T. Hiraga, . Bone, and . Metastasis, Interaction between Cancer Cells and Bone Microenvironment, J. Oral Biosci, issue.2, pp.95-98, 2019.

G. R. Mundy, Metastasis to Bone: Causes, Consequences and Therapeutic Opportunities, Nat. Rev. Cancer, vol.2, issue.8, pp.584-593, 2002.

R. E. Coleman, Clinical Features of Metastatic Bone Disease and Risk of Skeletal Morbidity, Clin. Cancer Res, vol.12, issue.20, pp.6243-6249, 2006.

N. M. Iñiguez-ariza, K. C. Bible, and B. L. Clarke, Bone Metastases in Thyroid Cancer, J. Bone Oncol, vol.2020, p.100282

J. J. Willeumier, Y. M. Van-der-linden, and P. D. Dijkstra, Lack of Clinical Evidence for Postoperative Radiotherapy after Surgical Fixation of Impending or Actual Pathologic Fractures in the Long Bones in Patients with Cancer; a Systematic Review, Radiother. Oncol, vol.121, issue.1, pp.138-142, 2016.

R. Petca, S. Gavriliu, and G. Burnei, Retrospective Clinicopathological Study of Malignant Bone Tumors in Children and Adolescents in Romania -Single Center Experience, J. Med. Life, vol.2016, issue.2, pp.205-210

Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, Applications of Magnetic Nanoparticles in Biomedicine, J. Phys. Appl. Phys, vol.36, issue.13, pp.167-181, 2003.

C. S. Kumar and F. Mohammad, Magnetic Nanomaterials for Hyperthermia-Based Therapy and Controlled Drug Delivery, Adv. Drug Deliv. Rev, vol.63, issue.9, pp.789-808, 2011.

M. M. Cruz, L. P. Ferreira, A. F. Alves, S. G. Mendo, P. Ferreira et al., Chapter 19 -Nanoparticles for Magnetic Hyperthermia, pp.485-511, 2017.

C. Blanco-andujar, A. Walter, G. Cotin, C. Bordeianu, D. Mertz et al., Begin-Colin, S. Design of Iron Oxide-Based Nanoparticles for MRI and Magnetic Hyperthermia, Nanomed, vol.2016, issue.14, pp.1889-1910

R. K. Gilchrist, R. Medal, W. D. Shorey, R. C. Hanselman, J. C. Parrott et al., Selective Inductive Heating of Lymph Nodes, Ann. Surg, vol.1957, issue.4, pp.596-606

A. Figuerola, R. Di-corato, L. Manna, and T. Pellegrino, From Iron Oxide Nanoparticles towards Advanced Iron-Based Inorganic Materials Designed for Biomedical Applications, Pharmacol. Res, vol.62, issue.2, pp.126-143, 2010.

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications, Chem. Rev, vol.108, issue.6, pp.2064-2110, 2008.

R. Fu, Y. Y. Yan, and C. Roberts, Study of the Effect of Dipole Interactions on Hyperthermia Heating the Cluster Composed of Superparamagnetic Nanoparticles, AIP Adv, vol.2015, issue.12, p.127232

B. Thiesen and A. Jordan, Clinical Applications of Magnetic Nanoparticles for Hyperthermia, Int. J. Hyperthermia, vol.24, issue.6, pp.467-474, 2008.

L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee, Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials, J. Biomed. Mater. Res, vol.5, issue.6, pp.117-141, 1971.

J. R. Jones, Reprint of: Review of Bioactive Glass: From Hench to Hybrids, Acta Biomater, vol.23, pp.53-82, 2015.

P. Sepulveda, J. R. Jones, and L. L. Hench, Characterization of Melt-Derived 45S5 and Sol-Gel-Derived 58S Bioactive Glasses, J. Biomed. Mater. Res, vol.58, issue.6, pp.734-740, 2001.

J. P. Fan, P. Kalia, L. Di-silvio, and J. Huang, In Vitro Response of Human Osteoblasts to Multi-Step Sol-Gel Derived Bioactive Glass Nanoparticles for Bone Tissue Engineering

, Mater. Sci. Eng. C, vol.36, pp.206-214, 2014.

