A. Geitmann, Probing cell behavior: Combining MEMS (microelectromechanical systems) technology with high resolution live cell imaging, pp.67-68, 2016.

, Peptide Probes for Plasmodium falciparum MyoA Tail Interacting Protein (MTIP): Exploring the Druggability of the Malaria Parasite Motor Complex

V. Bruni and D. Vitulano, Combined image compression and denoising using wavelets, Signal Processing: Image Communication, vol.22, issue.1, pp.86-101, 2007.

. Imagej, . Icy, C. Matlab, and A. , Supplementary file 1. 158708 bin=4 Avizo file (plus data folder): Segmentation file for LACM 158708 in Avizo software (ThermoFisher Scientific).

, Author response image 1. Anti-DDR1 mAbs inhibit collagen-induced DDR1 clustering., Motility Assays in Collagen1 Fibrous Matrices, pp.21-24

, Video 5. Time-lapse movie of a migrating Tg(cldnB:lynGFP) wildtype primordium into which magenta-colored NICD cells were transplanted.

T. Assays, Figure 6?figure supplement 4. Sphingomyelinase treatment reduces OlyA and lysenin binding to the plasma membrane.

J. Back, L. Lindenroth, K. Rhode, and H. Liu, Model-Free Position Control for Cardiac Ablation Catheter Steering Using Electromagnetic Position Tracking and Tension Feedback, Frontiers in Robotics and AI, vol.4, 2017.

, 1 Managing Distance over Time, Distributed Work, 2002.

K. D. Kihm, Reflection Interference Contrast Microscopy (RICM), Near-Field Characterization of Micro/Nano-Scaled Fluid Flows, pp.119-130, 2011.

, Figure 1?figure supplement 1. Custom-built support stand for the upright optical imaging set-up., Thorlabs) controlling the illumination numerical aperture (NA = 0.46 893 in all experiments shown here) and a triple-band spectral filter

. Thorlabs, Single Frequency Lasers From Thorlabs, Photonics Russia, vol.13, issue.1, pp.36-38, 2019.

, Figure 1. Scheme of the experimental setup., Semrock) gently held through curable silicon paste (Sugru, Form-907 FormForm, UK), silver mirrors (PFSQ10-03-P01, Thorlabs) and 908 dichroic filters, vol.green, pp.1-531

, Figure 7?figure supplement 1. Localization of MX2 and Nups.

, Figure 5?figure supplement 1. Representative Coomassie blue-stained SDS-PAGE gels of the supernatant (top gel) and the beads samples (bottom gel) in an equilibrium pull-down assay involving GST-Rac1 (Q61L/P29S) binding to ?WRC230., 15% HBSS ++

, Flow Cytometric Bead Sandwich Assay Based on a Split Aptamer, Bead Flow Assays

, Figure 6?figure supplement 4. Sphingomyelinase treatment reduces OlyA and lysenin binding to the plasma membrane., To analyze gliding tachyzoites, we 1014 collected the parasites in either in prewarmed 1% FCS HBSS-Ca 2+ 1015 or IC buffer, which were centrifuged at low speed to synchronize their 1016 sedimentation and left to glide for 10 min on PLL (50 ?g/mL)-coated 1017 plasma-activated glass coverslips (37°C, 5% CO 2 )

D. Gambarotto, V. Hamel, and P. Guichard, Ultrastructure expansion microscopy (U-ExM), Methods in Cell Biology, 2020.

. Additionally, Figure 6?figure supplement 4. Sphingomyelinase treatment reduces OlyA and lysenin binding to the plasma membrane., HFF cells were plated on a poly-L-1043 lysine-coated glass coverslip to obtain 80% cell confluence on the 1044 following day. Parasites were settled on top of the cells by gentle 1045 centrifugation

E. Scarpa and R. Mayor, Collective cell migration in development, Journal of Cell Biology, vol.212, issue.2, pp.143-155, 2016.

E. Scarpa and R. Mayor, Collective cell migration in development, Journal of Cell Biology, vol.212, issue.2, pp.143-155, 2016.

P. Friedl and B. Weigelin, Interstitial leukocyte migration and immune function, Nature Immunology, vol.9, issue.9, pp.960-969, 2008.

