J. Luo, M. Schumacher, A. Scherer, D. Sanoudou, D. Megherbi et al., A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data, The Pharmacogenomics Journal, vol.10, issue.4, pp.278-291, 2010.

J. Bogaerts, F. Cardoso, M. Buyse, S. Braga, S. Loi et al., Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial, Nature Clinical Practice Oncology, vol.3, issue.10, pp.540-551, 2006.

F. Cardoso, L. Van't-veer, E. Rutgers, S. Loi, S. Mook et al., Clinical Application of the 70-Gene Profile: The MINDACT Trial, Journal of Clinical Oncology, vol.26, issue.5, pp.729-735, 2008.

F. Cardoso, 70-Gene Signature in Early-Stage Breast Cancer, New England Journal of Medicine, vol.375, issue.22, pp.2199-2201, 2016.

I. Krop, N. Ismaila, and V. Stearns, Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Focused Update Guideline Summary, Journal of Oncology Practice, vol.13, issue.11, pp.763-766, 2017.

G. Curigliano, De-escalating and escalating treatments for early-stage breast cancer: The St, Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer, vol.28, pp.1700-1712, 2017.

M. J. Duffy, N. Harbeck, M. Nap, R. Molina, A. Nicolini et al., Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM), European Journal of Cancer, vol.75, pp.284-298, 2017.

M. B. Amin, F. L. Greene, S. B. Edge, C. C. Compton, J. E. Gershenwald et al., The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more ?personalized? approach to cancer staging, CA: A Cancer Journal for Clinicians, vol.67, issue.2, pp.93-99, 2017.

, Breast Cancer Clinical Practice Guidelines in Oncology, Journal of the National Comprehensive Cancer Network, vol.3, issue.3, p.238, 2005.

I. Beumer, A. Witteveen, L. Delahaye, D. Wehkamp, M. Snel et al., Equivalence of MammaPrint array types in clinical trials and diagnostics, Breast Cancer Research and Treatment, vol.156, issue.2, pp.279-287, 2016.

A. M. Glas, A. Floore, L. J. Delahaye, A. T. Witteveen, R. C. Pover et al., Converting a breast cancer microarray signature into a high-throughput diagnostic test, BMC Genomics, vol.7, issue.1, 2006.

L. J. Delahaye, D. Wehkamp, A. N. Floore, R. Bernards, L. J. Van?t-veer et al., Performance characteristics of the MammaPrint®breast cancer diagnostic gene signature, Personalized Medicine, vol.10, issue.8, pp.801-811, 2013.

W. E. Johnson, C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics, vol.8, issue.1, pp.118-127, 2006.

J. T. Leek and J. D. Storey, Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis, PLoS Genetics, vol.3, issue.9, p.e161, 2007.

J. Listgarten, C. Kadie, E. E. Schadt, and D. Heckerman, Correction for hidden confounders in the genetic analysis of gene expression, Proceedings of the National Academy of Sciences, vol.107, issue.38, pp.16465-16470, 2010.

J. A. Gagnon-bartsch and T. P. Speed, Using control genes to correct for unwanted variation in microarray data, Biostatistics, vol.13, issue.3, pp.539-552, 2011.

S. Neeley and E. , Run batch effects potentially compromise the usefulness of genomic signatures for ovarian cancer, J. Clin. Oncol, vol.26, pp.1186-1187, 2008.

M. Bakay, Y. Chen, R. Borup, P. Zhao, K. Nagaraju et al., Sources of variability and effect of experimental approach on expression profiling data interpretation, BMC Bioinformatics, vol.3, issue.1, p.4, 2002.

M. J. Boedigheimer, R. D. Wolfinger, M. B. Bass, P. R. Bushel, J. W. Chou et al., Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories, BMC Genomics, vol.9, issue.1, p.285, 2008.

D. W. Lin, I. M. Coleman, S. Hawley, C. Y. Huang, R. Dumpit et al., Influence of Surgical Manipulation on Prostate Gene Expression: Implications for Molecular Correlates of Treatment Effects and Disease Prognosis, Journal of Clinical Oncology, vol.24, issue.23, pp.3763-3770, 2006.

C. Ma, M. Lyons-weiler, W. Liang, W. Laframboise, J. R. Gilbertson et al., In Vitro Transcription Amplification and Labeling Methods Contribute to the Variability of Gene Expression Profiling with DNA Microarrays, The Journal of Molecular Diagnostics, vol.8, issue.2, pp.183-192, 2006.

C. J. Schaupp, G. Jiang, T. G. Myers, and M. A. Wilson, Active mixing during hybridization improves the accuracy and reproducibility of microarray results, BioTechniques, vol.38, issue.1, pp.117-119, 2005.

K. L. Thompson, P. S. Pine, B. A. Rosenzweig, Y. Turpaz, and J. Retief, Characterization of the effect of sample quality on high density oligonucleotide microarray data using progressively degraded rat liver RNA, BMC Biotechnology, vol.7, issue.1, p.57, 2007.

