C. P. Ow, J. P. Ngo, M. M. Ullah, L. M. Hilliard, and R. G. Evans, Renal hypoxia in kidney disease: Cause or consequence?, Acta Physiologica, vol.222, issue.4, p.e12999, 2017.

P. Singh, S. Ricksten, G. Bragadottir, B. Redfors, and L. Nordquist, Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease, Clinical and Experimental Pharmacology and Physiology, vol.40, issue.2, pp.138-147, 2013.

C. Steichen, S. Giraud, D. Bon, B. Barrou, L. Badet et al., Barriers and Advances in Kidney Preservation, BioMed Research International, vol.2018, pp.1-15, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02346840

M. Cavaillé-coll, S. Bala, E. Velidedeoglu, A. Hernandez, P. Archdeacon et al., Summary of FDA Workshop on Ischemia Reperfusion Injury in Kidney Transplantation, American Journal of Transplantation, vol.13, issue.5, pp.1134-1148, 2013.

M. Legrand, E. G. Mik, T. Johannes, D. Payen, and C. Ince, Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney, Molecular Medicine, vol.14, issue.7-8, pp.502-516, 2008.

R. M. Leach and D. F. Treacher, ABC of oxygen: Oxygen transport---2. Tissue hypoxia, BMJ, vol.317, issue.7169, pp.1370-1373, 1998.

R. G. Evans, B. S. Gardiner, D. W. Smith, and P. M. O'connor, Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis, American Journal of Physiology-Renal Physiology, vol.295, issue.5, pp.F1259-F1270, 2008.

P. F. Shanley, M. Brezis, K. Spokes, P. Silva, F. H. Epstein et al., Hypoxic injury in the proximal tubule of the isolated perfused rat kidney, Kidney International, vol.29, issue.5, pp.1021-1032, 1986.

F. Palm and L. Nordquist, Renal tubulointerstitial hypoxia: Cause and consequence of kidney dysfunction, Clinical and Experimental Pharmacology and Physiology, vol.38, issue.7, pp.474-480, 2011.

E. Marcuzzi, R. Angioni, B. Molon, and B. Calì, Correction: Marcuzzi, E., et al. Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int. J. Mol. Sci. 2019, 20, 96, International Journal of Molecular Sciences, vol.20, issue.11, p.2651, 2019.

C. Lee, B. S. Gardiner, J. P. Ngo, S. Kar, R. G. Evans et al., Accounting for oxygen in the renal cortex: a computational study of factors that predispose the cortex to hypoxia, American Journal of Physiology-Renal Physiology, vol.313, issue.2, pp.F218-F236, 2017.

H. Leichtweiss, D. W. L?bbers, C. H. Weiss, H. Baumg?rtl, and W. Reschke, The oxygen supply of the rat kidney: Measurements of intrarenalpO2, Pfl?gers Archiv European Journal of Physiology, vol.309, issue.4, pp.328-349, 1969.

D. W. Lübbers and H. Baumgärtl, Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue, Kidney International, vol.51, issue.2, pp.372-380, 1997.

P. Hansell, W. J. Welch, R. C. Blantz, and F. Palm, Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension, Clinical and Experimental Pharmacology and Physiology, vol.40, issue.2, pp.123-137, 2013.

A. Deng, C. M. Miracle, M. Lortie, J. Satriano, F. B. Gabbai et al., Kidney oxygen consumption, carbonic anhydrase, and proton secretion, American Journal of Physiology-Renal Physiology, vol.290, issue.5, pp.F1009-F1015, 2006.

R. G. Evans, G. K. Harrop, J. P. Ngo, C. P. Ow, and P. M. O?connor, Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption, American Journal of Physiology-Renal Physiology, vol.306, issue.5, pp.F551-F560, 2014.

R. G. Evans, D. Goddard, G. A. Eppel, and P. M. O'connor, Factors that render the kidney susceptible to tissue hypoxia in hypoxemia, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, vol.300, issue.4, pp.R931-R940, 2011.

