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2 Keywords: birds; ticks; host-parasite interactions; migration; Borrelia garinii; Lyme 
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5 1. INTRODUCTION

6

7 Wild birds are relevant for public health because of their role in the spread of emerging 

8 zoonotic pathogens that cause newly recognised diseases or diseases which are rapidly 

9 increasing in incidence or geographical range (Reed, Meece, Henkel, & Shukla, 2003). Some 

10 birds act as reservoirs of pathogens such as Borrelia burgdorferi sensu lato (s.l.), 

11 enterobacteria, flavivirus and influenza A virus, being significantly involved in the direct 

12 infection of humans or arthropod vectors that transmit the disease agents to humans (Thomas, 

13 Hunter, & Atkinson, 2007). Wild birds, especially migratory species, may also carry the 

14 arthropod vectors (e.g. ticks) to different geographic areas creating new foci of disease (Reed 

15 et al., 2003). Studies that monitored tick infestation of birds during migration estimated that 

16 birds are responsible for the transport of 6.8 - 175 million ticks each spring between wintering 

17 and breeding areas (Ogden et al., 2008; Olsen, Jaenson, & Bergstrom, 1995), which may 

18 greatly impact the distribution and population structure of ticks and their associated 

19 pathogens. The life cycle of tick-borne pathogens is complex and their evolutionary ecology 

20 is shaped by the interactions with vertebrate hosts and tick vectors (Kurtenbach et al., 2006). 

21 This study focused on the ecology and genetic diversity of Borrelia burgdorferi s.l. as a 

22 model to investigate the drivers of the population structure and to understand the role of host- 

23 associated dispersal on the evolution of tick-borne pathogens. This represents a consequential 

24 question in the ecology and evolution of any pathogen.

25 Borrelia burgdorferi s.l. is a bacterial complex of over 20 known genospecies, 

26 including the etiologic agents of Lyme borreliosis (Casjens et al., 2011; Margos et al., 2015), 

27 whose main vectors are ticks of the genus Ixodes (Eisen & Lane, 2002). These bacteria are 

28 widespread in Europe, Asia and North America and are also present in North Africa (Margos, 
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29 Vollmer, Ogden, & Fish, 2011; Zhioua et al., 1999). Different Borrelia genospecies have 

30 different patterns of association with vertebrate reservoir hosts (Humair & Gern, 2000;  

31 Kurtenbach, Peacey, et al., 1998) because of the immunological host response, mediated by 

32 the action of the host’s complement system (Kurtenbach et al., 2002). While B. burgdorferi 

33 sensu stricto (s.s.) is a generalist genospecies, B. afzelii is mostly associated with mammalian 

34 hosts such as rodents, whereas B. valaisiana, B. garinii and B. turdi are mostly associated 

35 with birds (Heylen, 2016; Margos et al., 2011). Because tick vectors cannot move large 

36 distances independent of hosts, it has been suggested that host specialization determines the 

37 spread and dispersal of B. burgdorferi s.l. genospecies (Kurtenbach et al., 2010; Sonenshine 

38 & Mather, 1994). Because birds are both important hosts for some Borrelia genospecies and 

39 for various species of vector ticks, they act as a driving force shaping B. burgdorferi s.l. 

40 distribution and phylogeographical patterns (Margos et al., 2011; Vollmer et al., 2011).

41 Here, we assessed the role of passerine birds as hosts and dispersers of B. burgdorferi 

42 s.l. We tested the hypothesis that infection prevalence with Borrelia genospecies would differ 

43 among bird species due to differences in their ecological niche occupancy and reservoir 

44 competence for B. burgdorferi s.l. We also evaluated whether the avian-associated and human 

45 pathogenic genospecies B. garinii would show lack of geographical structuring, because of 

46 the large distance range of movements of its avian hosts and potential for dispersal and 

47 consequent spatial mixing of strains. To achieve this, we collected ticks feeding on common 

48 passerine species with different ranges of migratory movements in a coordinated study 

49 covering a broad geographical area in Europe (11 countries), and assessed the infection status 

50 of these ticks with B. burgdorferi s.l. The diversity of the common avian-associated B. garinii 

51 genospecies  and potential phylogeographical patterns were determined using a multilocus 

52 sequence typing scheme (MLST) of eight house-keeping genes (Margos et al., 2008). 
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53 Analyses based on these conserved genetic markers have been previously used  to estimate 

54 and describe the degree of population genetic structure over the largest geographical range 

55 studied so far, and have the potential to reveal signatures of demographic processes, dispersal 

56 and migration (Hoen et al., 2009; Margos et al., 2012; S. Vollmer et al., 2013). 

57

58 2. METHODS

59

60 2.1 Birds and ticks

61

62 Birds were captured in collaboration with ornithologists and ringers in 11 European countries 

63 (Czech Republic, Estonia, Finland, Germany, Greece, Hungary, Netherlands, Portugal, 

64 Slovenia, Spain and Sweden) covering an area from 8º23'W to 24º57'E and from 40º35'N to 

65 62º14'N. Capturing effort directed to tick collection was concentrated during the year of 2015, 

66 but additional data (including data from the years 2005-2008, 2013-2014 and 2016) was 

67 included for 5 of the 21 study sites (Sup. Mat 1). These collection sites correspond to ringing 

68 stations or sites where bird populations of particular species have been studied in a long-term 

69 perspective and with which we could establish a collaborative protocol.  Therefore, some 

70 European areas are missing from this study due to sampling limitations. Birds were captured 

71 using mist-nets or, when breeding in nest boxes: incubating females were captured by hand 

72 (in Estonia, in Gotland, Sweden and in Harjavalta, Finland), and both parents were caught 

73 when feeding the nestlings using spring or wire traps. Nestlings were sampled in the nest 

74 between 8 and 15 days of age. Countries, collection sites, range of capturing dates and bird 

75 species sampled are detailed in Fig.1 and Sup. Mat. 1. Although classification of collection 
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76 sites according to country has no biological meaning, for convenience, and because countries 

77 are related to geographical positioning, we refer to country of collection when reporting some 

78 results for an easy identification of sample origin, for comparability with previous localised 

79 studies in different countries, and for an integration with sequence data available in public 

80 databases. Birds were carefully inspected for attached ticks with special attention to the head 

81 (around the eyes, beak, ears, chin and crown) and neck, where ticks are most often attached. 

82 We removed infesting ticks with fine forceps and collected them into tubes containing 70 - 

83 99% ethanol according to each individual host. Because we were interested in B. burgdorferi 

84 s.l. infection prevalence in ticks feeding on birds, our analyses use ticks as sampling units. 