B. Lei, X. Chen, X. Han, and J. Zhou, Versatile Fabrication of Nanoscale Sol-Gel Bioactive Glass Particles for Efficient Bone Tissue Regeneration, J. Mater. Chem, vol.2012, issue.33, pp.16906-16913

H. Oonishi, L. L. Hench, J. Wilson, F. Sugihara, E. Tsuji et al., Comparative Bone Growth Behavior in Granules of Bioceramic Materials of Various Sizes, J. Biomed. Mater. Res, vol.44, issue.1, pp.31-43, 1999.

H. Oonishi, S. Kushitani, E. Yasukawa, H. Iwaki, L. L. Hench et al., Particulate Bioglass Compared With Hydroxyapatite as a Bone Graft Substitute, Clin. Orthop. Relat. Res, vol.334, pp.316-325, 1997.

D. L. Wheeler, E. J. Eschbach, R. G. Hoellrich, M. J. Montfort, and D. L. Chamberland, Assessment of Resorbable Bioactive Material for Grafting of Critical-Size Cancellous Defects, J. Orthop. Res, vol.18, issue.1, pp.140-148, 2000.

O. Bretcanu, E. Verné, M. Cöisson, P. Tiberto, and P. Allia, Magnetic Properties of the Ferrimagnetic Glass-Ceramics for Hyperthermia, J. Magn. Magn. Mater, vol.305, issue.2, pp.529-533, 2006.

Y. Y. Wang, B. Li, W. Q. Luo, and F. Cao, Bioactivity of Fe 2 O 3 -CaO-SiO 2 Glass Ceramics Modified through the Addition of P 2 O 5 and TiO 2, Ceram. Int, vol.2017, issue.9, pp.6738-6745

M. Abbasi, B. Hashemi, and H. Shokrollahi, Investigating in Vitro Bioactivity and Magnetic Properties of the Ferrimagnetic Bioactive Glass-Ceramic Fabricated Using Soda-Lime-Silica Waste Glass, J. Magn. Magn. Mater, vol.356, pp.5-11, 2014.

C. Vichery, I. Maurin, P. Bonville, J. Boilot, and T. Gacoin, Influence of Protected Annealing on the Magnetic Properties of ?-Fe2O3 Nanoparticles, J. Phys. Chem. C, vol.2012, issue.30, pp.16311-16318

A. Hajdú, E. Illés, and E. Tombácz, Borbáth, I. Surface Charging, Polyanionic Coating and Colloid Stability of Magnetite Nanoparticles, Colloids Surf. Physicochem. Eng. Asp, vol.347, issue.1, pp.104-108, 2009.

T. Kokubo and H. Takadama, How Useful Is SBF in Predicting in Vivo Bone Bioactivity?, Biomaterials, vol.27, issue.15, pp.2907-2915, 2006.

R. Boistelle and J. P. Astier, Crystallization Mechanisms in Solution, J. Cryst. Growth, vol.90, issue.1, pp.14-30, 1988.

J. Jolivet, De La Solution à l'oxyde: Condensation Des Cations En Solution Aqueuse

, Chimie de Surface Des Oxydes, Inter édition, 1994.

J. Baumgartner, A. Dey, P. H. Bomans, C. Le-coadou, P. Fratzl et al., Nucleation and Growth of Magnetite from Solution, Nat. Mater, vol.12, issue.4, pp.310-314, 2013.

M. P. Morales, S. Veintemillas-verdaguer, M. I. Montero, C. J. Serna, A. Roig et al., Surface and Internal Spin Canting in ?-Fe2O3 Nanoparticles, Chem. Mater, vol.11, issue.11, pp.3058-3064, 1999.

S. Labbaf, O. Tsigkou, K. H. Müller, M. M. Stevens, A. E. Porter et al., Spherical Bioactive Glass Particles and Their Interaction with Human Mesenchymal Stem Cells in Vitro, Biomaterials, vol.32, issue.4, pp.1010-1018, 2011.

A. A. Oliveira and . De,

D. A. Souza and . De,

L. L. Dias, S. M. Carvalho, and . De,

H. S. Mansur, M. Pereira, M. De, and . Synthesis, Characterization and Cytocompatibility of Spherical Bioactive Glass Nanoparticles for Potential Hard Tissue Engineering Applications, Biomed. Mater, vol.8, issue.2, p.25011, 2013.