B. Kaissling and J. Dørup, Functional Anatomy of the Kidney, Diuretics, vol.177, pp.1-66, 1995.

R. C. Blantz and A. Deng, Coordination of kidney filtration and tubular reabsorption: considerations on the regulation of metabolic demand for tubular reabsorption, Acta Physiologica Hungarica, vol.94, issue.1-2, pp.83-94, 2007.

H. Baumgärtl, W. Zimelka, and D. W. Lübbers, Evaluation of Po2 profiles to describe the oxygen pressure field within the tissue, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.132, issue.1, pp.75-85, 2002.

T. J. Burke, D. Malhotra, and J. I. Shapiro, Factors maintaining a pH gradient within the kidney: Role of the vasculature architecture, Kidney International, vol.56, issue.5, pp.1826-1837, 1999.

B. C. Fry and A. T. Layton, Oxygen transport in a cross section of the rat inner medulla: Impact of heterogeneous distribution of nephrons and vessels, Mathematical Biosciences, vol.258, pp.68-76, 2014.

A. T. Layton, V. Vallon, and A. Edwards, Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition, American Journal of Physiology-Renal Physiology, vol.308, issue.12, pp.F1343-F1357, 2015.

U. Olgac and V. Kurtcuoglu, Renal oxygenation: preglomerular vasculature is an unlikely contributor to renal oxygen shunting, American Journal of Physiology-Renal Physiology, vol.308, issue.7, pp.F671-F688, 2015.

B. S. Gardiner, D. W. Smith, P. M. O'connor, and R. G. Evans, A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney, American Journal of Physiology-Renal Physiology, vol.300, issue.6, pp.F1339-F1352, 2011.

B. S. Gardiner, S. L. Thompson, J. P. Ngo, D. W. Smith, A. Abdelkader et al., Diffusive oxygen shunting between vessels in the preglomerular renal vasculature: anatomic observations and computational modeling, American Journal of Physiology-Renal Physiology, vol.303, issue.5, pp.F605-F618, 2012.

C. Lee, J. P. Ngo, S. Kar, B. S. Gardiner, R. G. Evans et al., A pseudo-three-dimensional model for quantification of oxygen diffusion from preglomerular arteries to renal tissue and renal venous blood, American Journal of Physiology-Renal Physiology, vol.313, issue.2, pp.F237-F253, 2017.

C. Lee, B. S. Gardiner, R. G. Evans, and D. W. Smith, A model of oxygen transport in the rat renal medulla, American Journal of Physiology-Renal Physiology, vol.315, issue.6, pp.F1787-F1811, 2018.

B. C. Fry, A. Edwards, I. Sgouralis, and A. T. Layton, Impact of renal medullary three-dimensional architecture on oxygen transport, American Journal of Physiology-Renal Physiology, vol.307, issue.3, pp.F263-F272, 2014.

J. Chen, A. T. Layton, and A. Edwards, A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results, American Journal of Physiology-Renal Physiology, vol.297, issue.2, pp.F517-F536, 2009.

W. Zhang and A. Edwards, Oxygen transport across vasa recta in the renal medulla, American Journal of Physiology-Heart and Circulatory Physiology, vol.283, issue.3, pp.H1042-H1055, 2002.

S. R. Gullans and L. Mandel, Coupling of energy to transport in proximal and distal nephron, The Kidney: Physiology and Pathophysiology, vol.1, pp.445-482, 2000.

A. T. Layton, Modeling Transport and Flow Regulatory Mechanisms of the Kidney, ISRN Biomathematics, vol.2012, pp.1-18, 2012.

A. M. Weinstein, S. Weinbaum, Y. Duan, Z. Du, Q. Yan et al., Flow-dependent transport in a mathematical model of rat proximal tubule, American Journal of Physiology-Renal Physiology, vol.292, issue.4, pp.F1164-F1181, 2007.

A. M. Weinstein, A mathematical model of the rat nephron: glucose transport, American Journal of Physiology-Renal Physiology, vol.308, issue.10, pp.F1098-F1118, 2015.