85 Therefore, we did not collect data on non-infested birds nor on tick infestation intensity. Our 

86 statistical analyses take into account sampling site, bird life cycle stage and month, to account 

87 for differences in sampling effort and uneven sample distribution across sites and time of 

88 year. The ticks were identified morphologically using identification keys (Estrada-Peña, 

89 Bouattour, Camicas, & Walker, 2004; Estrada-Peña, Nava, & Petney, 2014; Pérez-Eid, 2007). 

90

91 2.2 Molecular analysis

92

93 We extracted tick DNA in a subset of Ixodes spp. ticks (n = 656 ticks; mean ticks ± SE = 65.6 

94 ± 11.5 per country, 38.6 ± 14.28 per bird species, 1.54 ± 0.03 per bird), using a column DNA 

95 extraction kit (DNeasy, Qiagen, Hilden, Germany). Tick (nymph and adult) exoskeleton was 

96 broken by piercing followed by incubation with proteinase K, for 24h. We tested a sub-

97 sample of these Ixodes spp. (n = 58, mean ticks ± SE = 5.8 ± 0.79 randomly selected per 

98 country) using a conventional PCR targeting the mitochondrial 16S rRNA gene of ticks using 

99 the primers described by (Mangold, Bargues, & Mas-Coma, 1998) and an annealing 
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100 temperature of 56ºC, to confirm morphological identification of ticks by BLASTn search 

101 (https://blast.ncbi.nlm.nih.gov/). For specimens (n = 4) for which the % of identity in 

102 BLASTn search was less than 98% we built a Maximum Likelihood phylogenetic tree, 

103 together with reference sequences (Chitimia-Dobler et al., 2018; Estrada-Peña et al., 2014) 

104 retrieved from Genbank, and confirmed the species identification with the obtained clustering 

105 patterns. We assessed infection of ticks by a nested PCR targeting the flaB gene of B. 

106 burgdorferi s.l. using the primers described in (Johnson, Happ, Mayer, & Piesman, 1992), 

107 with an annealing temperature of 52ºC. We used the Invitrogen PCR Reagent System mix 

108 (Life Technologies, Waltham, USA), according to manufacturer’s instructions, and a positive 

109 and a negative control were used in all PCR runs. Borrelia genospecies were identified by 

110 sequencing. The procedures listed above were performed at the Portuguese National Institute 

111 of Health Doutor Ricardo Jorge, Portugal. 

112 A sub-sample of B. garinii-positive specimens were tested using MLST targeting eight 

113 housekeeping genes (clpA, clpX, nifS, pepX, pyrG, recG, rplB, uvrA) according to Margos et 

114 al. (2008) at the German National Reference Centre for Borrelia, Bavarian Health and Food 

115 Safety Authority, Germany. Those isolates were selected from common bird species (Turdus 

116 spp. and hole-nesting birds) that covered the geographical range in which B. garinii was 

117 detected in our study. All samples were analysed following the same protocol (see 

118 https://pubmlst.org/borrelia/sequencing for protocol and primer information). We compared 

119 the obtained sequences with those available in the Borrelia MLST database 

120 (https://pubmlst.org/borrelia/) located at the University of Oxford, to obtain allele and 

121 sequence type (ST) numbers for each isolate (Jolley & Maiden, 2010). Novel alleles or STs 

122 were given novel numbers. Samples that contained mixed infections were discarded from 
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123 further MLST/MLSA analyses because allele numbers and sequence types could not be 

124 identified for these samples. We submitted all data to the Borrelia MLST database.

125 A novel Borrelia genospecies was detected and characterised by PCR amplification of 

126 the 5S-23S rRNA intergenic spacer (Rijpkema, Molkenboer, Schouls, Jongejan, & 

127 Schellekens, 1995), and subsequent sequencing of PCR amplicons of the 16S rRNA locus 

128 (Radulović, Milutinovic, Tomanovic, & Mulenga, 2010) and of the clpX gene (Margos et al., 

129 2008).

130

131 2.3 Statistical analyses

132

133 Factors affecting the prevalence of B. burgdorferi s.l. in ticks from birds (each tick feeding on 

134 a bird was used as a sampling unit) were tested using a Generalized Linear Mixed Model 

135 (GLMM) with a binomial error distribution (logit function). The full model included bird 

136 species (10 levels), latitude, longitude, tick stage (larvae or other), tick species (4 levels), bird 

137 life cycle stage (breeding or non-breeding) and month (12 levels) as fixed effects. Bird 

138 identity (bird_ID, to control for ticks tested from the same individual), nested within 

139 collection site, was included as a random effect. We ran a set of models with different fixed 

140 effects structures and used the Akaike Information Criterion (AIC) to select the best model 

141 (best model selection table is presented in Sup. Mat 2). After ranking the models using AIC, 

142 we used those with a ΔAIC <2 with respect to the top model to calculate conditional model-

143 averaged parameter estimates. Significance level was defined at P = 0.05. 

144 In these models, only bird species for which we had information on Borrelia infection 

145 for at least eight ticks (from different individuals) were used. Tick stage was considered in 
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146 statistical analyses and was divided into larvae and other tick stages because nymphs 

147 represented the majority whilst adults were too infrequently found to justify their own group 

148 for statistical analysis.  This procedure was adopted because transovarial transmission (i.e. the 

149 acquisition of  Borrelia by larvae via vertical transmission from the parent) is considered to 

150 be very low in Ixodes spp. (Eisen & Lane, 2002). For this reason, an infection of a larva is 

151 highly unlikely if they were collected from an uninfected or incompetent reservoir bird host. 

152 On the other hand, nymphs/adults may have acquired an infection during a previous blood 

153 meal on an infected host. In such case Borrelia DNA may be detected in the tick independent 

154 of the bird hosts they were collected from. Tick species was also included in the models 

155 because within the genus Ixodes, different species differ in their vector competence for B. 

156 burgdorferi s.l. (Eisen & Lane, 2002; Heylen, Krawczyk, et al., 2017; Heylen, Sprong, et al., 

157 2014). We controlled for the effects of timing of tick collection throughout the year including 

158 month of collection as explanatory variable and also by grouping those ticks collected during 

159 the birds’ breeding season (April – July) and those collected outside the breeding season 

160 (August – March), because breeding is one of the most stressful periods in the birds’ life cycle 

161 and the stress associated with breeding duties may suppress their immune system potentially 

162 leading to spirochetemia. Therefore, this could affect the probability of infection of the ticks 

163 feeding on the birds. We used the same statistical approach to test factors affecting prevalence 

164 of infection by the most prevalent Borrelia genospecies in our study (B. garinii). The models 

165 were run in R  (R core team, 2013) using the packages lme4, lmerTest, bbmle, MuMin and 

166 arm (Bates, Mächler, Bolker, & Walker, 2015; Kuznetsova, Brockhoff, & Christensen, 2017). 

167

168 2.4. Multilocus Sequence Typing and Multilocus Sequence Analysis (MLST/MLSA) 
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169

170 In order to study the population structure and the phylogenetic relationships of B. garinii in a 

171 global context, we selected a subset of 82 B. garinii- positive samples, as to include isolates 

172 from all European countries sampled in this study and represent all bird species sampled with 

173 B. garinii- infected ticks (n ≥ 5 infected ticks), and tested those by MLST. 

174 Complete allelic profiles of B. garinii- positive specimens obtained in our study were 

175 analysed with goeBURST analysis using Phyloviz (Francisco, Bugalho, Ramirez, & Carriço, 

176 2009) together with other B. garinii genotypes detected worldwide (identification of the 

177 isolates used for MLST/MLSA is given in Sup. Mat. 3; we included each ST only once for 

178 each country). Relationships among STs were evaluated through triple locus variants (TLV), 

179 and founder clonal complexes were identified to infer patterns of descent. 

180 We estimated nucleotide diversity (π; Nei, 1987) and Tajima D (Tajima, 1989) for 

181 each gene using R packages pegas v. 0.9 (Paradis, 2010) and ape v. 3.5 (Paradis, Claude, & 

182 Strimmer, 2004) on each continent for a sample set including 304 isolate sequences (198 from 

183 Europe, 85 from Asia and 21 from North America), and on each country (n = 11) for which 

184 more than five isolates were available (see Sup. Mat. 3 for identification of the isolates 

185 included in this analysis). The sequences for gene clpX were realigned using MAFFT v7.205 

186 (Katoh & Standley, 2013) as there was a deletion of three bases in some isolates.