P. Friedl and B. Weigelin, Interstitial leukocyte migration and immune function, Nature Immunology, vol.9, issue.9, pp.960-969, 2008.

D. J. Tschumperlin, Fibroblasts and the Ground They Walk On, Physiology, vol.28, issue.6, pp.380-390, 2013.

M. Raftopoulou and A. Hall, Cell migration: Rho GTPases lead the way, Developmental Biology, vol.265, issue.1, pp.23-32, 2004.

M. L. Gardel, I. C. Schneider, Y. Aratyn-schaus, and C. Waterman,

M. , Mechanical Integration of Actin and Adhesion Dynamics in Cell 1247 Migration, Annu. Rev. Cell Dev. Biol, vol.26, pp.315-333, 2010.

K. M. Yamada and M. Sixt, Mechanisms of 3D cell migration, Nature Reviews Molecular Cell Biology, vol.20, issue.12, pp.738-752, 2019.

K. M. Yamada and M. Sixt, Mechanisms of 3D cell migration, Nature Reviews Molecular Cell Biology, vol.20, issue.12, pp.738-752, 2019.

R. J. Petrie, H. Koo, and K. M. Yamada, Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix, Science, vol.345, issue.6200, pp.1062-1065, 2014.

R. J. Petrie, H. Koo, and K. M. Yamada, Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix, Science, vol.345, issue.6200, pp.1062-1065, 2014.

C. A. Copos, S. Walcott, J. C. Del-Álamo, E. Bastounis, A. Mogilner et al., Mechanosensitive Adhesion Explains Stepping Motility in Amoeboid Cells, Biophysical Journal, vol.112, issue.12, pp.2672-2682, 2017.

C. A. Copos, S. Walcott, J. C. Del-Álamo, E. Bastounis, A. Mogilner et al., Mechanosensitive Adhesion Explains Stepping Motility in Amoeboid Cells, Biophysical Journal, vol.112, issue.12, pp.2672-2682, 2017.

F. Robert-gangneux and M. Darde, Epidemiology of and Diagnostic Strategies for Toxoplasmosis, Clinical Microbiology Reviews, vol.25, issue.2, pp.264-296, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00696903

F. Robert-gangneux and M. Darde, Epidemiology of and Diagnostic Strategies for Toxoplasmosis, Clinical Microbiology Reviews, vol.25, issue.2, pp.264-296, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00696903

I. Tardieux and J. Baum, Reassessing the mechanics of parasite motility and host-cell invasion, Journal of Cell Biology, vol.214, issue.5, pp.507-515, 2016.

I. Tardieux and J. Baum, Reassessing the mechanics of parasite motility and host-cell invasion, Journal of Cell Biology, vol.214, issue.5, pp.507-515, 2016.

S. Håkansson, H. Morisaki, J. Heuser, and L. D. Sibley, Time-Lapse Video Microscopy of Gliding Motility inToxoplasma gondii Reveals a Novel, Biphasic Mechanism of Cell Locomotion, Molecular Biology of the Cell, vol.10, issue.11, pp.3539-3547, 1999.

S. Håkansson, H. Morisaki, J. Heuser, and L. D. Sibley, Time-Lapse Video Microscopy of Gliding Motility inToxoplasma gondii Reveals a Novel, Biphasic Mechanism of Cell Locomotion, Molecular Biology of the Cell, vol.10, issue.11, pp.3539-3547, 1999.

R. Amino, S. Thiberge, B. Martin, S. Celli, S. Shorte et al., Quantitative imaging of Plasmodium transmission from mosquito to mammal, Nature Medicine, vol.12, issue.2, pp.220-224, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-02425495

S. Münter, B. Sabass, C. Selhuber-unkel, M. Kudryashev, S. Hegge et al., Plasmodium Sporozoite Motility Is Modulated by the Turnover of Discrete Adhesion Sites, Cell Host & Microbe, vol.6, issue.6, pp.551-562, 2009.

S. Hegge, U. Engel, J. P. Spatz, K. Matuschewski, and U. S. Schwarz, 1272 Frischknecht, F. Plasmodium Sporozoite Motility Is Modulated by the 1273 Turnover of Discrete Adhesion Sites, Cell Host Microbe, vol.6, pp.551-1274, 2009.

