombinant fabF and fabB encoded enzymes from Escherichia coli, FEBS Letters, vol.402, issue.1, pp.62-66, 1997.

C. R. Geyer, A. Colman-lerner, and R. Brent, "Mutagenesis" by peptide aptamers identifies genetic network members and pathway connections, Proceedings of the National Academy of Sciences, vol.96, issue.15, pp.8567-8572, 1999.

W. Huang, J. Jia, P. Edwards, K. Dehesh, G. Schneider et al., Crystal structure of beta -ketoacyl-acyl carrier protein synthase II from E.coli reveals the molecular architecture of condensing enzymes, The EMBO Journal, vol.17, issue.5, pp.1183-1191, 1998.

L. Kremer, A. Baulard, and G. S. Besra, Genetics of mycolic acid biosynthesis, Molecular Genetics of Mycobacteria, pp.173-190, 2000.

L. Kremer, L. G. Dover, S. Carrère, K. M. Nampoothiri, S. Lesjean et al., Mycolic acid biosynthesis and enzymic characterization of the ?-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis, Biochemical Journal, vol.364, issue.2, pp.423-430, 2002.

L. Kremer, L. G. Dover, H. R. Morbidoni, C. Vilchèze, W. N. Maughan et al., Inhibition of InhA Activity, but Not KasA Activity, Induces Formation of a KasA-containing Complex in Mycobacteria, Journal of Biological Chemistry, vol.278, issue.23, pp.20547-20554, 2003.

M. H. Larsen, C. Vilchèze, L. Kremer, G. S. Besra, L. Parsons et al., Overexpression ofinhA, but notkasA, confers resistance to isoniazid and ethionamide inMycobacterium smegmatis,M. bovisBCG andM. tuberculosis, Molecular Microbiology, vol.46, issue.2, pp.453-466, 2002.

S. Lei, L. Pulakat, and N. Gavini, Genetic Analysis of nif Regulatory Genes by Utilizing the Yeast Two-Hybrid System Detected Formation of a NifL-NifA Complex That Is Implicated in Regulated Expression of nif Genes, Journal of Bacteriology, vol.181, issue.20, pp.6535-6539, 1999.

H. Marrakchi, G. Lanéelle, and A. Quémard, InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II, Microbiology, vol.146, issue.2, pp.289-296, 2000.

H. Marrakchi, S. Ducasse, G. Labesse, H. Montrozier, E. Margeat et al., MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II, Microbiology, vol.148, issue.4, pp.951-960, 2002.

K. Mdluli, D. R. Sherman, M. J. Hickey, B. N. Kreiswirth, S. Morris et al., Biochemical and Genetic Data Suggest that InhA Is Not the Primary Target for Activated Isoniazid in Mycobacterium tuberculosis, Journal of Infectious Diseases, vol.174, issue.5, pp.1085-1090, 1996.

K. Mdluli, R. A. Slayden, Y. Zhu, S. Ramaswamy, X. Pan et al., Inhibition of a Mycobacterium tuberculosis -Ketoacyl ACP Synthase by Isoniazid, Science, vol.280, issue.5369, pp.1607-1610, 1998.

T. C. Norman, D. L. Smith, P. K. Sorger, B. L. Drees, S. M. O'rourke et al., Genetic Selection of Peptide Inhibitors of Biological Pathways, Science, vol.285, issue.5427, pp.591-595, 1999.

J. M. Odriozola, J. A. Ramos, and K. Bloch, Fatty acid synthetase activity in Mycobacterium smegmatis Characterization of the acyl carrier protein-dependent elongating system, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol.488, issue.2, pp.207-217, 1977.

J. Ovádi and P. A. Sreret, Macromolecular Compartmentation and Channeling, International Review of Cytology, vol.192, pp.255-280, 1999.

D. Portevin, C. De-sousa-d'auria, C. Houssin, C. Grimaldi, M. Chami et al., A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms, Proceedings of the National Academy of Sciences, vol.101, issue.1, pp.314-319, 2003.

R. Rawat, A. Whitty, and P. J. Tonge, The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance, Proceedings of the National Academy of Sciences, vol.100, issue.24, pp.13881-13886, 2003.

D. A. Rozwarski, C. Vilchèze, M. Sugantino, R. Bittman, and J. C. Sacchettini, Crystal Structure of theMycobacterium tuberculosisEnoyl-ACP Reductase, InhA, in Complex with NAD+and a C16 Fatty Acyl Substrate, Journal of Biological Chemistry, vol.274, issue.22, pp.15582-15589, 1999.

C. Sardet, L. Lecam, E. Fabbrizio, and M. Vidal, E2Fs and the Retinoblastoma Protein Family, Oncogenes as Transcriptional Regulators, pp.1-62, 1997.

J. N. Scarsdale, G. Kazanina, X. He, K. A. Reynolds, and H. T. Wright, Crystal Structure of theMycobacterium tuberculosis?-Ketoacyl-Acyl Carrier Protein Synthase III, Journal of Biological Chemistry, vol.276, issue.23, pp.20516-20522, 2001.

M. L. Schaeffer, G. Agnihotri, C. Volker, H. Kallender, P. J. Brennan et al., Purification and Biochemical Characterization of theMycobacterium tuberculosis?-Ketoacyl-acyl Carrier Protein Synthases KasA and KasB, Journal of Biological Chemistry, vol.276, issue.50, pp.47029-47037, 2001.

R. A. Slayden and C. E. Barry, The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis, Tuberculosis, vol.82, issue.4-5, pp.149-160, 2002.

R. A. Slayden, R. E. Lee, and C. E. Barry, Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis, Molecular Microbiology, vol.38, issue.3, pp.514-525, 2000.

P. A. Srere, Complexes of Sequential Metabolic Enzymes, Annual Review of Biochemistry, vol.56, issue.1, pp.89-124, 1987.

A. J. Steyn, D. M. Collins, M. K. Hondalus, W. R. Jacobs, R. P. Kawakami et al., Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth, Proceedings of the National Academy of Sciences, vol.99, issue.5, pp.3147-3152, 2002.

A. J. Steyn, J. Joseph, and B. R. Bloom, Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family, Molecular Microbiology, vol.47, issue.4, pp.1075-1089, 2003.

C. K. Stover, V. F. De-la-cruz, T. R. Fuerst, J. E. Burlein, L. A. Benson et al., New use of BCG for recombinant vaccines, Nature, vol.351, issue.6326, pp.456-460, 1991.

C. Vélot and P. A. Srere, Reversible Transdominant Inhibition of a Metabolic Pathway, Journal of Biological Chemistry, vol.275, issue.17, pp.12926-12933, 2000.

C. Vilche?ze, H. R. Morbidoni, T. R. Weisbrod, H. Iwamoto, M. Kuo et al., Inactivation of the inhA-Encoded Fatty Acid Synthase II (FASII) Enoyl-Acyl Carrier Protein Reductase Induces Accumulation of the FASI End Products and Cell Lysis of Mycobacterium smegmatis, Journal of Bacteriology, vol.182, issue.14, pp.4059-4067, 2000.

Q. Ye and H. J. Worman, Protein-Protein Interactions between Human Nuclear Lamins Expressed in Yeast, Experimental Cell Research, vol.219, issue.1, pp.292-298, 1995.

M. Yang, Z. Wu, and S. Fields, Protein-peptide interactions analyzed with the yeast two-hybrid system, Nucleic Acids Research, vol.23, issue.7, pp.1152-1156, 1995.