N. Arnoult and J. Karlseder, Complex interactions between the DNA-damage response and mammalian telomeres, Nat. Struct. Mol. Biol, vol.22, pp.859-866, 2015.

J. Nandakumar and T. R. Cech, Finding the end: recruitment of telomerase to telomeres, Nat. Rev. Mol. Cell Biol, vol.14, pp.69-82, 2013.

R. E. Verdun and J. Karlseder, Replication and protection of telomeres, Nature, vol.447, pp.924-931, 2007.

E. Gilson and V. Géli, How telomeres are replicated, Nat. Rev. Mol. Cell Biol, vol.8, pp.825-838, 2007.

T. De-lange, Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev, vol.19, pp.2100-2110, 2005.

M. E. Ludérus, B. Van-steensel, L. Chong, O. C. Sibon, F. F. Cremers et al., Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex, J. Cell Biol, vol.135, pp.867-881, 1996.

P. G. Kaminker, S. Kim, P. Desprez, and J. Campisi, A novel form of the telomere-associated protein TIN2 localizes to the nuclear matrix, Cell Cycle, vol.8, pp.931-939, 2009.

N. Arnoult, C. Schluth-bolard, A. Letessier, I. Drascovic, R. Bouarich-bourimi et al., Replication timing of human telomeres is chromosome arm-specific, influenced by subtelomeric structures and connected to nuclear localization, PLos Genet, vol.6, p.1000920, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00815144

G. Nishibuchi and J. Déjardin, The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals, Chromosome Res, vol.25, pp.77-87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01488403

C. M. Azzalin, P. Reichenbach, L. Khoriauli, E. Giulotto, and J. Lingner, Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends, Science, vol.318, pp.798-801, 2007.

S. Schoeftner and M. A. Blasco, Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II, Nature, vol.10, pp.228-236, 2007.

B. Steglich, S. Sazer, and K. Ekwall, Transcriptional regulation at the yeast nuclear envelope, Nucleus, vol.4, pp.379-389, 2013.

B. Steglich, A. Strålfors, O. Khorosjutina, J. Persson, A. Smialowska et al., The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast, PLos Genet, vol.11, p.1005101, 2015.

A. Strålfors, J. Walfridsson, H. Bhuiyan, and K. Ekwall, The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation, PLoS Genet, vol.7, p.1001334, 2011.

C. Hu, H. Inoue, W. Sun, Y. Takeshita, Y. Huang et al., The inner nuclear membrane protein Bqt4 in fission yeast contains a DNA-Binding domain essential for telomere association with the nuclear envelope, Structure, vol.27, pp.335-343, 2018.

Y. Chikashige, M. Yamane, K. Okamasa, C. Tsutsumi, T. Kojidani et al., Membrane proteins Bqt3 and -4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation, J. Cell Biol, vol.187, pp.413-427, 2009.

I. Fujita, Y. Nishihara, M. Tanaka, H. Tsujii, Y. Chikashige et al., Telomere-nuclear envelope dissociation promoted by Rap1 phosphorylation ensures faithful chromosome segregation, Curr. Biol, vol.22, pp.1932-1937, 2012.

H. Funabiki, I. Hagan, S. Uzawa, and M. Yanagida, Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast, J. Cell Biol, vol.121, pp.961-976, 1993.

H. Ebrahimi, H. Masuda, D. Jain, and J. P. Cooper, Distinct 'safe zones' at the nuclear envelope ensure robust replication of heterochromatic chromosome regions, p.914, 2018.

P. Oza, S. L. Jaspersen, A. Miele, J. Dekker, and C. L. Peterson, Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery, Genes Dev, vol.23, pp.912-927, 2009.

H. Schober, H. Ferreira, V. Kalck, L. R. Gehlen, and S. M. Gasser, Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination, Genes Dev, vol.23, pp.928-938, 2009.

L. Maestroni, J. Audry, S. Matmati, B. Arcangioli, V. Géli et al., Eroded telomeres are rearranged in quiescent fission yeast cells through duplications of subtelomeric sequences, Nat. Commun, vol.8, p.1684, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788868

L. Maestroni, V. Géli, and S. Coulon, STEEx, a boundary between the world of quiescence and the vegetative cycle, Curr. Genet, vol.17, pp.3107-3105, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02143607

P. Hentges, B. Van-driessche, L. Tafforeau, J. Vandenhaute, and A. M. Carr, Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe, Yeast, vol.22, pp.1013-1019, 2005.

J. Bähler, J. Q. Wu, M. S. Longtine, N. G. Shah, A. Mckenzie et al., Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe, Yeast, vol.14, pp.943-951, 1998.

S. Tournier, Y. Gachet, V. Buck, J. S. Hyams, and J. B. Millar, Disruption of astral microtubule contact with the cell cortex activates a Bub1, Bub3, and Mad3-dependent checkpoint in fission yeast, Mol. Biol. Cell, vol.15, pp.3345-3356, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02381626

P. B. Beauregard, R. Guérin, C. Turcotte, S. Lindquist, and L. A. Rokeach, A nucleolar protein allows viability in the absence of the essential ER-residing molecular chaperone calnexin, J. Cell Sci, vol.122, pp.1342-1351, 2009.