F. Frischknecht and K. P. Matuschewski, Plasmodium Sporozoite Biology, Cold Spring Harbor Perspectives in Medicine, vol.7, issue.5, p.a025478, 2017.

R. Amino, D. Giovannini, S. Thiberge, P. Gueirard, B. Boisson et al., Host Cell Traversal Is Important for Progression of the Malaria Parasite through the Dermis to the Liver, Cell Host & Microbe, vol.3, issue.2, pp.88-96, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-02425492

B. Dubremetz, J. Prevost, M. Ishino, T. Yuda, M. Me?ard et al.,

R. Amino, D. Giovannini, S. Thiberge, P. Gueirard, B. Boisson et al., Host Cell Traversal Is Important for Progression of the Malaria Parasite through the Dermis to the Liver, Cell Host & Microbe, vol.3, issue.2, pp.88-96, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-02425492

A. Kan, Y. Tan, F. Angrisano, E. Hanssen, K. L. Rogers et al., Quantitative analysis of P lasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility, Cellular Microbiology, vol.16, issue.5, pp.734-750, 2014.

L. Whitehead, V. P. Mollard, A. Cozijnsen, M. J. Delves, S. Crawford et al.,

A. Kan, Y. Tan, F. Angrisano, E. Hanssen, K. L. Rogers et al., Quantitative analysis of P lasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility, Cellular Microbiology, vol.16, issue.5, pp.734-750, 2014.

M. Bichet, C. Joly, A. Hadj-henni, T. Guilbert, M. Xémard et al., The toxoplasma-host cell junction is anchored to the cell cortex to sustain parasite invasive force, BMC Biology, vol.12, issue.1, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01107342

V. Tafani, V. Lagal, G. Charras, and I. Tardieux, The Toxoplasma-Host 1291 Cell Junction Is Anchored to the Cell Cortex to Sustain Parasite 1292 Invasive Force, BMC Biol, vol.12, issue.18, p.773, 2014.

E. Frixione, R. Mondragón, and I. Meza, Kinematic analysis ofToxoplasma gondii motility, Cell Motility and the Cytoskeleton, vol.34, issue.2, pp.152-163, 1996.

M. Toxoplasma-gondii, Cell Motil. Cytoskeleton, vol.34, pp.152-1295, 1996.

J. M. Leung, M. A. Rould, C. Konradt, C. A. Hunter, and G. E. Ward, Disruption of TgPHIL1 Alters Specific Parameters of Toxoplasma gondii Motility Measured in a Quantitative, Three-Dimensional Live Motility Assay, PLoS ONE, vol.9, issue.1, p.e85763, 2014.

G. E. , Disruption of TgPHIL1 Alters Specific Parameters of 1298 Toxoplasma Gondii Motility Measured in a Quantitative, Three-1299 Dimensional Live Motility Assay, PLoS One, vol.9, issue.e85763, 1920.

V. B. Carruthers and F. M. Tomley, Microneme Proteins in Apicomplexans, Subcellular Biochemistry, vol.47, pp.33-45

V. Lagal, E. M. Binder, M. Huynh, B. F. Kafsack, P. K. Harris et al., Toxoplasma gondii protease TgSUB1 is required for cell surface processing of micronemal adhesive complexes and efficient adhesion of tachyzoites, Cellular Microbiology, vol.12, issue.12, pp.1792-1808, 2010.

P. K. Harris, R. Diez, D. Chen, R. N. Cole, V. B. Carruthers et al.,

K. Toxoplasma, Gondii Protease TgSUB1 Is Required for Cell Surface 1306 Processing of Micronemal Adhesive Complexes and Efficient 1307 Adhesion of Tachyzoites: TgSUB1Microneme Protein Processing

, Article of Significant Interest Selected from This Issue by the Editors, Eukaryotic Cell, vol.9, issue.12, pp.1808-1808, 2010.

C. Opitz and D. Soldati, ?The glideosome?: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii, Molecular Microbiology, vol.45, issue.3, pp.597-604, 2002.

K. Fre?al, J. Dubremetz, M. Lebrun, and D. Soldati-favre, , p.1313

K. Frénal, J. Dubremetz, M. Lebrun, and D. Soldati-favre, Gliding motility powers invasion and egress in Apicomplexa, Nature Reviews Microbiology, vol.15, issue.11, pp.645-660, 2017.