187 An ancestry recombination graph for the 85 STs present in Europe was reconstructed with 

188 BEAST2 software v. 2.5 (Bouckaert et al., 2019) and package bacter v. 2.2 (Didelot, Lawson, 

189 Darling, & Falush, 2010; Vaughan et al., 2017) using sequences of the eight housekeeping 

190 genes. BEAST2 was run three times with a unique tree and substitution model for the eight 

191 loci but with a lognormal-relaxed clock model for each locus. We used the following priors: 
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192 HKY substitution model (Hasegawa, Kishino, & Yano, 1985), Gamma site heterogeneity 

193 model with four gamma categories, Tree prior: Coalescent Constant Populations. Due to the 

194 high number of STs and the complex model including recombination, the chain was slow to 

195 converge (as was shown by Tracer v. 1.6 (Rambaut, Suchard, Xie & Drummond, 2014) and 

196 we thus extended the original 10M states to 17M for one run and 19M for the other two. A 

197 consensus tree was reconstructed with the tool ACGAnnotator present in the bacter package 

198 after removing 40% to 70% burn-in depending on the run.

199
200

201 3. RESULTS

202

203 3.1 Ticks collected from birds

204 In total, 2,308 ticks were collected from 843 infested birds, belonging to 28 bird species (Sup. 

205 Mat. 1). Ticks collected from these birds belonged to three genera: Haemaphysalis (n = 3), 

206 Hyalomma (n = 48) and Ixodes (n = 2,255). Two ticks could not be identified to genus by 

207 morphological criteria as they were damaged. We identified four species of Ixodes: I. ricinus 

208 (n = 1,779), I. arboricola (n = 214), I. frontalis (n = 164), and I. ventalloi (n = 24) but 74 

209 Ixodes ticks could not be identified to species because they lacked critical body structures 

210 needed for morphological identification (Sup. Mat. 4). The vast majority of collected ticks 

211 were immatures (2,175 out of 2,255 Ixodes spp.), and from these, 63% were nymphs. Adults 

212 belonged to I. arboricola (n = 63), I. frontalis (n = 11), I. ricinus (n = 1) and I. ventalloi (n = 

213 4).  Amplification and sequencing of the ribosomal 16S rRNA gene of ticks (Mangold, 

214 Bargues, & Mas-Coma, 1998) confirmed tick morphological identification in 84% of the 

215 cases, corresponding to a misidentification rate of 16%. 
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216 The blackbird Turdus merula, the song thrush T. philomelos, the redwing T. iliacus, 

217 the great tit Parus major, the collared-flycatcher Ficedula albicollis, and the Eurasian jay 

218 Garrulus glandarius presented co-infestations by ticks of different species (Sup. Mat. 4).

219

220 3.2 Prevalence of Borrelia burgdorferi s.l. in ticks collected from birds

221

222 Out of 656 Ixodes ticks collected from birds and analysed for B. burgdorferi s.l. infection, 244 

223 (37.2%) were positive. Of these, 22 were larvae (prevalence of B. burgdorferi s.l. in larvae = 

224 20%, 22/110), and 214 were nymphs (prevalence of B. burgdorferi s.l. in nymphs = 41%, 

225 214/521). Ixodes ricinus was the most infected tick species (40.2%, 210/522), followed by I. 

226 ventalloi (31.3%, 5/16), I. arboricola (29.7%, 14/47) and I. frontalis (20.5%, 9/44).

227 Borrelia burgdorferi s.l. prevalence differed significantly between ticks collected from 

228 different bird species and was affected by latitude (χ10,616  = 90.10, P < 0.0001; Fig. 2, Fig. 3). 

229 Longitude, tick stage, tick species, month and the birds’ life cycle stage did not affect B. 

230 burgdorferi s.l. prevalence. The model selection table is presented in Sup. Mat. 2 and the 

231 conditional model averaged coefficients parameters obtained from the generalized linear 

232 mixed models (GLMMs) that best explained the prevalence of B. burgdorferi s.l. in ticks 

233 collected from birds are presented in Table 1. In comparison with the reference species (the 

234 blue tit Cyanistes caeruleus), ticks collected from T. merula (estimate ± SE = 2.50 ± 0.91, z = 

235 2.76, P = 0.006) and Turdus pilaris (estimate ± SE = 4.29 ± 1.51, z = 2.84, P = 0.005) showed 

236 higher infection rates, whereas those collected from the robin E. rubecula had the lowest 

237 infection rates (estimate ± SE = -2.41 ± 1.25, z = -1.93, P = 0.054). B. burgdorferi s.l. 

238 prevalence increased with latitude (estimate ± SE = 0.08 ± 0.03, z = 2.28, P = 0.022). The 
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239 fieldfare T. pilaris was the bird species that carried ticks with the highest Borrelia prevalence 

240 (92%), followed by the blackbird T. merula (58%). Only two out of 53 (3.8%) ticks feeding 

241 on the robin E. rubecula were positive for B. burgdorferi s.l. (Fig. 2). 

242 The genospecies of 193 positive samples was identified by sequencing the flaB gene. 

243 The most prevalent genospecies was B. garinii (60.7%, 116/191), followed by B. valaisiana 

244 (23.6%, 45/191), B. afzelii (9.4%, 18/191) and B. turdi (5.2%, 10/191). B. lusitaniae (0.5%, 

245 1/191) and a novel genospecies (0.5%, 1/191) were also detected (Fig. 2 and 3; Sup. Mat. 5).

246 The most abundant genospecies associated with T. pilaris, T. philomelos, P. major and 

247 F. albicollis was B. garinii with a prevalence varying between 100% (13/13) in T. pilaris and 

248 53% (8/15) in T. philomelos (Fig. 2), whereas B. valaisiana was the most prevalent 

249 genospecies detected in ticks collected from T. merula (50%, 30/60; Fig. 2). The model 

250 explaining the variation in B. garinii prevalence, the most common genospecies detected in 

251 ticks feeding on birds, was identical to the one explaining B. burgdorferi s.l. prevalence, with 

252 the exception that the prevalence of B. garinii in ticks feeding on T. merula and E. rubecula 

253 was not significantly different from the reference bird species. Under the assumption that 

254 there was no co-feeding transmission  (i.e. when larvae acquire the infection due to feeding in 

255 close proximity to other infected tick stages; Randolph, Gern, & Nuttall, 1996), data on larval 

256 infection suggested that F. albicollis and T. merula may act as reservoirs for B. garinii and B. 

257 valaisiana, T. iliacus for B. garinii, B. valaisiana and B. turdi, P. major for B. garinii, and the 

258 willow warbler P. trochilus and E. rubecula for B. garinii (Fig. 2; Sup. Mat. 5). 

259 Borrelia afzelii DNA was detected only in nymphs, mostly feeding on P. major, and 

260 to a lesser extent on other bird species (C. caeruleus, F. albicollis, T. iliacus and T. merula). 

261 Borrelia lusitaniae DNA was detected in one I. ricinus nymph feeding on P. major. Borrelia 

Page 18 of 49Molecular Ecology



For Review Only

18

262 turdi DNA was detected in all stages of two tick species, I. frontalis (66.7%; 6 out of 9 

263 positive ticks), and I. ventalloi (80%; 4 out of 5 positive ticks), feeding on T. iliacus, T. 

264 merula, T. philomelos and P. major. 