S. Moreno, A. Klar, and P. Nurse, Molecular genetic analysis of fission yeast Schizosaccharomyces pombe, Methods Enzymol, vol.194, pp.795-823, 1991.

S. Ben-hassine and B. Arcangioli, Tdp1 protects against oxidative DNA damage in non-dividing fission yeast, EMBO J, vol.28, pp.632-640, 2009.

A. Lock, K. Rutherford, M. A. Harris, J. Hayles, S. G. Oliver et al., PomBase 2018: user-driven reimplementation of the fission yeast database provides rapid and intuitive access to diverse, interconnected information, Nucleic Acids Res, vol.47, pp.821-827, 2019.

V. Wood, R. Gwilliam, M. Rajandream, M. Lyne, R. Lyne et al., The genome sequence of Schizosaccharomyces pombe, Nature, vol.415, pp.871-880, 2002.

F. Hediger, A. Berthiau, G. Van-houwe, E. Gilson, and S. M. Gasser, Subtelomeric factors antagonize telomere anchoring and Tel1-independent telomere length regulation, EMBO J, vol.25, pp.857-867, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02655951

C. Reyes, C. Serrurier, T. Gauthier, Y. Gachet, and S. Tournier, , 2015.

, Aurora B prevents chromosome arm separation defects by promoting telomere dispersion and disjunction, J. Cell Biol, vol.208, pp.713-727

M. Yanagida, Cellular quiescence: are controlling genes conserved?, Trends Cell Biol, vol.19, pp.705-715, 2009.

D. Laporte, F. Courtout, S. Tollis, and I. Sagot, Quiescent Saccharomyces cerevisiae forms telomere hyperclusters at the nuclear membrane vicinity through a multifaceted mechanism involving Esc1, the Sir complex, and chromatin condensation, Mol. Biol. Cell, vol.27, pp.1875-1884, 2016.

A. Bah, H. Wischnewski, V. Shchepachev, and C. M. Azzalin, The telomeric transcriptome of Schizosaccharomyces pombe, Nucleic Acids Res, vol.40, pp.2995-3005, 2012.

S. G. Swygert, S. Kim, X. Wu, T. Fu, T. Hsieh et al., Condensin-dependent chromatin compaction represses transcription globally during quiescence, Mol. Cell, vol.73, pp.533-546, 2019.

M. Guidi, M. Ruault, M. Marbouty, I. Loïodice, A. Cournac et al., Spatial reorganization of telomeres in long-lived quiescent cells, Genome Biol, vol.16, p.206, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01206018

M. T. Rutledge, M. Russo, J. Belton, J. Dekker, and J. R. Broach, The yeast genome undergoes significant topological reorganization in quiescence, Nucleic Acids Res, vol.43, pp.8299-8313, 2015.

D. Laporte and I. Sagot, Microtubules move the nucleus to quiescence, Nucleus, vol.5, pp.113-118, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01074775

A. Bah and C. M. Azzalin, The telomeric transcriptome: from fission yeast to mammals, Int. J. Biochem. Cell Biol, vol.44, pp.1055-1059, 2012.

J. Greenwood and J. P. Cooper, Non-coding telomeric and subtelomeric transcripts are differentially regulated by telomeric and heterochromatin assembly factors in fission yeast, Nucleic Acids Res, vol.40, pp.2956-2963, 2012.

M. Moravec, H. Wischnewski, A. Bah, Y. Hu, N. Liu et al., TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe, EMBO Rep, vol.17, pp.999-1012, 2016.

E. Oya, M. Durand-dubief, A. Cohen, V. Maksimov, C. Schurra et al., Leo1 is essential for the dynamic regulation of heterochromatin and gene expression during cellular quiescence, Epigenet. Chromatin, vol.12, p.45, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02545917

M. N. Simon, D. Churikov, and V. Géli, Replication stress as a source of telomere recombination during replicative senescence in Saccharomyces cerevisiae, FEMS Yeast Res, vol.16, p.85, 2016.

K. M. Miller and J. P. Cooper, The telomere protein Taz1 is required to prevent and repair genomic DNA breaks, Mol. Cell, vol.11, pp.303-313, 2003.

B. Khadaroo, M. T. Teixeira, P. Luciano, N. Eckert-boulet, S. M. Germann et al., The DNA damage response at eroded telomeres and tethering to the nuclear pore complex, Nature, vol.11, pp.980-987, 2009.

D. Churikov, F. Charifi, N. Eckert-boulet, S. Silva, M. N. Simon et al., SUMO-dependent relocalization of eroded telomeres to nuclear pore complexes controls telomere recombination, Cell Rep, vol.15, pp.1242-1253, 2016.