N. Andenmatten, S. Egarter, A. J. Jackson, N. Jullien, J. Herman et al., Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms, Nature Methods, vol.10, issue.2, pp.125-127, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01772103

J. Herman and M. Meissner, Conditional Genome Engineering, p.1317

N. Andenmatten, S. Egarter, A. J. Jackson, N. Jullien, J. Herman et al., Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms, Nature Methods, vol.10, issue.2, pp.125-127, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01772103

M. Bichet, B. Touquet, V. Gonzalez, I. Florent, M. Meissner et al., Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces, BMC Biology, vol.14, issue.1, p.1320, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01394800

M. Tardieux and I. , Genetic Impairment of Parasite Myosin Motors 1321

M. Bichet, B. Touquet, V. Gonzalez, I. Florent, M. Meissner et al., Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces, BMC Biology, vol.14, issue.1, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01394800

M. Bichet, B. Touquet, V. Gonzalez, I. Florent, M. Meissner et al., Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces, BMC Biology, vol.14, issue.1, p.1323, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01394800

A. Graindorge, K. Frénal, D. Jacot, J. Salamun, J. B. Marq et al., The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells, PLOS Pathogens, vol.12, issue.1, p.e1005388, 2016.

D. Soldati-favre, The Conoid Associated Motor MyoH Is 1325

A. Graindorge, K. Frénal, D. Jacot, J. Salamun, J. B. Marq et al., The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells, PLOS Pathogens, vol.12, issue.1, p.e1005388, 2016.

. Cells, PLoS Pathog, vol.12, p.1327, 2016.

N. S. Morrissette and L. D. Sibley, Cytoskeleton of Apicomplexan Parasites, Microbiology and Molecular Biology Reviews, vol.66, issue.1, pp.21-38, 2002.

N. S. Morrissette and L. D. Sibley, Cytoskeleton of Apicomplexan Parasites, Microbiology and Molecular Biology Reviews, vol.66, issue.1, pp.21-38, 2002.

K. Fre?al, V. Polonais, J. Marq, R. Stratmann, and . Limenitakis, , p.1330

K. Frénal, V. Polonais, J. Marq, R. Stratmann, J. Limenitakis et al., Functional Dissection of the Apicomplexan Glideosome Molecular Architecture, Cell Host & Microbe, vol.8, issue.4, pp.343-357, 2010.

K. Frénal, V. Polonais, J. Marq, R. Stratmann, J. Limenitakis et al., Functional Dissection of the Apicomplexan Glideosome Molecular Architecture, Cell Host & Microbe, vol.8, issue.4, pp.343-357, 2010.

C. Mueller, A. Graindorge, and D. Soldati-favre, Functions of myosin motors tailored for parasitism, Current Opinion in Microbiology, vol.40, pp.113-122, 2017.

C. Mueller, A. Graindorge, and D. Soldati-favre, Functions of myosin motors tailored for parasitism, Current Opinion in Microbiology, vol.40, issue.30, pp.113-122, 2017.

J. Liu, Y. He, I. Benmerzouga, W. J. Sullivan, N. S. Morrissette et al., An ensemble of specifically targeted proteins stabilizes cortical microtubules in the human parasite Toxoplasma gondii, Molecular Biology of the Cell, vol.27, issue.3, pp.549-571, 2016.

S. Murray, J. M. Hu, and K. , An Ensemble of Specifically Targeted, p.1338

J. Liu, Y. He, I. Benmerzouga, W. J. Sullivan, N. S. Morrissette et al., An ensemble of specifically targeted proteins stabilizes cortical microtubules in the human parasite Toxoplasma gondii, Molecular Biology of the Cell, vol.27, issue.3, pp.549-571, 2016.

T. Gondii, Mol. Biol. Cell, vol.27, issue.31, p.1340, 2016.

K. A. Quadt, M. Streichfuss, C. A. Moreau, J. P. Spatz, and F. Frischknecht, Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration, ACS Nano, vol.10, issue.2, pp.2091-2102, 2016.