265 DNA of the new Borrelia genospecies (Candidatus Borrelia aligera) was detected in 

266 an I. ventalloi nymph feeding on a T. iliacus in Portugal. Its flaB sequence was 100% 

267 identical to a flaB sequence previously detected in one I. ricinus nymph feeding on a 

268 Sardinian warbler Sylvia melanocephala in Portugal (isolate T794A; accession number 

269 KT207789; Norte et al., 2015). The PCR targeting the 5S-23S rRNA intergenic spacer was 

270 positive showing that this genospecies belongs to the B. burgdorferi s.l. group. Its 16S rRNA 

271 sequence showed only 97% similarity to several B. burgdorferi genospecies, including B. 

272 bissettiae and B. mayonii. The sequence of the housekeeping gene clpX showed 36 nucleotide 

273 differences from all previously detected alleles available at the MLST database 

274 (http://pubmlst.org/borrelia). Detailed information on specimens from which different 

275 Borrelia genospecies were detected in this study is presented in Sup. Mat. 5.

276

277

278 3.3 Multilocus Sequence Typing / Multilocus Sequence Analysis (MLST/MLSA)

279

280 Twenty-nine complete allelic profiles with sequences for all eight genes were obtained from a 

281 subset of 82 B. garinii- positive samples selected as to include isolates from all European 

282 countries sampled in this study. Some samples (n = 25) were excluded because they 

283 represented B. garinii mixed infections, and, therefore, allelic profiles could not be 

284 determined. These complete 29 profiles represented all countries from which B. garinii was 

285 detected in ticks from birds in this study, apart from Greece, for which we did not obtain any 
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286 complete profiles. Comparison of alleles from an incomplete ST (i.e. not obtaining sequences 

287 for all alleles) from a tick feeding on a bird in Greece showed that they were identical to 

288 samples previously reported from the UK. 

289 The 29 B. garinii allelic profiles were resolved into 20 STs, nine of which were new. 

290 These sequence data were supplemented with sequences of B. garinii isolates available at the 

291 MLST database (see Sup. Mat. 3 for identification of isolates included in this analysis) and 

292 used for goeBURST (n = 172; Fig.4) and phylogenetic analyses (n = 110; Fig. 5). 

293 At a global scale, out of the 201 B. garinii isolates (137 STs) analysed (downloaded 

294 from the MLST database and our own data), 2% (three STs: ST244, ST86 and ST575) were 

295 found in more than one continent, 21% (29/137) were found in more than one country and 

296 9.5% (13/137) were found in three or more countries. When a ST was detected in more than 

297 one country, those countries were generally distant (i.e. did not border each other, 96.6%). 

298 Eleven STs (out of the 20) found in ticks feeding on birds, and typed during the course of this 

299 study, were detected in more than one country, and included two STs that were found in more 

300 than one continent and four widespread STs (detected in 5 to 9 countries; Fig. 4). Among 

301 these 20 STs described as part of this study, two were shared between migrant bird species 

302 and species with both resident and mixed populations.

303 In the goeBURST analysis of the global collection (137 STs), using TLV as 

304 parameter, 16 major clonal complexes and 4 minor clonal complexes (consisting of only two 

305 associated STs) were found. Thirty-three isolates formed singletons (Fig 4). In five out of the 

306 16 major clonal complexes, a clonal founder could be identified - those were ST86, ST88, 

307 ST184, ST244 and ST251. The goeBURST analysis further revealed that STs from different 

308 continents belonged to different clonal complexes, with only a few exceptions: seven out of 
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309 the 137 STs were shared between continents, or clustered together (e.g. ST364, ST694; Fig. 

310 4). Two of the STs found in more than one continent were also detected in ticks from 

311 European birds investigated during the course of this study. 

312 Focusing on European STs, the pattern of clonal complexes was not related to 

313 geographical distribution – there was no evidence that STs from different countries formed 

314 separate clonal complexes, except for four STs detected only in Norway (ST487, ST488, 

315 ST498 and ST516; Tveten, 2013) - Sup. Mat. 6, marked with an *). There was also no 

316 indication of clustering according to bird species (Sup. Mat. 6). 

317 STs detected in ticks from birds worldwide did not cluster tightly as clonal complex 

318 but were distributed amongst clonal complexes, including those from migrant and birds which 

319 have both resident and mixed populations (Sup. Mat. 7). 

320 The averaged nucleotide diversity of B. garinii for all eight genes together was of the 

321 same order for the three continents and all countries (ranging from 0.007 to 0.010), except 

322 Norway and Sweden which presented the lowest nucleotide diversity (π = 0.005; Table 2). 

323 Tajima´s D was close to zero for most countries, showing that there is no specific sign of 

324 selection or expansion in these genes. However, the population in Norway showed a 

325 comparatively high Tajima´s D of 1.085, which could be a sign of a bottleneck, being in 

326 agreement with the low genetic diversity observed in this population.  

327 At the European scale, B. garinii showed no spatial structuring in goeBURST analysis 

328 (Sup. Mat. 6): STs for which more than one isolate has been obtained (e.g. ST86, ST187, 

329 ST251, ST94, ST82) were not regionally restricted, but originated from distant countries such 

330 as UK, Latvia, Slovenia, Hungary or Austria. 
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331 This is also what we observed on the ancestry recombination graph reconstructed 

332 using sequences of the 85 European STs and generated in BEAST2 (Bouckaert et al., 2019); 

333 Fig.5). This method was used because we suspected recombination between housekeeping 

334 loci. Indeed 12 occurrences of recombination (dashed lines) were identified in at least 50% of 

335 the sampled graphs in the phylogeny showing that recombination does occur but that there is 

336 a global clonal frame. These recombination events concerned six out of the eight loci. The 

337 ancestry recombination graph shows no evident geographical clustering for four main 

338 European regions (Northern Europe - Estonia, Finland, Latvia, Norway and Sweden; Eastern 

339 Europe - Czech Republic, Hungary, Serbia, Slovenia and Yugoslavia; Central Europe -

340 France, Germany, Italy, Netherlands; and British islands - United Kingdom) except for the 11 

341 STs present in Norway (marked with square brackets on Fig.5) that cluster into three 

342 monophyletic groups and one isolated ST. Out of the 85 STs present in Europe, 25% (n = 22) 

343 were present in at least two of the geographical regions defined (Northern, Eastern, Central 

344 Europe and the British islands). Borrelia garinii STs can thus disperse very far at the 

345 continental scale. STs detected in birds (this study) were dispersed among other STs isolated 

346 from ticks or humans.

347

348
349 4. DISCUSSION
350

351 In this study I. ricinus was the most abundant tick collected from common passerine birds 

352 across a large geographical area in Europe. Overall, B. burgdorferi s.l prevalence in ticks 

353 collected from birds was 37%. Thrushes (Turdus spp.) were the most important carriers of 

354 infected Ixodes spp., supporting the notion that different bird species contribute differently to 

355 B. burgdorferi s.l. genospecies complex maintenance and dispersal. Our genetic 
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356 characterization of the most prevalent genospecies detected in ticks feeding on birds, B. 

357 garinii, showed that this tick-borne pathogen presents little overlap of STs among continents, 

358 but no geographical population structuring was detected in Europe, or according to isolation 

359 source (bird-derived ticks or questing ticks/ human isolates). Taken together this provides 

360 supporting evidence that birds act as important reservoirs for B. garinii and are a main source 

361 of infection of this genospecies to ticks and ultimately humans (through the bite of an infected 

362 tick). Given the importance of birds as main hosts of this tick-borne pathogen, they have the 

363 potential to modulate its phylogeography by homogenising the distribution of STs within the 

364 European continental range through dispersal and migratory movements. Studying the 

365 different factors in action driving this complex host-vector-parasite system is important for a 

366 full understanding of B. burgdorferi s.l. enzootic cycle and potentially other (not only tick- 

367 borne) bird-associated zoonotic pathogens.

