F. Bray, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians, vol.68, pp.394-424, 2018.

E. P. Wigner, The unreasonable effectiveness of mathematics in the natural sciences. Richard courant lecture in mathematical sciences delivered at New York University, Communications on Pure and Applied Mathematics, vol.13, pp.1-14, 1959.

D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l'inoculation pour la prévenir. Histoire de l'Acad, Roy. Sci, pp.1-45, 1760.

R. A. Gatenby and P. K. Maini, Mathematical oncology: cancer summed up, Nature, vol.421, pp.321-321, 2003.

D. Barbolosi, J. Ciccolini, B. Lacarelle, F. Barlési, and N. André, Computational oncology-mathematical modelling of drug regimens for precision medicine, Nature reviews Clinical oncology, vol.13, p.242, 2016.

P. M. Altrock, L. L. Liu, and F. Michor, The mathematics of cancer: integrating 11

T. Barrett, NCBI GEO: archive for functional genomics data sets-update

, Nucleic Acids Res, vol.41, pp.991-995, 2013.

T. R. Golub, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, vol.286, pp.531-537, 1999.

S. Ramaswamy, Multiclass cancer diagnosis using tumor gene expression signatures, Proc Natl Acad Sci, vol.98, pp.15149-15154, 2001.

C. M. Perou, Molecular portraits of human breast tumours, Nature, vol.406, pp.747-752, 2000.

L. J. Veer and . Van-'t, Gene expression profiling predicts clinical outcome of breast cancer, Nature, vol.415, pp.530-536, 2002.

K. Shedden, Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study, Nat Med, vol.14, pp.822-827, 2008.

J. Guinney, The consensus molecular subtypes of colorectal cancer

. Med, , vol.21, pp.1350-1356, 2015.

D. Capper, DNA methylation-based classification of central nervous system tumours, Nature, vol.555, pp.469-474, 2018.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proc Natl Acad Sci, vol.95, pp.14863-14868, 1998.

G. Alexe, G. S. Dalgin, S. Ganesan, C. Delisi, and G. Bhanot, Analysis of breast cancer progression using principal component analysis and clustering, J. Biosci, vol.32, pp.1027-1039, 2007.

D. G. Ijzendoorn and . Van, Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas, PLoS Comput Biol, vol.15, p.1006826, 2019.

J. Listgarten, Predictive Models for Breast Cancer Susceptibility from

, Multiple Single Nucleotide Polymorphisms, Clin Cancer Res, vol.10, pp.2725-2737, 2004.

W. Zhu, L. Xie, J. Han, and X. Guo, The Application of Deep Learning in Cancer Prognosis Prediction, Cancers, vol.12, p.603, 2020.

T. Ching, X. Zhu, and L. X. Garmire, Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data, PLoS Comput Biol, vol.14, p.1006076, 2018.

K. Chaudhary, O. B. Poirion, L. Lu, and L. X. Garmire, Deep Learning-Based

, Multi-Omics Integration Robustly Predicts Survival in Liver Cancer, Clin. Cancer Res, vol.24, pp.1248-1259, 2018.

Z. Huang, Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer. Front Genet, vol.10, p.166, 2019.

S. Yousefi, Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models, Sci Rep, vol.7, pp.1-11, 2017.

A. Esteva, Dermatologist-level classification of skin cancer with deep neural networks, Nature, vol.542, pp.115-118, 2017.

Y. Liu, Artificial Intelligence-Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for Pathologists, Arch. Pathol. Lab. Med, vol.143, pp.859-868, 2019.

P. C. Chen, An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis, Nature Medicine, vol.25, pp.1453-1457, 2019.

J. N. Kather, Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study, PLOS Medicine, vol.16, p.1002730, 2019.

J. N. Kather, Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer, Nat. Med, vol.25, pp.1054-1056, 2019.

N. Coudray, Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning, Nat. Med, vol.24, pp.1559-1567, 2018.

P. Lambin, Radiomics: extracting more information from medical images using advanced feature analysis, Eur J Cancer, vol.48, pp.441-446, 2012.