F. Frischknecht, Coupling of Retrograde Flow to Force Production 1342

K. A. Quadt, M. Streichfuss, C. A. Moreau, J. P. Spatz, and F. Frischknecht, Coupling of Retrograde Flow to Force Production During Malaria Parasite Migration, ACS Nano, vol.10, issue.2, pp.2091-2102, 2016.

J. A. Whitelaw, F. Latorre-barragan, S. Gras, G. S. Pall, J. M. Leung et al., Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion, BMC Biology, vol.15, issue.1, p.1344, 2017.

J. M. Leung, A. Heaslip, S. Egarter, N. Andenmatten, and S. R. Nelson, , p.1345

D. M. Warshaw, G. E. Ward, M. S. Meissner, and . Attachment, , p.1346

J. A. Whitelaw, F. Latorre-barragan, S. Gras, G. S. Pall, J. M. Leung et al., Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion, BMC Biology, vol.15, issue.1, 2017.

J. A. Whitelaw, F. Latorre-barragan, S. Gras, G. S. Pall, J. M. Leung et al., Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion, BMC Biology, vol.15, issue.1, p.1349, 2017.

N. Tosetti, N. Dos-santos-pacheco, D. Soldati-favre, and D. Jacot, Author response: Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii, p.1350, 2018.

N. Tosetti, N. Dos-santos-pacheco, D. Soldati-favre, and D. Jacot, Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii, eLife, vol.8, p.1351, 2019.

N. Tosetti, N. Dos-santos-pacheco, D. Soldati-favre, and D. Jacot, Three F-actin assembly centers regulate organelle inheritance, cell-cell communication and motility in Toxoplasma gondii, eLife, vol.8, p.1353, 2019.

J. K. Mouw, G. Ou, and V. M. Weaver, Extracellular matrix assembly: a multiscale deconstruction, Nature Reviews Molecular Cell Biology, vol.15, issue.12, pp.771-785, 2014.

J. K. Mouw, G. Ou, and V. M. Weaver, Extracellular matrix assembly: a multiscale deconstruction, Nature Reviews Molecular Cell Biology, vol.15, issue.12, pp.771-785, 2014.

S. J. Aper, A. C. Van-spreeuwel, M. C. Van-turnhout, A. J. Van-der-linden, P. A. Pieters et al., Colorful Protein-Based Fluorescent Probes for Collagen Imaging, PLoS ONE, vol.9, issue.12, p.e114983, 2014.

S. L. Rambelje, C. V. Bouten, and . Merkx, , p.1359

S. J. Aper, A. C. Van-spreeuwel, M. C. Van-turnhout, A. J. Van-der-linden, P. A. Pieters et al., Colorful Protein-Based Fluorescent Probes for Collagen Imaging, PLoS ONE, vol.9, issue.12, p.e114983, 2014.

I. Ejigiri, D. R. Ragheb, P. Pino, A. Coppi, B. L. Bennett et al., Shedding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is Essential for Gliding Motility and Sporozoite Infectivity, PLoS Pathogens, vol.8, issue.7, p.e1002725, 2012.

D. Soldati-favre and P. Sinnis, Shedding of TRAP by a Rhomboid 1363

I. Ejigiri, D. R. Ragheb, P. Pino, A. Coppi, B. L. Bennett et al., Shedding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is Essential for Gliding Motility and Sporozoite Infectivity, PLoS Pathogens, vol.8, issue.7, p.e1002725, 2012.

S. Motility and . Infectivity, PLoS Pathog, vol.8, p.1365, 2012.

M. Huynh and V. B. Carruthers, Toxoplasma MIC2 Is a Major Determinant of Invasion and Virulence, PLoS Pathogens, vol.2, issue.8, p.e84, 2006.

M. Huynh and V. B. Carruthers, Toxoplasma MIC2 Is a Major Determinant of Invasion and Virulence, PLoS Pathogens, vol.2, issue.8, p.e84, 2006.

S. Gras, A. Jackson, S. Woods, G. Pall, J. Whitelaw et al., Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo, Wellcome Open Research, vol.2, p.32, 2017.

M. Ward, G. E. Roberts, C. W. Meissner, and M. , , p.1371

S. Gras, A. Jackson, S. Woods, G. Pall, J. Whitelaw et al., Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo, Wellcome Open Research, vol.2, p.32, 2017.