C. Wu, W. Fan, and J. Chang, Functional Mesoporous Bioactive Glass Nanospheres: Synthesis, High Loading Efficiency, Controllable Delivery of Doxorubicin and Inhibitory Effect on Bone Cancer Cells, J. Mater. Chem. B, vol.2013, issue.21, pp.2710-2718

X. Kesse, C. Vichery, and J. Nedelec, Deeper Insights into a Bioactive Glass Nanoparticle Synthesis Protocol To Control Its Morphology, Dispersibility, and Composition, ACS Omega, vol.2019, issue.3, pp.5768-5775
URL : https://hal.archives-ouvertes.fr/hal-02078624

X. Kesse, C. Vichery, A. Jacobs, S. Descamps, and J. Nedelec, Unravelling the Impact of Calcium Content on the Bioactivity of Sol-Gel-Derived Bioactive Glass Nanoparticles, ACS Appl. Bio Mater, vol.2020, issue.2, pp.1312-1320

D. Ma, T. Veres, L. Clime, F. Normandin, J. Guan et al., Superparamagnetic FexOy@SiO2 Core?Shell Nanostructures: Controlled Synthesis and Magnetic Characterization, J. Phys. Chem. C, issue.5, pp.1999-2007, 2007.

Y. Zhang, Y. Liu, M. Li, S. Lu, and J. Wang, The Effect of Iron Incorporation on the in Vitro Bioactivity and Drug Release of Mesoporous Bioactive Glasses, Ceram. Int, vol.39, issue.6, pp.6591-6598, 2013.

X. Li, X. Wang, Z. Hua, and J. Shi, One-Pot Synthesis of Magnetic and Mesoporous Bioactive Glass Composites and Their Sustained Drug Release Property, Acta Mater, vol.56, issue.13, pp.3260-3265, 2008.

C. Wu, W. Fan, Y. Zhu, M. Gelinsky, J. Chang et al., Multifunctional Magnetic Mesoporous Bioactive Glass Scaffolds with a Hierarchical Pore Structure, Acta Biomater, vol.7, issue.10, pp.3563-3572, 2011.

Y. Zhu, F. Shang, B. Li, Y. Dong, Y. Liu et al., Magnetic Mesoporous Bioactive Glass Scaffolds: Preparation, Physicochemistry and Biological Properties, J. Mater. Chem. B, vol.2013, issue.9, pp.1279-1288

Y. Liu, Y. Li, X. Yu, L. Liu, Z. Zhu et al., Bactericidal Property and Cytocompatibility of Magnetic Mesoporous Bioactive Glass

, Mater. Sci. Eng. C, vol.41, pp.196-205, 2014.

A. M. Pereira, C. Pereira, A. S. Silva, D. S. Schmool, C. Freire et al., Unravelling the Effect of Interparticle Interactions and Surface Spin Canting in ?-Fe2O3@SiO2 Superparamagnetic Nanoparticles, J. Appl. Phys, vol.109, issue.11, p.114319, 2011.

P. Tartaj, T. González-carreño, and C. J. Serna, Magnetic Behavior of ?-Fe2O3 Nanocrystals Dispersed in Colloidal Silica Particles, J. Phys. Chem. B, vol.107, issue.1, pp.20-24, 2003.

G. C. Papaefthymiou, E. Devlin, A. Simopoulos, D. K. Yi, S. N. Riduan et al., Interparticle interactions in magnetic core/shell nanoarchitectures, Physical Review B, vol.80, issue.2, p.24406, 2009.

M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern et al., Suitability of commercial colloids for magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, vol.321, issue.10, pp.1509-1513, 2009.

E. A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio et al., Fundamentals and advances in magnetic hyperthermia, Applied Physics Reviews, vol.2, issue.4, p.041302, 2015.

D. Serantes, K. Simeonidis, M. Angelakeris, O. Chubykalo-fesenko, M. Marciello et al., Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling, The Journal of Physical Chemistry C, vol.118, issue.11, pp.5927-5934, 2014.