A. T. Layton, V. Vallon, and A. Edwards, Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron, American Journal of Physiology-Renal Physiology, vol.310, issue.11, pp.F1269-F1283, 2016.

M. Brezis, S. Rosen, P. Silva, and F. H. Epstein, Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney., Journal of Clinical Investigation, vol.73, issue.1, pp.182-190, 1984.

M. Brezis, P. Shanley, P. Silva, K. Spokes, S. Lear et al., Disparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney., Journal of Clinical Investigation, vol.76, issue.5, pp.1796-1806, 1985.

N. Cannata, F. Corradini, E. Merelli, and L. Tesei, Agent-Based Models of Cellular Systems, Methods in Molecular Biology, vol.930, pp.399-426, 2012.

S. F. Railsback, S. L. Lytinen, and S. K. Jackson, Agent-based Simulation Platforms: Review and Development Recommendations, SIMULATION, vol.82, issue.9, pp.609-623, 2006.

U. Wilensky and . Netlogo, , 1999.

W. Pfaller, T. Seppi, A. Ohno, G. Giebisch, and F. X. Beck, Quantitative Morphology of Renal Cortical Structures during Compensatory Hypertrophy, Nephron Experimental Nephrology, vol.6, issue.4, pp.308-319, 1998.

R. Rasch and J. Dørup, Quantitative morphology of the rat kidney during diabetes mellitus and insulin treatment, Diabetologia, vol.40, issue.7, pp.802-809, 1997.

K. Matsui, Lymphatic Microvessels in the Rat Remnant Kidney Model of Renal Fibrosis: Aminopeptidase P and Podoplanin Are Discriminatory Markers for Endothelial Cells of Blood and Lymphatic Vessels, Journal of the American Society of Nephrology, vol.14, issue.8, pp.1981-1989, 2003.

M. Steinhausen, G. M. Eisenbach, and W. B?ttcher, High-frequency microcinematographic measurements on peritubular blood flow under control conditions and after temporary ischemia of rat kidneys, Pfl?gers Archiv European Journal of Physiology, vol.339, issue.4, pp.273-288, 1973.

G. Gutierrez, The rate of oxygen release and its effect on capillary O2 tension: A mathematical analysis, Respiration Physiology, vol.63, issue.1, pp.79-96, 1986.

E. Féraille and A. Doucet, Sodium-Potassium-Adenosinetriphosphatase-Dependent Sodium Transport in the Kidney: Hormonal Control, Physiological Reviews, vol.81, issue.1, pp.345-418, 2001.

E. Fr?mter, G. Rumrich, and K. J. Ullrich, Phenomenologic description of Na+, Cl? and HCO 3 ? absorption from proximal tubules of the rat kidney, Pfl?gers Archiv European Journal of Physiology, vol.343, issue.3, pp.189-220, 1973.

H. J. Schurek, U. Jost, H. Baumgartl, H. Bertram, and U. Heckmann, Evidence for a preglomerular oxygen diffusion shunt in rat renal cortex, American Journal of Physiology-Renal Physiology, vol.259, issue.6, pp.F910-F915, 1990.

T. W. Emans, B. J. Janssen, M. I. Pinkham, C. P. Ow, R. G. Evans et al., Exogenous and endogenous angiotensin-II decrease renal cortical oxygen tension in conscious rats by limiting renal blood flow, The Journal of Physiology, vol.594, issue.21, pp.6287-6300, 2016.

A. T. Layton, Recent advances in renal hypoxia: insights from bench experiments and computer simulations, American Journal of Physiology-Renal Physiology, vol.311, issue.1, pp.F162-F165, 2016.

A. T. Layton, V. Vallon, and A. Edwards, A computational model for simulating solute transport and oxygen consumption along the nephrons, American Journal of Physiology-Renal Physiology, vol.311, issue.6, pp.F1378-F1390, 2016.

C. S. Wilcox, F. Palm, and W. J. Welch, Renal Oxygenation and Function of the Rat Kidney: Effects of Inspired Oxygen and Preglomerular Oxygen Shunting, Advances in Experimental Medicine and Biology, vol.765, pp.329-334, 2012.

