R. Kutner and J. Masoliver, The continuous time random walk, still trendy: fifty-year history, state of art and outlook, Eur. Phys. J. B, vol.90, p.50, 2017.

R. Gorenflo and F. Mainardi, The asymptotic universality of the Mittag-Leffler waiting time law in continuous time random walks, Invited lecture at the 373. WE-Heraeus-Seminar on Anomalous Transport: Experimental Results and Theoretical Challenges, pp.12-16, 2006.

R. Gorenflo, Mittag-Leffler Waiting Time, Power Laws, Rarefaction, Continuous Time Random Walk, Diffusion Limit, 2010.

R. Metzler and J. Klafter, The Random Walk's Guide to Anomalous Diffusion : A Fractional Dynamics Approach, Phys. Rep, vol.339, pp.1-77, 2000.

R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen, vol.37, pp.161-208, 2004.

G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep, vol.371, issue.6, pp.461-580, 2002.

A. Saichev and G. M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos, vol.7, p.753, 1997.

E. Capelas-de-oliveira, F. Mainardi, and J. Vaz, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, The European Physical Journal, Special Topics, vol.193, pp.161-171, 2011.

F. Mainardi and G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology, The European Physical Journal, Special Topics, vol.193, pp.133-160, 2011.

R. Gorenflo and F. Mainardi, Fractional relaxation of distributed order, Complexus Mundi: Emergent Patterns in Nature (M. Novak Ed.), pp.33-42, 2006.

E. W. Montroll and G. H. Weiss, Random walks on lattices II, J. Math. Phys, vol.6, issue.2, pp.167-181, 1965.

R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev. E, vol.51, issue.2, p.848, 1995.

M. M. Meerschaert, E. Nane, and P. Villaisamy, The Fractional Poisson Process and the Inverse Stable Subordinator, Electron. J. Probab, vol.16, issue.59, pp.1600-1620, 2011.

M. D. Ortigueira and J. T. Machado, What is a fractional derivative?, Journal of Computational Physics, vol.293, pp.4-13, 2015.

V. E. Tarasov, No fractional derivative, Communications in Nonlinear Science and Numerical Simulation, vol.62, pp.157-163, 2018.

A. Giusti, A comment on some new definitions of fractional derivative, Nonlinear Dynamics, vol.93, pp.1757-1763, 2018.

R. Hilfer and Y. Luchko, Desiderata for fractional derivatives and integrals, vol.7, p.149, 2019.

R. Garra, R. Gorenflo, F. Polito, and ?. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput, vol.242, pp.576-589, 2014.

F. Mainardi and R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics, Journal of Computational Physics, vol.293, pp.70-80, 2015.

A. Giusti, I. Colombaro, R. Garra, R. Garrappa, F. Polito et al., A practical guide to Prabhakar fractional calculus, Fract. Calc. Appl. Anal, vol.23, issue.1, pp.9-54, 2020.

T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J, vol.19, pp.7-15, 1971.

D. O. Cahoy and F. Polito, Renewal processes based on generalized Mittag-Leffler waiting times, Commun Nonlinear Sci Numer Simul, vol.18, issue.3, pp.639-650, 2013.

T. M. Michelitsch and &. Riascos, Continuous time random walk and diffusion with generalized fractional Poisson process, Physica A: Statistical Mechanics and its Applications, vol.545, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02336450

T. M. Michelitsch and A. P. Riascos, Generalized fractional Poisson process and related stochastic dynamics, Fractional Calculus & Applied Analysis, vol.23, issue.3, pp.656-693, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02888237

T. M. Michelitsch, A. P. Riascos, B. A. Collet, A. F. Nowakowski, and F. C. Nicolleau, Generalized space-time fractional dynamics in networks and lattices Generalized Space-Time Fractional Dynamics in Networks and Lattices, Nonlinear Wave Dynamics of Materials and Structures, vol.122, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02314815

T. M. Michelitsch, F. Polito, and A. P. Riascos, On Discrete-Time Generalized Fractional Poisson Process And Related Stochastic Dynamics

A. N. Kochubei, General fractional calculus, evolution equations, and renewal processes, Integral Equations and Operator Theory, vol.71, pp.583-600, 2011.