S. Gras, A. Jackson, S. Woods, G. Pall, J. Whitelaw et al., Parasites lacking the micronemal protein MIC2 are deficient in surface attachment and host cell egress, but remain virulent in vivo, Wellcome Open Research, vol.2, issue.39, p.32, 2017.

J. S. Buguliskis, F. Brossier, J. Shuman, and L. D. Sibley, Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by Toxoplasma gondii, PLoS Pathogens, vol.6, issue.4, p.e1000858, 2010.

J. S. Buguliskis, F. Brossier, J. Shuman, and L. D. Sibley, Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by Toxoplasma gondii, PLoS Pathogens, vol.6, issue.4, p.e1000858, 2010.

J. S. Buguliskis, F. Brossier, J. Shuman, and L. D. Sibley, Rhomboid 4 (ROM4) Affects the Processing of Surface Adhesins and Facilitates Host Cell Invasion by Toxoplasma gondii, PLoS Pathogens, vol.6, issue.4, p.e1000858, 2010.

J. Martiel, A. Leal, L. Kurzawa, M. Balland, I. Wang et al., Measurement of cell traction forces with ImageJ, Methods in Cell Biology, pp.269-287, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142591

T. Vignaud, Q. Tseng, and M. The?y, Measurement of Cell Traction, p.1380

J. Martiel, A. Leal, L. Kurzawa, M. Balland, I. Wang et al., Measurement of cell traction forces with ImageJ, Methods in Cell Biology, vol.125, pp.269-287, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142591

S. Hegge, K. Uhrig, M. Streichfuss, G. Kynast-wolf, K. Matuschewski et al., Direct Manipulation of Malaria Parasites with Optical Tweezers Reveals Distinct Functions of Plasmodium Surface Proteins, ACS Nano, vol.6, issue.6, pp.4648-4662, 2012.

K. Matuschewski, J. P. Spatz, and F. Frischknecht, Direct Manipulation 1383 of Malaria Parasites with Optical Tweezers Reveals Distinct Functions 1384 of Plasmodium Surface Proteins, ACS Nano, vol.6, pp.4648-4662, 2012.

R. V. Stadler, L. A. White, B. P. Helmke, K. Hu, and W. H. Guilford, Measuring Actomyosin Function in a Living Parasite using a Laser Trap, Biophysical Journal, vol.106, issue.2, p.787a, 2014.

H. , Direct Measurement of Cortical Force Generation and Polar-1387 ization in a Living Parasite, Mol. Biol. Cell, vol.28, issue.43, 1912.

N. Biais, D. L. Higashi, J. Brujic, M. So, and M. P. Sheetz, Force-dependent polymorphism in type IV pili reveals hidden epitopes, Proceedings of the National Academy of Sciences, vol.107, issue.25, pp.11358-11363, 2010.

, In This Issue, Proceedings of the National Academy of Sciences, vol.107, issue.5, pp.1809-1810, 2010.

N. Perschmann, J. K. Hellmann, F. Frischknecht, and J. P. Spatz, Induction of Malaria Parasite Migration by Synthetically Tunable Microenvironments, Nano Letters, vol.11, issue.10, pp.4468-4474, 2011.

S. M. Asano, R. Gao, A. T. Wassie, P. W. Tillberg, F. Chen et al., Expansion Microscopy: Protocols for Imaging Proteins and RNA in Cells and Tissues, Current Protocols in Cell Biology, vol.80, issue.1, 2018.

E. S. Boyden, Expansion Microscopy: Protocols for Imaging Proteins 1396 and RNA in Cells and Tissues, Curr. Protoc. Cell Biol, vol.80, issue.46, 1397.

S. Egarter, N. Andenmatten, A. J. Jackson, J. A. Whitelaw, G. Pall et al., The Toxoplasma Acto-MyoA Motor Complex Is Important but Not Essential for Gliding Motility and Host Cell Invasion, PLoS ONE, vol.9, issue.3, p.e91819, 2014.

M. R. Bubb, I. Spector, B. B. Beyer, and K. M. Fosen, Effects of Jasplakinolide on the Kinetics of Actin Polymerization, Journal of Biological Chemistry, vol.275, issue.7, pp.5163-5170, 2000.

