A. Coleman, C. Brennan, J. G. Vos, and M. T. Pryce, Photophysical properties and applications of Re(I) and Re(I)?Ru(II) carbonyl polypyridyl complexes, Coordination Chemistry Reviews, vol.252, issue.23-24, pp.2585-2595, 2008.

A. J. Morris, G. J. Meyer, and E. Fujita, Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels, Accounts of Chemical Research, vol.42, issue.12, pp.1983-1994, 2009.

S. Sato, T. Arai, and T. Morikawa, Toward Solar-Driven Photocatalytic CO2 Reduction Using Water as an Electron Donor, Inorganic Chemistry, vol.54, issue.11, pp.5105-5113, 2015.

Y. Kou, S. Nakatani, G. Sunagawa, Y. Tachikawa, D. Masui et al., Visible light-induced reduction of carbon dioxide sensitized by a porphyrin?rhenium dyad metal complex on p-type semiconducting NiO as the reduction terminal end of an artificial photosynthetic system, Journal of Catalysis, vol.310, pp.57-66, 2014.

G. Sahara, H. Kumagai, K. Maeda, N. Kaeffer, V. Artero et al., Photoelectrochemical Reduction of CO2 Coupled to Water Oxidation Using a Photocathode with a Ru(II)?Re(I) Complex Photocatalyst and a CoOx/TaON Photoanode, Journal of the American Chemical Society, vol.138, issue.42, pp.14152-14158, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01419396

T. Li, B. Shan, and T. J. Meyer, Stable Molecular Photocathode for Solar-Driven CO2 Reduction in Aqueous Solutions, ACS Energy Letters, vol.4, issue.3, pp.629-636, 2019.

M. G. Bradley, T. Tysak, D. J. Graves, and N. A. Viachiopoulos, Electrocatalytic reduction of carbon dioxide at illuminated p-type silicon semiconduccting electrodes, Journal of the Chemical Society, Chemical Communications, issue.7, p.349, 1983.

M. Beley, J. Collin, J. Sauvage, J. Petit, and P. Chartier, ChemInform Abstract: Photoassisted Electro-Reduction of CO2on p-GaAs in the Presence of Ni Cyclam2+., Chemischer Informationsdienst, vol.17, issue.38, pp.333-339, 1986.

J. P. Collin and J. P. Sauvage, Electrochemical reduction of carbon dioxide mediated by molecular catalysts, Coordination Chemistry Reviews, vol.93, issue.2, pp.245-268, 1989.

B. Kumar, J. M. Smieja, and C. P. Kubiak, Photoreduction of CO2 on p-type Silicon Using Re(bipy-But)(CO)3Cl: Photovoltages Exceeding 600 mV for the Selective Reduction of CO2 to CO, The Journal of Physical Chemistry C, vol.114, issue.33, pp.14220-14223, 2010.

T. Arai, S. Sato, K. Uemura, T. Morikawa, T. Kajino et al., Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex, Chemical Communications, vol.46, issue.37, p.6944, 2010.

E. Torralba-peñalver, Y. Luo, J. Compain, S. Chardon-noblat, and B. Fabre, Selective Catalytic Electroreduction of CO2 at Silicon Nanowires (SiNWs) Photocathodes Using Non-Noble Metal-Based Manganese Carbonyl Bipyridyl Molecular Catalysts in Solution and Grafted onto SiNWs, ACS Catalysis, vol.5, issue.10, pp.6138-6147, 2015.

D. He, T. Jin, W. Li, S. Pantovich, D. Wang et al., Photoelectrochemical CO2Reduction by a Molecular Cobalt(II) Catalyst on Planar and Nanostructured Si Surfaces, Chemistry - A European Journal, vol.22, issue.37, pp.13064-13067, 2016.

B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum et al., Photochemical and Photoelectrochemical Reduction of CO2, Annual Review of Physical Chemistry, vol.63, issue.1, pp.541-569, 2012.

S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki et al., Selective CO2Conversion to Formate Conjugated with H2O Oxidation Utilizing Semiconductor/Complex Hybrid Photocatalysts, Journal of the American Chemical Society, vol.133, issue.39, pp.15240-15243, 2011.

M. Schreier, P. Gao, M. T. Mayer, J. Luo, T. Moehl et al., Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst, Energy & Environmental Science, vol.8, issue.3, pp.855-861, 2015.

M. Schreier, J. Luo, P. Gao, T. Moehl, M. T. Mayer et al., Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction, Journal of the American Chemical Society, vol.138, issue.6, pp.1938-1946, 2016.

K. Sekizawa, S. Sato, T. Arai, and T. Morikawa, Solar-Driven Photocatalytic CO2 Reduction in Water Utilizing a Ruthenium Complex Catalyst on p-Type Fe2O3 with a Multiheterojunction, ACS Catalysis, vol.8, issue.2, pp.1405-1416, 2018.