C. Martinez-boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias et al., Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications, Scientific Reports, vol.3, issue.1, 2013.

L. Lartigue, P. Hugounenq, D. Alloyeau, S. P. Clarke, M. Lévy et al., Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents, ACS Nano, vol.6, issue.12, pp.10935-10949, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00820693

P. Hugounenq, M. Levy, D. Alloyeau, L. Lartigue, E. Dubois et al., Iron Oxide Monocrystalline Nanoflowers for Highly Efficient Magnetic Hyperthermia, The Journal of Physical Chemistry C, vol.116, issue.29, pp.15702-15712, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00820701

J. G. Ovejero, D. Cabrera, J. Carrey, T. Valdivielso, G. Salas et al., Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles, Physical Chemistry Chemical Physics, vol.18, issue.16, pp.10954-10963, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01983020

M. L. Etheridge, K. R. Hurley, J. Zhang, S. Jeon, H. L. Ring et al., Accounting for biological aggregation in heating and imaging of magnetic nanoparticles, TECHNOLOGY, vol.02, issue.03, pp.214-228, 2014.

D. F. Coral, P. Mendoza-zélis, M. Marciello, M. D. Morales, A. Craievich et al., Effect of Nanoclustering and Dipolar Interactions in Heat Generation for Magnetic Hyperthermia, Langmuir, vol.32, issue.5, pp.1201-1213, 2016.

M. A. Gonzalez-fernandez, T. E. Torres, M. Andrés-vergés, R. Costo, P. De-la-presa et al., Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties, Journal of Solid State Chemistry, vol.182, issue.10, pp.2779-2784, 2009.

B. H. Erné, K. Butter, B. W. Kuipers, and G. J. Vroege, Rotational Diffusion in Iron Ferrofluids, Langmuir, vol.19, issue.20, pp.8218-8225, 2003.

X. Wang, H. Gu, and Z. Yang, The heating effect of magnetic fluids in an alternating magnetic field, Journal of Magnetism and Magnetic Materials, vol.293, issue.1, pp.334-340, 2005.

A. E. Deatsch and B. A. Evans, Heating efficiency in magnetic nanoparticle hyperthermia, Journal of Magnetism and Magnetic Materials, vol.354, pp.163-172, 2014.

E. M. Múzquiz-ramos, D. A. Cortés-hernández, J. C. Escobedo-bocardo, A. Zugasti-cruz, X. S. Ramírez-gómez et al., In vitro and in vivo biocompatibility of apatite-coated magnetite nanoparticles for cancer therapy, Journal of Materials Science: Materials in Medicine, vol.24, issue.4, pp.1035-1041, 2013.

T. Kokubo, H. Kim, and M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, vol.24, issue.13, pp.2161-2175, 2003.

K. Zheng, A. Solodovnyk, W. Li, O. Goudouri, C. Stähli et al., Aging Time and Temperature Effects on the Structure and Bioactivity of Gel-Derived 45S5 Glass-Ceramics, Journal of the American Ceramic Society, vol.98, issue.1, pp.30-38, 2014.

A. Balamurugan, G. Sockalingum, J. Michel, J. Fauré, V. Banchet et al., Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications, Materials Letters, vol.60, issue.29-30, pp.3752-3757, 2006.

Y. Zhu and S. Kaskel, Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds, Microporous and Mesoporous Materials, vol.118, issue.1-3, pp.176-182, 2009.

Y. Zhu and S. Kaskel, Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds, Microporous and Mesoporous Materials, vol.118, issue.1-3, pp.176-182, 2009.

Y. Ebisawa, T. Kokubo, K. Ohura, and T. Yamamuro, Bioactivity of Fe2O3-containing CaO-SiO2 glasses: in vitro evaluation, Journal of Materials Science: Materials in Medicine, vol.4, issue.3, pp.225-232, 1993.

K. Ohura, T. Nakamura, T. Yamamuro, Y. Ebisawa, T. Kokubo et al., Bioactivity of CaO?SiO2 glasses added with various ions, Journal of Materials Science: Materials in Medicine, vol.3, issue.2, pp.95-100, 1992.