A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. Aerts,

, Artificial intelligence in radiology, Nature Reviews Cancer, vol.18, pp.500-510, 2018.

T. P. Coroller, CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma, Radiotherapy and Oncology, vol.114, pp.345-350, 2015.

E. R. Velazquez, Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer, Cancer Res, vol.77, pp.3922-3930, 2017.

P. Grossmann, Defining the biological basis of radiomic phenotypes in lung cancer, Elife, vol.6, 2017.

A. Crombé, T2 -based MRI Delta-radiomics improve response prediction in soft-tissue sarcomas treated by neoadjuvant chemotherapy, J Magn Reson Imaging, vol.50, pp.497-510, 2019.

R. Sun, A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study, Lancet Oncol, vol.19, pp.1180-1191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01958243

M. L. Welch, Vulnerabilities of radiomic signature development: The need for safeguards, Radiother Oncol, vol.130, pp.2-9, 2019.

H. Peng, Prognostic Value of Deep Learning PET/CT-based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma, Clin Cancer Res, 2019.

A. Hosny, Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study, PLoS Med, vol.15, 2018.

J. Lao, A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme, Sci Rep, vol.7, p.10353, 2017.

H. Wang, Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images, EJNMMI Research, vol.7, p.11, 2017.

K. H. Cha, Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning, Sci Rep, vol.7, p.8738, 2017.

Y. Xu, Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging, Clin Cancer Res, vol.25, pp.3266-3275, 2019.

S. P. Somashekhar, Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board, Ann Oncol, vol.29, pp.418-423, 2018.

W. Lee, Assessing Concordance With Watson for Oncology

, Cognitive Computing Decision Support System for Colon Cancer Treatment in Korea

, JCO Clin Cancer Inform, vol.2, pp.1-8, 2018.

, IBM pitched Watson as a revolution in cancer care. It's nowhere close, 2017.

M. K. Yu, Visible Machine Learning for, Biomedicine. Cell, vol.173, pp.1562-1565, 2018.

J. Tang, A. Shalabi, and V. M. Hubbard-lucey, Comprehensive analysis of the clinical immuno-oncology landscape, Ann Oncol, vol.29, pp.84-91, 2018.

L. B. Sheiner, B. Rosenberg, and K. L. Melmon, Modelling of individual pharmacokinetics for computer-aided drug dosage, Computers and Biomedical Research, vol.5, pp.441-459, 1972.

G. Bajaj, Model-Based Population Pharmacokinetic Analysis of

, Nivolumab in Patients With Solid Tumors, CPT Pharmacometrics Syst Pharmacol, vol.6, pp.58-66, 2017.

C. Liu, Association of time-varying clearance of nivolumab with disease dynamics and its implications on exposure response analysis, Clin. Pharmacol. Ther, vol.101, pp.657-666, 2017.

H. Li, Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response, J Pharmacokinet Pharmacodyn, vol.44, pp.403-414, 2017.

Y. Feng, Model-based clinical pharmacology profiling of ipilimumab in patients with advanced melanoma, Br J Clin Pharmacol, vol.78, pp.106-117, 2014.

K. Sanghavi, Population Pharmacokinetics of Ipilimumab in Combination With Nivolumab in Patients With Advanced Solid Tumors, CPT: Pharmacometrics & Systems Pharmacology, vol.9, pp.29-39, 2020.

M. Ahamadi, Model-Based Characterization of the Pharmacokinetics of Pembrolizumab: A Humanized Anti-PD-1 Monoclonal Antibody in Advanced Solid Tumors, CPT Pharmacometrics Syst Pharmacol, vol.6, pp.49-57, 2017.

M. Stroh, Clinical Pharmacokinetics and Pharmacodynamics

, Atezolizumab in Metastatic Urothelial Carcinoma, Clin. Pharmacol. Ther, vol.102, pp.305-312, 2017.

P. G. Baverel, Population Pharmacokinetics of Durvalumab in Cancer Patients and Association With Longitudinal Biomarkers of Disease Status, Clin. Pharmacol. Ther, vol.103, pp.631-642, 2018.