P. Sampath and T. D. Pollard, Effects of cytochalasin, phalloidin and pH on the elongation of actin filaments, Biochemistry, vol.30, issue.7, pp.1973-1980, 1991.

J. Periz, J. Whitelaw, C. Harding, S. Gras, M. I. Del-rosario-minina et al., Author response: Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation, 2017.

M. I. Minina, F. Latorre-barragan, L. Lemgruber, M. A. Reimer, R. Insall et al., Toxoplasma Gondii F-Actin Forms 1413 an Extensive Filamentous Network Required for Material Exchange 1414 and Parasite Maturation, vol.6, pp.24119-50, 1412.

M. K. Shaw and L. G. Tilney, Induction of an acrosomal process in Toxoplasma gondii: Visualization of actin filaments in a protozoan parasite, Proceedings of the National Academy of Sciences, vol.96, issue.16, pp.9095-9099, 1999.

D. Rosario, M. Periz, J. Pavlou, G. Lyth, and O. ,

F. Barragan, S. Das, G. S. Pall, J. F. Stortz, L. Lemgruber et al.,

M. Del-rosario, J. Periz, G. Pavlou, O. Lyth, F. Latorre?barragan et al., Apicomplexan F?actin is required for efficient nuclear entry during host cell invasion, EMBO reports, vol.20, issue.12, pp.48896-52, 2019.

D. Gambarotto, F. U. Zwettler, M. Le-guennec, M. Schmidt-cernohorska, D. Fortun et al., Imaging cellular ultrastructures using expansion microscopy (U-ExM), Nature Methods, vol.16, issue.1, pp.71-74, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02393557

M. Cernohorska, D. Fortun, S. Borgers, J. Heine, J. Schloetel et al., , 1425.

P. , Imaging Cellular Ultrastructures Using Expansion Microscopy (U-1427 ExM), Nat. Methods, vol.16, pp.71-74, 2019.

U. Plessmann, I. Reiter-owona, and K. Lechtreck, Posttranslational modifications of ?-tubulin of Toxoplasma gondii, Parasitology Research, vol.94, issue.5, pp.386-389, 2004.

. Res, , vol.94, pp.386-389, 2004.

C. P. Brangwynne, F. C. Mackintosh, S. Kumar, N. A. Geisse, J. Talbot et al., Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement, Journal of Cell Biology, vol.173, issue.5, pp.733-741, 2006.

A. Talbot, J. Mahadevan, L. Parker, K. K. Ingber, D. E. Weitz et al.,

A. Microtubules-can, Bear Enhanced Compressive Loads in Living 1434 Cells Because of Lateral Reinforcement, J. Cell Biol, vol.173, pp.733-1435, 2006.

A. M. Kabir, D. Inoue, T. Afrin, H. Mayama, K. Sada et al., Buckling of Microtubules on a 2D Elastic Medium, Scientific Reports, vol.5, issue.1, 2015.

A. Kakugo, Buckling of Microtubules on a 2D Elastic Medium. Sci, 1438.

J. M. Leung, Y. He, F. Zhang, Y. Hwang, E. Nagayasu et al., Stability and function of a putative microtubule organizing center in the human parasite Toxoplasma gondii, 2017.

J. Liu, J. M. Murray, and K. Hu, Stability and Function of a Putative 1441 Microtubule-Organizing Center in the Human Parasite Toxoplasma 1442 Gondii, Mol. Biol. Cell, vol.28, pp.1361-1378, 2017.

C. R. Harding, M. Gow, J. H. Kang, E. Shortt, S. R. Manalis et al., Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii, Nature Communications, vol.10, issue.1, pp.401-58, 2019.

L. P. Cramer, Forming the cell rear first: breaking cell symmetry to trigger directed cell migration, Nature Cell Biology, vol.12, issue.7, pp.628-632, 2010.

M. Huynh and V. B. Carruthers, Tagging of Endogenous Genes in a Toxoplasma gondii Strain Lacking Ku80, Eukaryotic Cell, vol.8, issue.4, pp.530-539, 2009.

M. Huynh and V. B. Carruthers, Tagging of Endogenous Genes in a Toxoplasma gondii Strain Lacking Ku80, Eukaryotic Cell, vol.8, issue.4, pp.530-539, 2009.