A. R. Whitney, M. Diehn, S. J. Popper, A. A. Alizadeh, J. C. Boldrick et al., Individuality and variation in gene expression patterns in human blood, Proceedings of the National Academy of Sciences, vol.100, issue.4, pp.1896-1901, 2003.

T. L. Fare, E. M. Coffey, H. Dai, Y. D. He, D. A. Kessler et al., Effects of Atmospheric Ozone on Microarray Data Quality, Analytical Chemistry, vol.75, issue.17, pp.4672-4675, 2003.

J. Huang, R. Qi, J. Quackenbush, E. Dauway, E. Lazaridis et al., Effects of Ischemia on Gene Expression, Journal of Surgical Research, vol.99, issue.2, pp.222-227, 2001.

L. Jacob, J. A. Gagnon-bartsch, and T. P. Speed, Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed, Biostatistics, vol.17, issue.1, pp.16-28, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02012377

C. M. Perou, T. Sørlie, M. B. Eisen, M. Van-de-rijn, S. S. Jeffrey et al., Molecular portraits of human breast tumours, Nature, vol.406, issue.6797, pp.747-752, 2000.

H. Hotelling, Relations Between Two Sets of Variates, Biometrika, vol.28, issue.3/4, p.321, 1936.

P. Roepman, H. M. Horlings, O. Krijgsman, M. Kok, J. M. Bueno-de-mesquita et al., Microarray-Based Determination of Estrogen Receptor, Progesterone Receptor, and HER2 Receptor Status in Breast Cancer, Clinical Cancer Research, vol.15, issue.22, pp.7003-7011, 2009.

W. R. Swindell, C. P. Kruse, E. O. List, D. E. Berryman, and J. J. Kopchick, ALS blood expression profiling identifies new biomarkers, patient subgroups, and evidence for neutrophilia and hypoxia, Journal of Translational Medicine, vol.17, issue.1, 2019.

N. C. Goonesekere, X. Wang, L. Ludwig, and C. Guda, A Meta Analysis of Pancreatic Microarray Datasets Yields New Targets as Cancer Genes and Biomarkers, PLoS ONE, vol.9, issue.4, p.e93046, 2014.

W. Xiao, A genomic storm in critically injured humans, J. Exp. Med, vol.208, pp.2581-2590, 2011.

Z. Hu, C. Fan, D. S. Oh, J. S. Marron, X. He et al., The molecular portraits of breast tumors are conserved across microarray platforms, BMC Genomics, vol.7, issue.1, 2006.

Y. Wang, T. Joshi, X. S. Zhang, D. Xu, and L. Chen, Inferring gene regulatory networks from multiple microarray datasets, Bioinformatics, vol.22, issue.19, pp.2413-2420, 2006.

J. Nsengimana, J. Laye, A. Filia, C. Walker, R. Jewell et al., Independent replication of a melanoma subtype gene signature and evaluation of its prognostic value and biological correlates in a population cohort, Oncotarget, vol.6, issue.13, pp.11683-11693, 2015.

G. K. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, pp.1-25, 2004.

B. Györffy, A. Lanczky, A. C. Eklund, C. Denkert, J. Budczies et al., An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients, Breast Cancer Research and Treatment, vol.123, issue.3, pp.725-731, 2009.

A. M. Livera, M. Sysi-aho, L. Jacob, J. A. Gagnon-bartsch, S. Castillo et al., Statistical Methods for Handling Unwanted Variation in Metabolomics Data, Analytical Chemistry, vol.87, issue.7, pp.3606-3615, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02025596

D. Risso, J. Ngai, T. P. Speed, and S. Dudoit, Normalization of RNA-seq data using factor analysis of control genes or samples, Nature Biotechnology, vol.32, issue.9, pp.896-902, 2014.

G. Durif, L. Modolo, J. E. Mold, S. Lambert-lacroix, and F. Picard, Probabilistic count matrix factorization for single cell expression data analysis, Bioinformatics, vol.35, issue.20, pp.4011-4019, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01649275

G. Viale, L. Slaets, J. Bogaerts, E. Rutgers, L. Van't-veer et al., High concordance of protein (by IHC), gene (by FISH; HER2 only), and microarray readout (by TargetPrint) of ER, PgR, and HER2: results from the EORTC 10041/BIG 03-04 MINDACT trial, Annals of Oncology, vol.25, issue.4, pp.816-823, 2014.

O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie et al., Missing value estimation methods for DNA microarrays, Bioinformatics, vol.17, issue.6, pp.520-525, 2001.

, R Development Core Team 3.0.1. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, vol.2

H. Hotelling, Analysis of a complex of statistical variables into principal components., Journal of Educational Psychology, vol.24, issue.6, pp.417-441, 1933.

C. D. Shriver and L. Bronfman, Breast Cancer Translational Research Center of Excellence FY12-14, L.J. is funded by the Agence Nationale de la Recherche, vol.503426, 2014.

L. J. , T. S. , L. V. , A. G. , L. J. et al., G.) of the work, to the acquisition