M. J. Ratain and D. A. Goldstein, Time Is Money: Optimizing the Scheduling of Nivolumab, J Clin Oncol JCO, vol.18, pp.45-49, 2018.

Y. Feng, Exposure-response relationships of the efficacy and safety of ipilimumab in patients with advanced melanoma, Clin Cancer Res, vol.19, pp.3977-3986, 2013.

X. Wang, Quantitative Characterization of the Exposure-Response Relationship for Cancer Immunotherapy: A Case Study of Nivolumab in Patients With Advanced Melanoma, CPT Pharmacometrics Syst Pharmacol, vol.6, pp.40-48, 2017.

Y. Feng, Nivolumab Exposure-Response Analyses of Efficacy and Safety in Previously Treated Squamous or Nonsquamous Non-Small Cell Lung Cancer, Clin Cancer Res, vol.23, pp.5394-5405, 2017.

D. C. Turner, Pembrolizumab Exposure-Response Assessments Challenged by Association of Cancer Cachexia and Catabolic Clearance, Clin Cancer Res, 2018.

K. M. Morrissey, Alternative dosing regimens for atezolizumab: an example of model-informed drug development in the postmarketing setting, Cancer Chemother Pharmacol, vol.84, pp.1257-1267, 2019.

G. V. Long, Assessment of nivolumab exposure and clinical safety of 480
URL : https://hal.archives-ouvertes.fr/hal-02143540

, mg every 4 weeks flat-dosing schedule in patients with cancer, Ann Oncol, vol.29, pp.2208-2213, 2018.

X. Zhao, X. Wang, Y. Feng, S. Agrawal, and D. K. Shah, Application of PK-PD Modeling and Simulation Approaches for Immuno-Oncology Drugs, Development of

, Antibody-Based Therapeutics, vol.4, pp.207-222, 2018.

A. Lindauer, Translational pharmacokinetic/pharmacodynamic modeling of tumor growth inhibition supports dose-range selection of the anti-PD-1 antibody pembrolizumab, CPT Pharmacometrics Syst Pharmacol, vol.6, pp.11-20, 2017.

M. S. Chatterjee, Population Pharmacokinetic/Pharmacodynamic

, Modeling of Tumor Size Dynamics in Pembrolizumab-Treated Advanced Melanoma

, CPT Pharmacometrics Syst Pharmacol, vol.6, pp.29-39, 2017.

B. Ribba, Prediction of the Optimal Dosing Regimen Using a Mathematical Model of Tumor Uptake for Immunocytokine-Based Cancer Immunotherapy, Clin Cancer Res, vol.24, pp.3325-3333, 2018.

P. Sharma, S. Hu-lieskovan, J. A. Wargo, A. Ribas, and . Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy, Cell, vol.168, pp.707-723, 2017.

A. C. Palmer and P. Sorger, Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy, Cell, vol.171, pp.1678-1691, 2017.

J. Ciccolini, D. Barbolosi, N. André, F. Barlesi, and S. Benzekry, Mechanistic Learning for Combinatorial Strategies With Immuno-oncology Drugs: Can Model-Informed Designs Help Investigators? JCO Precision Oncology, pp.486-491, 2020.

O. Milberg, A QSP Model for Predicting Clinical Responses to

. Monotherapy, Combination and Sequential Therapy Following CTLA-4, PD-1, and PD-L1 Checkpoint Blockade, Scientific Reports, vol.9, p.11286, 2019.

R. Serre, Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy, Cancer Res, vol.76, pp.4931-4940, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01336779

Y. Kosinsky, Radiation and PD-(L)1 treatment combinations: immune response and dose optimization via a predictive systems model, J Immunother Cancer, vol.6, p.17, 2018.

R. Serre, F. Barlesi, X. Muracciole, and D. Barbolosi, Immunologically effective dose: a practical model for immuno-radiotherapy, Oncotarget, vol.9, pp.31812-31819, 2018.