W. J. Welch, H. Baumgärtl, D. Lübbers, and C. S. Wilcox, Renal oxygenation defects in the spontaneously hypertensive rat: Role of AT1 receptors, Kidney International, vol.63, issue.1, pp.202-208, 2003.

W. J. Welch, H. Baumgärtl, D. Lübbers, and C. S. Wilcox, Nephron pO2 and renal oxygen usage in the hypertensive rat kidney, Kidney International, vol.59, issue.1, pp.230-237, 2001.

A. Dyson, R. Bezemer, M. Legrand, G. Balestra, M. Singer et al., Microvascular and Interstitial Oxygen Tension in the Renal Cortex and Medulla Studied in A 4-H Rat Model of LPS-Induced Endotoxemia, Shock, vol.36, issue.1, pp.83-89, 2011.

T. Johannes, E. G. Mik, and C. Ince, Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney, Journal of Applied Physiology, vol.100, issue.4, pp.1301-1310, 2006.

R. G. Evans, D. Goddard, G. A. Eppel, and P. M. O?connor, Stability of tissue PO2 in the face of altered perfusion: a phenomenon specific to the renal cortex and independent of resting renal oxygen consumption, Clinical and Experimental Pharmacology and Physiology, vol.38, issue.4, pp.247-254, 2011.

C. Leong, W. P. Anderson, P. M. O'connor, and R. G. Evans, Evidence that renal arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation, American Journal of Physiology-Renal Physiology, vol.292, issue.6, pp.F1726-F1733, 2007.

M. Steinhausen, K. Endlich, and D. L. Wiegman, Glomerular blood flow, Kidney International, vol.38, issue.5, pp.769-784, 1990.

R. N. Pittman, Oxygen Transport in the Microcirculation and Its Regulation, Microcirculation, vol.20, issue.2, pp.117-137, 2013.

N. Sasaki, H. Horinouchi, A. Ushiyama, and H. Minamitani, A New Method for Measuring the Oxygen Diffusion Constant and Oxygen Consumption Rate of Arteriolar Walls, The Keio Journal of Medicine, vol.61, issue.2, pp.57-65, 2012.

A. Vadapalli, R. N. Pittman, and A. S. Popel, Estimating oxygen transport resistance of the microvascular wall, American Journal of Physiology-Heart and Circulatory Physiology, vol.279, issue.2, pp.H657-H671, 2000.

J. Diez, P. Hannaert, and R. P. Garay, Kinetic study of Na+-K+ pump in erythrocytes from essential hypertensive patients, American Journal of Physiology-Heart and Circulatory Physiology, vol.252, issue.1, pp.H1-H6, 1987.

W. Moll, The influence of hemoglobin diffusion on oxygen uptake and release by red cells, Respiration Physiology, vol.6, issue.1, pp.1-15, 1968.

A. Clark, W. J. Federspiel, P. A. Clark, and G. R. Cokelet, Oxygen delivery from red cells, Biophysical Journal, vol.47, issue.2, pp.171-181, 1985.

T. L. Pallone, Z. Zhang, and K. Rhinehart, Physiology of the renal medullary microcirculation, American Journal of Physiology-Renal Physiology, vol.284, issue.2, pp.F253-F266, 2003.

E. H. Larsen, N. Mobjerg, and J. N. Sorensen, Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport, Acta Physiologica, vol.187, issue.1-2, pp.177-189, 2006.

M. Brand, The efficiency and plasticity of mitochondrial energy transduction, Biochemical Society Transactions, vol.33, issue.5, pp.897-904, 2005.

J. W. Stucki, The Optimal Efficiency and the Economic Degrees of Coupling of Oxidative Phosphorylation, European Journal of Biochemistry, vol.109, issue.1, pp.269-283, 1980.