368 Ixodes ricinus is a generalist tick and birds are known to be important hosts for its 

369 immature stages (Norte et al., 2012; Santos-Silva et al., 2011). The other tick species (I. 

370 frontalis, I. arboricola and I. ventalloi) and genera (Haemaphysalis and Hyalomma) collected 

371 from birds in this study have also been previously reported on birds (Diakou et al., 2016; 

372 Norte et al., 2012; Pérez-Eid, 2007) and differ in vector competence for Borrelia (Eisen & 

373 Lane, 2002; Heylen, Krawczyk, et al., 2017; Heylen, Sprong, et al., 2014). Some bird species 

374 such as hole-nesting birds (P. major and F. albicollis), T. merula and T. philomelos were 

375 hosts for different tick species, however, the opportunities for co-feeding transmission of B. 

376 burgdorferi s.l. between different tick species are limited by spatial and temporal tick species 

377 distribution. The misidentification rate of ticks based on morphological features in our study 

378 was similar to that reported for the genus Ixodes (14%; Estrada-Peña et al., 2017). Although I. 

379 persulcatus occurs in part of the geographic range included in our study (e.g. Finland and 
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380 Estonia; ECDC 2018; Laaksonen et al., 2017), and its morphological distinction from I. 

381 ricinus in immature stages is difficult, none of the tested samples were identified as I. 

382 persulcatus by 16 rRNA sequencing.  

383 Overall, the prevalence of B. burgdorferi s.l. (37%) was within the range reported for 

384 ticks collected from hosts in The Netherlands and Belgium  (34%;  Heylen, Fonville, et al., 

385 2017). However, it was higher than in ticks collected from birds migrating through Italy 

386 (30.7%; Toma et al., 2014) and Sweden (26.6%; Olsen et al., 1995), birds from central Europe 

387 (25.8 – 28%; Dubska, Literak, Kocianova, Taragelova, & Sychra, 2009; Hanincova et al., 

388 2003; Taragel'ova et al., 2008), Germany (25%; Kipp, Goedecke, Dorn, Wilske, & Fingerle, 

389 2006), Poland (13.3%; Michalik, Wodecka, Skoracki, Sikora, & Stanczak, 2008), Switzerland 

390 (19.6-22.5%; Lommano, Bertaiola, Dupasquier, & Gern, 2012; Poupon et al., 2006), Spain 

391 (9.2%; Palomar et al., 2016) and Portugal (7.3%;  Norte et al., 2015). We cannot exclude the 

392 possibility that this may be related to different methodologies used for B. burgdorferi s.l. 

393 detection in different studies (real-time PCR versus conventional PCR and target genes). Our 

394 results, using the same detection method across samples from different geographical origins 

395 revealed that prevalence of B. burgdorferi s.l. in ticks from birds varied significantly 

396 according to latitude. The fact that prevalence increased with latitude is in accordance with 

397 Scandinavian countries such as Finland and Sweden showing relatively high prevalence when 

398 compared with other European countries, as reported in previous studies on Lyme borreliosis 

399 incidence and infection loads of questing ticks (Hubalek, 2009; Rauter & Hartung, 2005; 

400 Wilhelmsson et al., 2013).  A meta-analysis for Europe revealed an overall prevalence of 

401 13.7% in questing ticks, higher in central Europe and Sweden, but with a significant increase 

402 with longitude, rather than latitude, as in our study (Rauter & Hartung, 2005). Nonetheless, it 

403 is also known that Lyme borreliosis presents a focal pattern of distribution, determined by the 
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404 heterogeneous spatial distribution of vector ticks, and also that the north-south gradient has a 

405 greater influence on disease incidence at its distributional range limits (Hubalek, 2009). A 

406 heterogeneous geographical distribution of Borrelia genospecies was also reported by Olsen 

407 et al. (1995). These authors showed that Borrelia infections in ticks collected from birds 

408 arriving to Sweden from the south or southeast in spring were mainly caused by B. garinii, 

409 whereas the genospecies distribution was more heterogeneous in ticks from birds coming 

410 from the southwest, and included B. garinii, B. afzelii and B. burgdorferi s.s. 

411 The higher prevalence of B. burgdorferi s.l. in ticks removed from birds than that 

412 reported from questing ticks is in accordance with birds acting as reservoirs for some Borrelia 

413 genospecies and transmitting the infection to feeding ticks (Heylen, Matthysen, Fonville, & 

414 Sprong, 2014; Humair, Postic, Wallich, & Gern, 1998b; Kurtenbach, Carey, Hoodless, 

415 Nuttall, & Randolph, 1998;  Norte, Lopes de Carvalho, Núncio, Ramos, & Gern, 2013). 

416 Additionally,  Borrelia starts dividing in feeding ticks and may be more readily detected by 

417 PCR (Schwan & Piesman, 2002). Our study revealed a non-homogeneous distribution of 

418 Borrelia among bird species in bird-derived ticks. Thus, our data corroborate previous reports 

419 that not all bird species contribute equally to the Borrelia enzootic cycle, as it is also known 

420 for different mammal species (LoGiudice, Ostfeld, Schmidt, & Keesing, 2003; Talleklint & 

421 Jaenson, 1994), and suggested by studies including different lizard species (Norte, Alves da 

422 Silva, Alves, da Silva, Nuncio, et al., 2014; Szekeres, Majláthová, Majláth, & Földvári, 2016). 

423 Contributing factors may not only be different infestation rates with vector ticks, which may 

424 be related to foraging behaviour and consequent probability of exposure (Norte et al., 2012), 

425 but also to other intrinsic factors related to host competence, including the host’s adaptive and 

426 innate immune system (Kurtenbach et al., 2006). Turdus species have been identified as main 

427 reservoirs for B. garinii and B. valaisana in Europe (Dubska et al., 2011; Mannelli et al., 
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428 2005; Michalik et al., 2008) and Asia (Miyamoto & Masuzawa, 2002). In addition, T. merula 

429 has also been proven as competent reservoir for B. turdi through xenodiagnosis (Heylen, 

430 Krawczyk, et al., 2017; Humair, Postic, Wallich, & Gern, 1998a;  Norte et al., 2013). In an 

431 experimental setup in which migratory restlessness was induced, latent B. garinii infections 

432 were re-activated in T. iliacus (Gylfe, Bergstrom, Lunstrom, & Olsen, 2000). Although B. 

433 burgdorferi s.l. infected ticks, including larvae, have occasionally been collected from E. 

434 rubecula (this study; Poupon et al., 2006), our results suggest that this bird species, although 

435 often infested by vector ticks (Norte et al., 2012), plays a minor role in B. burgdorferi s.l. 

436 enzootic cycle because of the very low prevalence of B. burgdorferi s.l. in its ticks.