B. Shan, S. Vanka, T. Li, L. Troian-gautier, M. K. Brennaman et al., Binary molecular-semiconductor p?n junctions for photoelectrocatalytic CO2 reduction, Nature Energy, vol.4, issue.4, pp.290-299, 2019.

J. J. Leung, J. Warnan, K. H. Ly, N. Heidary, D. H. Nam et al., Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode, Nature Catalysis, vol.2, issue.4, pp.354-365, 2019.

H. Gerischer, On the stability of semiconductor electrodes against photodecomposition, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.82, issue.1-2, pp.133-143, 1977.

M. Wang, L. Chen, T. Lau, and M. Robert, A Hybrid Co Quaterpyridine Complex/Carbon Nanotube Catalytic Material for CO2 Reduction in Water, Angewandte Chemie International Edition, vol.57, issue.26, pp.7769-7773, 2018.

K. Lam, K. Wong, S. Yang, and C. Che, Cobalt and nickel complexes of 2,2? : 6?,2? : 6?,2?-quaterpyridine as catalysts for electrochemical reduction of carbon dioxide, J. Chem. Soc., Dalton Trans., issue.7, pp.1103-1107, 1995.

Z. Guo, S. Cheng, C. Cometto, E. Anxolabéhère-mallart, S. Ng et al., Highly Efficient and Selective Photocatalytic CO2 Reduction by Iron and Cobalt Quaterpyridine Complexes, Journal of the American Chemical Society, vol.138, issue.30, pp.9413-9416, 2016.

C. Cometto, L. Chen, E. Anxolabéhère-mallart, C. Fave, T. Lau et al., Molecular Electrochemical Catalysis of the CO2-to-CO Conversion with a Co Complex: A Cyclic Voltammetry Mechanistic Investigation, Organometallics, vol.38, issue.6, pp.1280-1285, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02316597

S. A. Paniagua, A. J. Giordano, O. L. Smith, S. Barlow, H. Li et al., Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides, Chemical Reviews, vol.116, issue.12, pp.7117-7158, 2016.

K. L. Materna, R. H. Crabtree, and G. W. Brudvig, Anchoring groups for photocatalytic water oxidation on metal oxide surfaces, Chemical Society Reviews, vol.46, issue.20, pp.6099-6110, 2017.

K. J. Young, L. A. Martini, R. L. Milot, R. C. Snoeberger, V. S. Batista et al., Light-driven water oxidation for solar fuels, Coordination Chemistry Reviews, vol.256, issue.21-22, pp.2503-2520, 2012.

Y. Chen, X. Feng, M. Liu, J. Su, and S. Shen, Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes, Nanophotonics, vol.5, issue.4, pp.524-547, 2016.

T. J. Jacobsson, V. Fjällström, M. Edoff, and T. Edvinsson, CIGS based devices for solar hydrogen production spanning from PEC-cells to PV-electrolyzers: A comparison of efficiency, stability and device topology, Solar Energy Materials and Solar Cells, vol.134, pp.185-193, 2015.

H. Kobayashi, N. Sato, M. Orita, Y. Kuang, H. Kaneko et al., Development of highly efficient CuIn0.5Ga0.5Se2-based photocathode and application to overall solar driven water splitting, Energy & Environmental Science, vol.11, issue.10, pp.3003-3009, 2018.

M. Asaduzzaman, M. Hasan, and A. N. Bahar, An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se 2 solar cell efficiency, 2016.

M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato et al., Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%, IEEE Journal of Photovoltaics, vol.9, issue.6, pp.1863-1867, 2019.

D. Lebedev, The Key RuV=O Intermediate of Site-Isolated Mononuclear Water Oxidation Catalyst Detected by in Situ Xray Absorption Spectroscopy, J. Am. Chem. Soc, vol.140, pp.451-458

A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. D. Tilley et al., Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability, Energy & Environmental Science, vol.5, issue.9, p.8673, 2012.

D. M. King, X. Du, A. S. Cavanagh, and A. W. Weimer, Quantum confinement in amorphous TiO2films studied via atomic layer deposition, Nanotechnology, vol.19, issue.44, p.445401, 2008.

L. Zhang and J. M. Cole, Dye aggregation in dye-sensitized solar cells, Journal of Materials Chemistry A, vol.5, issue.37, pp.19541-19559, 2017.

J. Kessler, C. Chityuttakan, J. Lu, J. Schöldström, and L. Stolt, Cu(In,Ga)Se2thin films grown with a Cu-poor/rich/poor sequence: growth model and structural considerations, Progress in Photovoltaics: Research and Applications, vol.11, issue.5, pp.319-331, 2003.

N. Barreau, T. Painchaud, F. Couzinié-devy, L. Arzel, and J. Kessler, Recrystallization of CIGSe layers grown by three-step processes: A model based on grain boundary migration, Acta Materialia, vol.58, issue.17, pp.5572-5577, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00849304

M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié et al., CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine, Nature Communications, vol.10, issue.1, p.3602, 2019.