S. J. Antonia, Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer, N Engl J Med, vol.377, pp.1919-1929, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01753457

S. Wilson, Modeling and predicting optimal treatment scheduling between the antiangiogenic drug sunitinib and irinotecan in preclinical settings, CPT Pharmacometrics Syst. Pharmacol, vol.4, pp.720-727, 2015.

D. Imbs, Revisiting Bevacizumab + Cytotoxics Scheduling Using Mathematical Modeling: Proof of Concept Study in Experimental Non-Small Cell Lung Carcinoma, CPT Pharmacometrics Syst Pharmacol, vol.7, pp.42-50, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01624423

S. Benzekry, Metronomic reloaded: Theoretical models bringing chemotherapy into the era of precision medicine, Semin Cancer Biol, vol.35, pp.53-61, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01195547

H. E. Skipper, F. M. Schabel, and W. S. Wilcox, Experimental evaluation of potential anticancer agents XIII. On the criteria and kinetics associated with 'curability' of experimental leukemia, Cancer Chemother Rep, vol.35, pp.1-111, 1964.

W. J. Jusko, Pharmacodynamics of Chemotherapeutic Effects: Dose-Time

, Response Relationships for Phase-Nonspecific Agents, JPharmSci, vol.60, pp.892-895, 1971.

W. J. Jusko, A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents, Journal of Pharmacokinetics and Biopharmaceutics, vol.1, pp.175-200, 1973.

L. Norton and R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treat Rep, vol.61, pp.1307-1317, 1977.

L. Norton, A Gompertzian model of human breast cancer growth, Cancer Res, vol.48, pp.7067-7071, 1988.

M. L. Citron, Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741, J Clin Oncol, vol.21, pp.1431-1439, 2003.

L. E. Friberg, A. Henningsson, H. Maas, L. Nguyen, and M. O. Karlsson, Model of chemotherapy-induced myelosuppression with parameter consistency across drugs

, J. Clin. Oncol, vol.20, pp.4713-4721, 2002.

C. Meille, D. Barbolosi, J. Ciccolini, G. Freyer, and A. Iliadis, Revisiting Dosing Regimen Using Pharmacokinetic/Pharmacodynamic Mathematical Modeling: Densification and Intensification of Combination Cancer Therapy, Clin Pharmacokinet, vol.55, pp.1015-1025, 2016.

E. Hénin, Revisiting dosing regimen using PK/PD modeling: the MODEL1

, phase I/II trial of docetaxel plus epirubicin in metastatic breast cancer patients, Breast Cancer Res Treat, vol.156, pp.331-341, 2016.

F. Barlesi, Mathematical modeling for Phase I cancer trials: A study of metronomic vinorelbine for advanced non-small cell lung cancer (NSCLC) and mesothelioma patients, Oncotarget, vol.8, pp.47161-47166, 2017.

M. Gerlinger, Intratumor heterogeneity and branched evolution revealed by multiregion sequencing, N. Engl. J. Med, vol.366, pp.883-892, 2012.

J. H. Goldie and . Coldman, A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate, Cancer Treat Rep, vol.63, pp.1727-1733, 1979.

J. Chmielecki, Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling, Sci Transl Med, vol.3, pp.90-59, 2011.

H. A. Yu, Phase 1 study of twice weekly pulse dose and daily low-dose erlotinib as initial treatment for patients with EGFR-mutant lung cancers, Ann Oncol, vol.28, pp.278-284, 2017.

R. A. Gatenby, A change of strategy in the war on cancer, Nature, vol.459, pp.508-509, 2009.

J. Foo and F. Michor, Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies, PLoS Comput Biol, vol.5, p.1000557, 2009.

R. Gatenby, A. S. Silva, R. J. Gillies, and B. R. Frieden, Adaptive therapy, Cancer Res, vol.69, pp.4894-4903, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01887358

P. M. Enriquez-navas, Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer, Sci Transl Med, vol.8, pp.327-351, 2016.

J. Zhang, J. J. Cunningham, J. S. Brown, and R. Gatenby, Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer, Nature Communications, vol.8, p.1816, 2017.

E. A. Eisenhauer, New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1), European Journal of Cancer, vol.45, pp.228-247, 2009.