N. Andenmatten, S. Egarter, A. J. Jackson, N. Jullien, J. Herman et al., Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms, Nature Methods, vol.10, issue.2, pp.125-127, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01772103

J. Herman and M. Meissner, Conditional Genome Engineering, p.1454

N. Andenmatten, S. Egarter, A. J. Jackson, N. Jullien, J. Herman et al., Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms, Nature Methods, vol.10, issue.2, pp.125-127, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01772103

D. C. Farhat, C. Swale, C. Dard, D. Cannella, P. Ortet et al., A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment, Nature Microbiology, vol.5, issue.4, pp.570-583, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02551175

M. Barakat, F. Sindikubwabo, L. Belmudes, P. De-bock, and . Coute, , p.1458

Y. Bougdour, A. Hakimi, and M. Morc-driven, , 1459.

D. C. Farhat, C. Swale, C. Dard, D. Cannella, P. Ortet et al., A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment, Nature Microbiology, vol.5, issue.4, pp.570-583, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02551175

D. C. Farhat, C. Swale, C. Dard, D. Cannella, P. Ortet et al., A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment, Nature Microbiology, vol.5, issue.4, pp.570-583, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02551175

G. Pavlou and I. Tardieux, Phenotyping Toxoplasma Invasive Skills by Fast Live Cell Imaging, Methods in Molecular Biology, pp.209-220, 2019.

G. Pavlou and I. Tardieux, Phenotyping Toxoplasma Invasive Skills by Fast Live Cell Imaging, Methods in Molecular Biology, pp.209-220, 2019.

H. S. Davies, N. S. Baranova, N. El-amri, L. Coche-guérente, C. Verdier et al., Blood cell - vessel wall interactions probed by reflection interference contrast microscopy, Advances in Microscopic Imaging II, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02368135

L. Verdier, C. Bureau, L. Richter, R. P. Debarre, and D. , An Integrated, p.1465

H. S. Davies, N. S. Baranova, N. El-amri, L. Coche-guérente, C. Verdier et al., An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments, Matrix Biology, vol.78-79, pp.47-59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02000975

H. S. Davies, N. S. Baranova, N. El-amri, L. Coche-guérente, C. Verdier et al., An integrated assay to probe endothelial glycocalyx-blood cell interactions under flow in mechanically and biochemically well-defined environments, Matrix Biology, vol.78-79, pp.47-59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02000975

M. A. Serban and A. Skardal, Hyaluronan chemistries for three-dimensional matrix applications, Matrix Biology, vol.78-79, issue.64, pp.337-345, 2019.

I. Arganda-carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin et al., Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, vol.33, issue.15, pp.2424-2426, 2017.

J. Schindelin, A. Cardona, H. T. Sebastian-seung, and . Weka, , 1470.

I. Arganda-carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin et al., Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, vol.33, issue.15, pp.2424-2426, 2017.

I. Arganda-carreras, V. Kaynig, C. Rueden, K. W. Eliceiri, J. Schindelin et al., Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, vol.33, issue.15, pp.2424-2426, 2017.

J. Martiel, A. Leal, L. Kurzawa, M. Balland, I. Wang et al., Measurement of cell traction forces with ImageJ, Methods in Cell Biology, pp.269-287, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142591

T. Vignaud, Q. Tseng, and M. The?y, Measurement of Cell Traction, p.1474

J. Martiel, A. Leal, L. Kurzawa, M. Balland, I. Wang et al., Measurement of cell traction forces with ImageJ, Methods in Cell Biology, vol.125, pp.269-287, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142591

R. Moudy, T. J. Manning, and C. J. Beckers, The Loss of Cytoplasmic Potassium upon Host Cell Breakdown Triggers Egress ofToxoplasma gondii, Journal of Biological Chemistry, vol.276, issue.44, pp.41492-41501, 2001.

R. Moudy, T. J. Manning, and C. J. Beckers, The Loss of Cytoplasmic Potassium upon Host Cell Breakdown Triggers Egress ofToxoplasma gondii, Journal of Biological Chemistry, vol.276, issue.44, pp.41492-41501, 2001.

T. Gondii, J. Biol. Chem, vol.276, pp.41492-41501, 2001.