M. E. Newman, Networks: An Introduction, 2010.

J. D. Noh and &. Rieger, Random walks on complex networks, Phys. Rev. Lett, vol.92, p.118701, 2004.

B. D. Hughes, Random Walks and Random Environments, Vols. 1, 1995.

B. D. Hughes, Random Walks and Random Environments, 1996.

B. Mohar, Graph Theory, Combinatorics, and Applications, vol.2, p.871, 1991.

B. Mohar, Graph Symmetry: Algebraic Methods and Applications, vol.497, p.227, 1997.

T. Michelitsch, A. P. Riascos, B. A. Collet, A. Nowakowski, and F. Nicolleau, Fractional Dynamics on Networks and Lattices, p.9781786301581, 2019.

A. P. Riascos and J. L. Mateos, Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights, Phys. Rev. E, vol.90, p.32809, 2014.

A. P. Riascos, D. Boyer, P. Herringer, and J. L. Mateos, Random walks on networks with stochastic resetting, Phys. Rev. E, vol.101, p.62147, 2020.

A. P. Riascos and J. L. Mateos, Networks and long-range mobility in cities: A study of more than one billion taxi trips, Scientific Reports, vol.10, p.4022, 2020.

A. P. Riascos, T. M. Michelitsch, B. A. Collet, A. F. Nowakowski, and F. C. Nicolleau, Random walks with long-range steps generated by functions of Laplacian matrices, J. Stat. Mech, p.43404, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02315587

A. P. Riascos, T. M. Michelitsch, and A. Pizarro-medina, Non-local biased random walks and fractional transport on directed networks, Phys. Rev. E, vol.102, p.22142, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02540672

R. Gorenflo and F. Mainardi, On the Fractional Poisson Process and the Discretized Stable Subordinator, vol.4, pp.321-344, 2015.

A. Pachon, F. Polito, and C. Ricciuti, On Discrete-Time Semi-Markov processes, Discrete and Continuous Dynamical Systems B (2020)

E. Orsingher and F. Polito, The space-fractional Poisson process, Statistics & Probability Letters, vol.82, issue.4, pp.852-858, 2012.

F. Harary, E. M. Palmer, and . Enumeration, , p.218, 1973.

D. R. Cox, Renewal Theory, 1967.

F. Polito and E. Scalas, A generalization of the space-fractional Poisson process and its connection to some Lévy processes, Electron. Commun. Probab, vol.21, issue.20, pp.1-14, 2016.

D. V. Widder, The Laplace transform, 1941.

R. L. Schilling, R. Song, and Z. Vondra?ek, Bernstein functions. Theory and applications, vol.37, 2012.

G. Frobenius, Über Matrizen aus nicht negativen Elementen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, pp.456-477, 1912.

M. Benzi, D. Bertaccini, F. Durastante, and I. Simunec, Nonlocal network dynamics via fractional graph Laplacians, Journal of Complex Networks, pp.1-27, 2020.

R. N. Pillai and K. Jayakumar, Discrete Mittag-Leffler distributions, Stat. Prob. Lett, vol.23, pp.271-274, 1995.

O. N. Repin and A. I. Saichev, Fractional Poisson law, Radiophysics and Quantum Electronics, vol.43, pp.738-741, 2000.

N. Laskin, Fractional Poisson process, Communications in Nonlinear Science and Numerical Simulation, vol.8, pp.201-213, 2003.

F. Mainardi, R. Gorenflo, and E. Scalas, A fractional generalization of the Poisson processes, Vietnam Journ. Math, vol.32, 2004.

L. Beghin and E. Orsingher, Fractional Poisson processes and related planar random motions, Electron. J. Probab, vol.14, issue.61, pp.1790-1826, 2009.

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, 1993.

E. Orsingher and B. Toaldo, Counting processes with Bern?tein intertimes and random jumps, J. Appl. Probab, vol.52, issue.4, pp.1028-1044, 2015.

R. Garra, E. Orsingher, and M. Scavino, Some probabilistic properties of fractional point processes, Stoch. Anal. Appl, vol.35, issue.4, pp.701-718, 2017.

I. Podlubny, Fractional Differential Equations, 1999.

T. Michelitsch, G. Maugin, S. Derogar, A. Nowakowski, and F. Nicolleau, Sur une généralisation de l'opérateur fractionnaire, 2011.

A. Giusti, General fractional calculus and Prabhakar's theory, Commun. Nonlinear Sci. Numer. Simul, vol.83, 2020.

A. P. Riascos, J. Wang-michelitsch, and T. M. Michelitsch, Aging in transport processes on networks with stochastic cumulative damage, Phys. Rev. E, vol.100, p.22312, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02315117

I. M. Gel'fand and G. E. Shilov, Generalized Functions, 1968.

, Submitted to Fractal Fract. for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license