437 Ticks associated with hole-nesting birds such as P. major and F. albicollis presented 

438 infection rates of 33.8 - 36.4%. The most prevalent genospecies was also B. garinii, which 

439 made up 64 - 77.9% of infections in these bird species. Parus major has been shown 

440 experimentally to selectively amplify B. garinii and B. valaisiana, whereas B. afzelii 

441 prevalence in moulted adult ticks that fed as nymphs on this bird species tended to decrease in 

442 successive infestations of the birds with wild questing nymphs (Heylen, Matthysen, et al., 

443 2014). The finding of this mammal-associated genospecies in attached ticks derived from 

444 birds has been suggested to result from previously acquired infection from another (mammal) 

445 host because these spirochetes were found to be unviable by culturing (Heylen et al., 2017). In 

446 our study, all B. afzelii- positive ticks were nymphs and we cannot comment on birds’ 

447 reservoir competence for B. afzellii with these findings because PCR does not allow 

448 distinguishing between viable and non-viable bacteria. We cannot rule out that nymphs 

449 acquired the infection during a previous blood meal as larvae from a mammalian host, or that 

450 larvae were infected via transovarial transmission (Bellet-Edimo, Betschart, & Gern, 2005), 

451 because larvae of I. ricinus have been shown to transmit B. afzelii and B. miyamotoi to 
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452 vertebrate hosts (van Duijvendijk et al., 2016). In Europe, the role of transovarial transmission 

453 for different tick and Borrelia species has not been resolved (Bellet-Edimo et al., 2005; Eisen 

454 & Lane, 2002; Humair & L. Gern, 2000; van Duijvendijk et al., 2016). Thus, the role of birds 

455 in B. afzellii transmission needs to be further scrutinized.

456 Borrelia turdi, originally described in Japan (Fukunaga et al., 1996), has been 

457 increasingly detected in Europe, often in association with the ornithophilic tick I. frontalis and 

458 its bird hosts (Heylen, Tijsse, Fonville, Matthysen, & Sprong, 2013; Norte et al., 2015). In 

459 this study, it was detected only in Portugal, although it is known to be present in Spain, 

460 Belgium and Norway (Hasle, Bjune, Midthjell, Røed, & Leinaas, 2011; Heylen et al., 2013; 

461 Palomar et al., 2016). In our study it has been detected in I. frontalis and I. ventalloi only, 

462 which are host- specialised tick species (to birds and rabbits, respectively; Hillyard, 1996). 

463 Ixodes frontalis has been proven to be a competent vector for B. turdi (Heylen, Krawczyk, et 

464 al., 2017) but vector competence of I. ventalloi remains unknown. This Borrelia genospecies 

465 may have been overlooked in the past in questing ticks such as I. ricinus probably because of 

466 its low prevalence (Heylen, Krawczyk, et al., 2017). Because B. turdi prevalence in our study 

467 was relatively low, we were unable to evaluate statistically its bird host and vector species’ 

468 associations. Furthermore, the small sample size for tick species other than I. ricinus, may 

469 have hampered the detection of significant associations between Borrelia and tick species, to 

470 infer tick vector competence. Such relationships may be better evaluated in experimental 

471 transmission studies (Heylen, Fonville, et al., 2017; Heylen, Sprong, et al., 2014). 

472 Besides the avian-associated genospecies B. valaisiana, B. garinii and B. turdi, we 

473 also detected DNA of a new Borrelia genospecies that has not been previously described. 

474 Although PCR amplification and sequencing of 16S rRNA, flaB and clpX was possible and 

475 clearly indicated the genetic distinction of the isolate from other Borrelia species, it is 
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476 conceivable that its genetic dissimilarity precluded a deeper characterisation involving other 

477 house-keeping genes (which could not be amplified). This finding adds to the growing 

478 evidence of the diversity of genospecies in circulation in cryptic cycles in bird hosts. 

479 Specificities of reservoir host and/or vector competence may explain why this novel Borrelia 

480 sp. genospecies was not detected before. 

481 Borrelia lusitaniae, a genospecies whose main reservoirs are lizards (De Sousa et al., 

482 2012; Dsouli et al., 2006; Norte, Alves da Silva, Alves, da Silva, Núncio, et al., 2014), has 

483 been occasionally detected in ticks feeding on birds, including larvae (Poupon et al., 2006). In 

484 our study, only one tick feeding on a bird was positive for B. lusitaniae. However, the paucity 

485 of these findings suggests that birds, at most, have a minor role as reservoirs for this 

486 genospecies. These infections could be the result of a previous incomplete blood meal on a 

487 lizard, transovarial or co-feeding transmission. Surveys in endemic areas in Italy and Portugal 

488 in which hundreds of bird-derived ticks were tested revealed no B. lusitaniae positive 

489 specimens and thus, did not provide evidence that birds may serve as reservoir hosts for B. 

490 lusitaniae (Amore et al., 2007; Norte, Alves da Silva, Alves, da Silva, Núncio, et al., 2014; 

491 Norte, Ramos, Gern, Núncio, & Lopes de Carvalho, 2013).

492 Focusing on the genetic diversity and geographical distribution of the most prevalent 

493 genospecies detected in ticks feeding on birds, the avian-associated B. garinii, we found that 

494 its STs clustered according to continent showing some spatial structuring at this very wide 

495 geographical scale. However, there was one ST shared between Europe and Asia, one ST 

496 shared between Europe and North America, and one ST shared between Europe, Asia and 

497 North America providing evidence of overlap among distant areas at a global scale. One 

498 would expect that finding identical STs on continents separated by the Atlantic would be less 

499 likely than that between adjacent continents whose geographical barriers may be easily 
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500 crossed by migrating birds. The movement of long-distance migratory birds, such as seabirds, 

501 which can travel thousands of miles and between hemispheres may be responsible for the 

502 spread of some B. garinii STs to distant geographical regions. Borrelia garinii is known to 

503 circulate in a marine cycle involving the ornithophilic tick I. uriae that infests seabirds at their 

504 colonies (Comstedt, Jakobsson, & Bergström, 2011; Gómez-Díaz et al., 2011). Migratory 

505 shorebirds such as the black-tailed godwit Limosa limosa, the common redshank Tringa 

506 totanus, and the little stint Calidris minuta were also reported to carry B. garinii (Lopes de 

507 Carvalho et al., 2012). To this point, B. garinii isolates sharing the same flaB sequence have 

508 been found in both Campbell Island (New Zealand), the Crozet Islands, and in the northern 

509 hemisphere (Egg and St. Lazaria Islands, USA; Comstedt et al., 2011). In our study, two of 

510 the transcontinental B. garinii STs were indeed found in ticks feeding on birds. One of these 

511 (ST244) was found in I. uriae on a Canadian island (Munro et al., 2017), in questing I. ricinus 

512 in Europe and I. persulcatus in Russia (https://pubmlst.org/borrelia/), in human isolates in 

513 Germany (https://pubmlst.org/borrelia/), and in Ixodes spp. feeding in terrestrial birds in 

514 Finland and Germany (this study). Some passerine birds (e.g. the northern wheatear Oenanthe 

515 oenanthe) can also perform long distance migrations across the Atlantic (Bairlein et al., 

516 2012). An overlap and exchange of strains between the marine and terrestrial cycles is, 

517 therefore, likely, as suggested by previous studies (Comstedt et al., 2011; Gómez-Díaz et al., 

518 2011). However, Goméz-Díaz et al. (2011) reported a population division of B. garinii from 

519 seabirds between the Atlantic and Pacific basins. These researchers did not use the same 

520 MLST as employed in our study, thus, immediate comparison of the results is not possible. 

521 When evaluating European B. garinii STs only, no pattern of geographical clustering 

522 was noticeable in our analysis, probably due to B. burgdorferi s.l./or ticks’ dispersal promoted 

523 by the birds. Similarly, although seabird species show high fidelity to breeding colonies 
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524 (Schreiber & Burger, 2001), and their main tick I. uriae occurs in seabird populations with 

525 strong host species associations (McCoy et al., 2005), no geographic structuring was observed 

526 in B. garinii within the Atlantic and Pacific Oceans (Gómez-Díaz et al., 2011). In contrast, the 

527 mammal-associated B. afzelii STs were shown to have much less geographical overlap in 

528 studies which compared geographical patterns and population structure of the avian-

529 associated B. garinii and this mammal-associated genospecies (B. afzelii), using the same 

530 MLST scheme as this study (Vollmer et al., 2013; Vollmer et al., 2011). Their results 

531 illustrated that B. garinii showed higher spatial mixing than B.afzelii but that B. garinii 

532 presented population differentiation over a large geographical scale (Europe and China). 