R. G. Evans, G. A. Eppel, S. Michaels, S. L. Burke, M. Nematbakhsh et al., Multiple mechanisms act to maintain kidney oxygenation during renal ischemia in anesthetized rabbits, American Journal of Physiology-Renal Physiology, vol.298, issue.5, pp.F1235-F1243, 2010.

J. Kaminski, P. Delpech, S. Kaaki-hosni, X. Promeyrat, T. Hauet et al., Oxygen Consumption by Warm Ischemia-Injured Porcine Kidneys in Hypothermic Static and Machine Preservation, Journal of Surgical Research, vol.242, pp.78-86, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02177529

D. Grosenick, K. Cantow, K. Arakelyan, H. Wabnitz, B. Flemming et al., Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach, Biomedical Optics Express, vol.6, issue.2, p.309, 2015.

T. Whitehouse, M. Stotz, V. Taylor, R. Stidwill, and M. Singer, Tissue oxygen and hemodynamics in renal medulla, cortex, and corticomedullary junction during hemorrhage-reperfusion, American Journal of Physiology-Renal Physiology, vol.291, issue.3, pp.F647-F653, 2006.

J. P. Ngo, Y. R. Lankadeva, M. Z. Zhu, A. Martin, M. Kanki et al., Factors that confound the prediction of renal medullary oxygenation and risk of acute kidney injury from measurement of bladder urine oxygen tension, Acta Physiologica, vol.227, p.e13294, 2019.

E. Marcuzzi, R. Angioni, B. Molon, and B. Calì, Correction: Marcuzzi, E., et al. Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int. J. Mol. Sci. 2019, 20, 96, International Journal of Molecular Sciences, vol.20, issue.11, p.2651, 2019.

Y. R. Lankadeva, J. Kosaka, R. G. Evans, R. Bellomo, and C. N. May, Urinary Oxygenation as a Surrogate Measure of Medullary Oxygenation During Angiotensin II Therapy in Septic Acute Kidney Injury, Critical Care Medicine, vol.46, issue.1, pp.e41-e48, 2018.

R. G. Evans and C. P. Ow, Heterogeneity of renal cortical oxygenation: seeing is believing, Kidney International, vol.93, issue.6, pp.1278-1280, 2018.

L. C. Garg, S. Mackie, and C. C. Tisher, Effect of low potassium-diet on Na?K-ATPase in rat nephron segments, Pfl?gers Archiv European Journal of Physiology, vol.394, issue.2, pp.113-117, 1982.

S. R. Gullans, Metabolic basis of ion transport, The Kidney

B. M. Brenner, F. C. Rector, . Eds, and . Saunders, , 2000.

S. P. Soltoff, ATP and the Regulation of Renal Cell Function, Ann. Rev. Physiol, vol.48, pp.9-31, 1986.

W. G. Guder and B. D. Ross, Enzyme distribution along the nephron, Kidney International, vol.26, issue.2, pp.101-111, 1984.

D. Goldman, Theoretical Models of Microvascular Oxygen Transport to Tissue, Microcirculation, vol.15, issue.8, pp.795-811, 2008.

B. J. Mcguire and T. W. Secomb, A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand, Journal of Applied Physiology, vol.91, issue.5, pp.2255-2265, 2001.

J. Piiper and P. Scheid, Modeling oxygen availability to exercising muscle, Respiration Physiology, vol.118, issue.2-3, pp.95-101, 1999.

C. D. Eggleton, A. Vadapalli, T. K. Roy, and A. S. Popel, Calculations of intracapillary oxygen tension distributions in muscle, Mathematical Biosciences, vol.167, issue.2, pp.123-143, 2000.

K. Groebe, An easy-to-use model for O2 supply to red muscle. Validity of assumptions, sensitivity to errors in data, Biophysical Journal, vol.68, issue.4, pp.1246-1269, 1995.

J. E. Fletcher, On facilitated oxygen diffusion in muscle tissues, Biophysical Journal, vol.29, issue.3, pp.437-458, 1980.

K. P. Ivanov, M. K. Kalinina, and Y. I. Levkovich, Blood flow velocity in capillaries of brain and muscles and its physiological significance, Microvascular Research, vol.22, issue.2, pp.143-155, 1981.

M. Brezis and S. Rosen, Hypoxia of the Renal Medulla ? Its Implications for Disease, New England Journal of Medicine, vol.332, issue.10, pp.647-655, 1995.

M. L. Ellsworth, C. G. Ellis, and R. S. Sprague, Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle, Acta Physiologica, vol.216, issue.3, pp.265-276, 2015.

M. Sridharan, R. S. Sprague, S. P. Adderley, E. A. Bowles, M. L. Ellsworth et al., Diamide decreases deformability of rabbit erythrocytes and attenuates low oxygen tension-induced ATP release, Experimental Biology and Medicine, vol.235, issue.9, pp.1142-1148, 2010.

B. Wang, R. C. Scott, C. B. Pattillo, B. Prabhakarpandian, S. Sundaram et al., Microvascular transport model predicts oxygenation changes in the infarcted heart after treatment, American Journal of Physiology-Heart and Circulatory Physiology, vol.293, issue.6, pp.H3732-H3739, 2007.

Y. Hirakawa, K. Mizukami, T. Yoshihara, I. Takahashi, P. Khulan et al., Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia, Kidney International, vol.93, issue.6, pp.1483-1489, 2018.

Y. Hirakawa, T. Yoshihara, M. Kamiya, I. Mimura, D. Fujikura et al., Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement, Scientific Reports, vol.5, issue.1, 2015.

S. Egginton and E. Gaffney, Experimental Physiology -Review Article: Tissue capillary supply - it's quality not quantity that counts!, Experimental Physiology, vol.95, issue.10, pp.971-979, 2010.

A. R. Chade, R. Terjung, and . Ed, Renal Vascular Structure and Rarefaction, Comprehensive Physiology, 2013.

D. P. Basile, M. D. Anderson, T. A. Sutton, R. Terjung, and . Ed, Pathophysiology of Acute Kidney Injury, Comprehensive Physiology, 2012.

D. P. Basile, D. L. Donohoe, K. Roethe, and D. L. Mattson, Chronic renal hypoxia after acute ischemic injury: effects of l-arginine on hypoxia and secondary damage, American Journal of Physiology-Renal Physiology, vol.284, issue.2, pp.F338-F348, 2003.

M. Matsumoto, Hypoperfusion of Peritubular Capillaries Induces Chronic Hypoxia before Progression of Tubulointerstitial Injury in a Progressive Model of Rat Glomerulonephritis, Journal of the American Society of Nephrology, vol.15, issue.6, pp.1574-1581, 2004.

E. Marcuzzi, R. Angioni, B. Molon, and B. Calì, Correction: Marcuzzi, E., et al. Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. Int. J. Mol. Sci. 2019, 20, 96, International Journal of Molecular Sciences, vol.20, issue.11, p.2651, 2019.

J. Kaminski, P. Hannaert, A. Kasil, R. Thuillier, E. Leize et al., Efficacy of the natural oxygen transporter HEMO 2 life ® in cold preservation in a preclinical porcine model of donation after cardiac death, Transplant International, vol.32, issue.9, pp.985-996, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346828

N. Suzuki and M. Yamamoto, Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis, Pflügers Archiv - European Journal of Physiology, vol.468, issue.1, pp.3-12, 2015.

W. Jelkmann, Regulation of erythropoietin production, The Journal of Physiology, vol.589, issue.6, pp.1251-1258, 2011.

A. I. Hernández, V. Le-rolle, D. Ojeda, P. Baconnier, J. Fontecave-jallon et al., Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation, Progress in Biophysics and Molecular Biology, vol.107, issue.1, pp.169-182, 2011.

F. Guillaud and P. Hannaert, A Computational Model of the Circulating Renin-Angiotensin System and Blood Pressure Regulation, Acta Biotheoretica, vol.58, issue.2-3, pp.143-170, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02988413

, Figure 2?figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://creativecommons.org/licenses/by/4.0/., © 2019 by the authors. Licensee MDPI