533 However, Vollmer et al. (2013) included fewer strains from a smaller geographical range in 

534 Europe and China. 

535 Although, in general, no overall apparent structure was found for European strains of 

536 B. garinii, some Norwegian samples were divergent. This could be due to a relative isolation 

537 of the study area in Norway, located in the northwest of the country (Tveten, 2013), or a 

538 recent invasion event, which would explain the lower diversity of these strains. Recent 

539 invasion would be consistent with the reported recent expansion of I. ricinus tick populations 

540 to northern latitudes in Norway (Gray, Dautel, Estrada-Peña, Kahl, & Lindgren, 2009), which 

541 could have caused a population bottleneck. This may also explain the evidence for selection 

542 and expansion on MLST genes revealed by the relatively high Tajima’s D in this B. garinii 

543 population.

544 The uniform distribution of B. garinii STs among ticks collected from various bird 

545 species, and other sources (e.g. questing ticks), does not suggest specialization of certain B. 

546 garinii STs to certain hosts, contrary to the hypothesis of multiple niche polymorphism 

547 associated with OspC variation (Dustin Brisson, Drecktrah, Eggers, & Samuels, 2012) found 
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548 for Borrelia burgdorferi sensu stricto (Brisson & Dykhuizen, 2004; Vuong et al., 2014), but 

549 not for B. afzelii (Raberg et al., 2017). Our results are consistent with birds being the main 

550 reservoir hosts of B. garinii: they maintain its natural transmission cycle and are the source of 

551 infection for questing vector ticks. The lack of clustering of B. garinii STs regarding country 

552 of origin or isolation source at a finer scale (i.e. Europe), was also supported by the ancestry 

553 recombination graph. The clustering pattern between goeBURST (Sup. Mat 6) and that of the 

554 ancestry recombination graph was generally similar with only a few exceptions showing 

555 recombination among strains that could also be promoted by the avian-associated dispersal, 

556 which may increase chances of encounter between different strain types and mixing of strains. 

557 We should acknowledge that for migrant bird species, and for those which have both 

558 resident and short-distance migrant populations, one cannot be completely confident that the 

559 B. burgdorferi s.l. infections which the bird-infesting ticks carried were acquired in the 

560 geographical area where the birds were captured. Birds (or their ticks) may have acquired the 

561 bacteria in a different area where they remained or stopped-over during migration. This may 

562 bias prevalence estimates and sequence type origin classification according to geographical 

563 location. 

564 The results presented in this study demonstrate how B. burgdorferi s.l.- vector- host 

565 associations and the behaviour of hosts may shape and impact the spread and dispersal, and 

566 ultimately the evolutionary biology of B. burgdorferi s.l., used here as a model for tick-borne 

567 pathogens. Our data which includes B. garinii MLST characterization from bird-derived ticks 

568 from the largest geographical range investigated so far substantiates that bird migration and 

569 dispersal movements appear to be one of the main driving forces to shape B. garinii 

570 populations, one of the most genetically heterogeneous Lyme borreliosis- causing 

571 genospecies (Jacquot et al., 2014; Margos et al., 2008). Because birds are highly mobile and 
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572 the main reservoir hosts not only for B. garinii, but also for other pathogens, they contribute 

573 to frequent, fast and long-range spatial mixing of strains and populations. Our study 

574 underlines that understanding pathogen variability and spatial distribution, and consequent 

575 modulation of transmission rates and evolution of new variants, is essential to understand 

576 disease risk. 

577

578 PUBLIC DATABASES ACCESSION NUMBERS

579

580 Borrelia sp. “Candidatus Borrelia aligera” 16S rRNA and clpX gene partial sequences 

581 obtained in this study have been deposited in GenBank with the accession numbers 

582 MH068784 and MH157920, respectively. Borrelia garinii MLST sequences have been 

583 deposited in Borrelia MLST database (https://pubmlst.org/borrelia/) with the isolate id 

584 numbers 2451 to 2479. 
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Table 1. Conditional model averaged coefficient parameters from the generalized linear 

mixed models (GLMMs) that best explained (lowest AICc, ΔAICc < 2, see Sup. Mat. 2) 

the prevalence of B. burgdorferi s.l. in ticks collected from birds.

Conditional averaged model coefficients 

Parameter Estimate SE Adjusted SE Z Value P

Intercept -5.72 2.07 2.07 2.76 0.0058

Bird_species_E.rubecula -2.41 1.25 1.25 1.93 0.054

Bird_species_F.albicollis 1.27 0.88 0.88 1.44 0.15

Bird_species_P.major 1.12 0.82 0.83 1.35 0.18

Bird_species_P.trochilus 0.11 1.24 1.24 0.09 0.93

Bird_species_P.modularis -0.30 1.27 1.27 0.24 0.81

Bird_species_T.iliacus 0.89 1.05 1.05 0.84 0.40

Bird_species_T.merula 2.50 0.91 0.91 2.76 0.006

Bird_species_T.philomelos 1.11 0.95 0.95 1.17 0.24

Bird_species_T.pilaris 4.29 1.51 1.51 2.84 0.0046

Tick_species_I.frontalis 0.47 1.03 1.03 0.45 0.65

Tick_species_I.ricinus 1.18 0.70 0.71 1.66 0.096

Tick_species_I.ventalloi 0.96 1.22 1.22 0.78 0.44

Latitude 0.079 0.03 0.03 2.28 0.022

Latitude*Longitude 0.0008 0.0005 0.0005 1.56 0.12

Page 42 of 49Molecular Ecology



For Review Only

42

Table 2. Nucleotide diversity (π) and Tajima´s D averaged over the eight MLST genes 
(clpA, clpX, pepX, pyrG, nifS, recG, rplB, uvrA) of B. garinii strains (strain IDs 
included in this analysis are available in Sup. Mat. 3).

Population N strains Mean π Mean Tajima´s D

Continent

Europe 227 0.008 -0.222

Asia 85 0.009 -1.184

North America 21 0.008 0.617

Country

Canada 21 0.008 0.617

China 8 0.009 0.022

Finland 12 0.007 0.157

France 18 0.007 -0.090

Germany 55 0.007 -0.326

Japan 21 0.010 -0.865

Latvia 30 0.010 -0.192

Norway 16 0.005 1.085

Russia 54 0.008 -1.026

Sweden 6 0.005 -0.205

UK 70 0.009 0.219
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Figure captions

Fig. 1. Map of countries and sampling locations where birds were screened for infesting ticks. 
Sampling locations closer than 40 km apart are represented under the same pin and are 
numbered according to study site listed in Sup. Mat. 1. Light grey pins – sites where birds 
were screened for ticks but no ticks were found; Dark grey pins – sites where ticks were 
collected feeding on birds. Details on sampling locations, range of bird capturing dates, bird 
species, number of bird individuals infested and number of Ixodes spp. ticks collected at each 
location are detailed in Sup. Mat 1. Adapted from the Cartographic Research Lab of the 
University of Alabama.

 Fig. 2. Borrelia burgdorferi s.l. prevalence (%) and genospecies in Ixodes spp. ticks collected 
from different bird species. Bird species from which less than 10 ticks were tested were 
included in the category “other bird spp.”. Numbers at the top of the bars represent the 
number of ticks tested. L – larva; N + A – nymph and adult.

Fig. 3. Borrelia burgdorferi s.l. prevalence (%) and genospecies in Ixodes spp. ticks collected 
feeding on birds per country of collection. Numbers at the top of the bars represent the 
number of ticks tested. L – larva; N + A – nymph and adult.

Fig. 4. Borrelia garinii STs distribution between countries in Europe (blue/green), Asia (red) 
and North America (purple). GoeBURST analysis included 137 STs, using TLV as parameter. 
Sixteen major clonal complexes and 4 minor clonal complexes (consisting of only two 
associated STs) were found. Thirty-three isolates formed singletons. A clonal founder was 
identified in five out of the 16 major clonal complexes (ST86, ST88, ST184, ST244 and 
ST251), in red. N refers to the number of B. garinii isolates used in the analyses.

Fig. 5. Ancestry Recombination Graph of 85 European Sequence Types reconstructed with 
BEAST2 v. 2.5 and package bacter v. 2.2. Labels are coloured by geographic origin: green - 
Northern Europe (Estonia, Finland, Latvia, Norway and Sweden), orange - Eastern Europe 
(Czech Republic, Hungary, Serbia, Slovenia and Yugoslavia), red - Central Europe (France, 
Germany, Italy, Netherlands) and blue - British islands (United Kingdom). Branches leading 
to taxa found in one geographic region only show the corresponding colour. Black labels refer 
to STs present in several geographic regions indicated in coloured rectangles and 
corresponding in coloration to the regions defined (North, East, Central Europe and British 
islands). STs isolated from birds (this study) are marked with a bird next to the label name. 
Dashed lines show recombination events present in at least 50% of all posterior graphs and 
stars mark high confidence nodes (present in at least 80% of all posterior graphs).
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Sup. Mat. 1 Details on sampling locations, range of bird capturing dates, bird species, number 
of bird individuals infested and number of Ixodes spp. ticks collected at each location.

Sup. Mat. 2 Best model selection using Akaike Information Criterion (AIC) to explain (a) B. 
burgdorferi s.l. and (b) B. garinii prevalence in ticks collected from birds. Models were fitted 
using logit function for binomial error distributions. For each model we present: Maximum 
Likelihood, AICc = Akaike information criterion corrected for sample size, ∆AIC = difference 
in AIC to the best ranked model and df = degrees of freedom. 

Sup. Mat. 3. List of B. garinii isolates retrieved from MLST database and used (a) for 
goeBURST (n = 172), (b) for phylogenetic analysis (n = 110), and (c) to calculate nucleotide 
diversity and Tajima’s D (n = 304), including ST information and MLST database 
(https://pubmlst.org/borrelia/) ID numbers. 

Sup. Mat. 4 Borrelia burgdorferi s.l. (Bb) prevalence in different tick species and development 
stages collected feeding on bird species in which > 10 individuals were infested.

Sup. Mat. 5 Data on specimen detailed source of the B. burgdorferi s.l.  genospecies detected 
in our study.

Sup. Mat. 6. Figure caption - Borrelia garinii STs distribution in European countries. STs 
detected in ticks feeding on birds are symbolised with a bird icon and the bird species is 
indicated by the icon colour. GoeBURST analysis included 85 STs, using TLV as parameter. 
Thirteen major clonal complexes were found and 5 isolates formed singletons. A founder was 
identified in five out of the 13 major clonal complexes (ST86, ST88, ST184, ST244 and 
ST251), these are indicated in red numbers. N refers to the number of B. garinii isolates used 
in the analyses. * cluster of STs from Norway. 

Sup. Mat. 7. Figure caption - Borrelia garinii STs distribution by isolation source: questing 
ticks/ human isolates are indicated in rose, while ticks collected from birds are colour coded 
according to migratory status of birds (resident: dark grey, mixed populations - resident and 
short distance migrants: light grey, or migrant: blue). GoeBURST analysis included 137 STs, 
using TLV as parameter. Sixteen major clonal complexes and 4 minor clonal complexes 
(consisting of only two associated STs) were found. Thirty-three isolates formed singletons.  
A clonal founder was identified in five out of the 16 major clonal complexes (ST86, ST88, 
ST184, ST244 and ST251), these are indicated in red numbers. N refers to the number of B. 
garinii isolates used in the analyses. 
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Fig. 1. Map of countries and sampling locations where birds were screened for infesting ticks. Sampling 
locations closer than 40 km apart are represented under the same pin and are numbered according to study 

site listed in Sup. Mat. 1. Light grey pins – sites where birds were screened for ticks but no ticks were 
found; Dark grey pins – sites where ticks were collected feeding on birds. Details on sampling locations, 

range of bird capturing dates, bird species, number of bird individuals infested and number of Ixodes spp. 
ticks collected at each location are detailed in Sup. Mat 1. Adapted from the Cartographic Research Lab of 

the University of Alabama 
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Fig. 2. Borrelia burgdorferi s.l. prevalence (%) and genospecies in Ixodes spp. ticks collected from different 
bird species. Bird species from which less than 10 ticks were tested were included in the category “other 

bird spp.”. Numbers at the top of the bars represent the number of ticks tested. L – larva; N + A – nymph 
and adult. 
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Fig. 3. Borrelia burgdorferi s.l. prevalence (%) and genospecies in Ixodes spp. ticks collected feeding on 
birds per country of collection. Numbers at the top of the bars represent the number of ticks tested. L – 

larva; N + A – nymph and adult. 
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Fig. 4. Borrelia garinii STs distribution between countries in Europe (blue/green), Asia (red) and North 
America (purple). GoeBURST analysis included 137 STs, using TLV as parameter. Sixteen major clonal 

complexes and 4 minor clonal complexes (consisting of only two associated STs) were found. Thirty-three 
isolates formed singletons. A clonal founder was identified in five out of the 16 major clonal complexes 

(ST86, ST88, ST184, ST244 and ST251), in red. N refers to the number of B. garinii isolates used in the 
analyses. 
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Fig. 5. Ancestry Recombination Graph of 85 European Sequence Types reconstructed with BEAST2 v. 2.5 
and package bacter v. 2.2. Labels are coloured by geographic origin: green - Northern Europe (Estonia, 

Finland, Latvia, Norway and Sweden), orange - Eastern Europe (Czech Republic, Hungary, Serbia, Slovenia 
and Yugoslavia), red - Central Europe (France, Germany, Italy, Netherlands) and blue - British islands 

(United Kingdom). Branches leading to taxa found in one geographic region only show the corresponding 
colour. Black labels refer to STs present in several geographic regions indicated in coloured rectangles and 

corresponding in coloration to the regions defined (North, East, Central Europe and British islands). STs 
isolated from birds (this study) are marked with a bird next to the label name. Dashed lines show 

recombination events present in at least 50% of all posterior graphs and stars mark high confidence nodes 
(present in at least 80% of all posterior graphs). 
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