Y. Feng, X. Wang, S. Suryawanshi, A. Bello, and A. Roy, Linking Tumor Growth Dynamics to Survival in Ipilimumab-Treated Patients With Advanced Melanoma Using Mixture Tumor Growth Dynamic Modeling, CPT Pharmacometrics Syst Pharmacol, vol.8, pp.825-834, 2019.

L. Tham, A Pharmacodynamic Model for the Time Course of Tumor Shrinkage by Gemcitabine + Carboplatin in Non-Small Cell Lung Cancer Patients, Clin Cancer Res, vol.14, pp.4213-4218, 2008.

Y. Wang, Elucidation of relationship between tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development, Clin Pharmacol Ther, vol.86, pp.167-174, 2009.

L. Claret, Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics, J Clin Oncol, vol.27, pp.4103-4108, 2009.

W. D. Stein, Tumor growth rates derived from data for patients in a clinical trial correlate strongly with patient survival: a novel strategy for evaluation of clinical trial data, The Oncologist, vol.13, pp.1046-1054, 2008.

R. Bruno, Progress and Opportunities to Advance Clinical Cancer Therapeutics Using Tumor Dynamic Models, Clin Cancer Res, pp.1-22, 2019.

B. Ribba, A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapy, Clin Cancer Res, vol.18, pp.5071-80, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744626

Y. Zheng, Population Modeling of Tumor Kinetics and Overall Survival to Identify Prognostic and Predictive Biomarkers of Efficacy for Durvalumab in Patients With Urothelial Carcinoma, Clin Pharmacol Ther, vol.103, pp.643-652, 2018.

L. Claret, A Model of Overall Survival Predicts Treatment Outcomes with Atezolizumab versus Chemotherapy in Non-Small Cell Lung Cancer Based on Early Tumor Kinetics, Clin Cancer Res, vol.24, pp.3292-3298, 2018.

I. Netterberg, A PK/PDAnalysis of Circulating Biomarkers and Their Relationship to Tumor Response in Atezolizumab-Treated non-small Cell Lung Cancer Patients, Clin Pharmacol Ther, vol.105, pp.486-495, 2018.

C. Tardivon, Association Between Tumor Size Kinetics and Survival in Patients With Urothelial Carcinoma Treated With Atezolizumab: Implication for Patient Follow-Up, Clin Pharmacol Ther, vol.106, pp.810-820, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02103513

S. Desmée, F. Mentré, C. Veyrat-follet, and J. Guedj, Nonlinear Mixed-Effect Models for Prostate-Specific Antigen Kinetics and Link with Survival in the Context of Metastatic Prostate Cancer: a Comparison by Simulation of Two-Stage and Joint Approaches, AAPS J, vol.17, pp.691-699, 2015.

A. Król, C. Tournigand, S. Michiels, and V. Rondeau, Multivariate joint frailty model for the analysis of nonlinear tumor kinetics and dynamic predictions of death

, Stat Med, vol.37, pp.2148-2161, 2018.

C. Proust-lima and J. M. Taylor, Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: a joint modeling approach, Biostatistics, vol.10, pp.535-549, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00367752

S. Benzekry, C. Lamont, D. Barbolosi, L. Hlatky, and P. Hahnfeldt,

, Mathematical Modeling of Tumor-Tumor Distant Interactions Supports a Systemic Control of Tumor Growth, Cancer Res, vol.77, pp.5183-5193, 2017.

L. Claret, Comparison of tumor size assessments in tumor growth inhibition-overall survival models with second-line colorectal cancer data from the VELOUR study, Cancer Chemother Pharmacol, vol.82, pp.49-54, 2018.

H. B. Mistry, G. Helmlinger, N. Al-huniti, K. Vishwanathan, and J. Yates, Resistance models to EGFR inhibition and chemotherapy in non-small cell lung cancer via analysis of tumour size dynamics, Cancer Chemother Pharmacol, 2019.

N. Hartung, Study of metastatic kinetics in metastatic melanoma treated with B-RAF inhibitors: Introducing mathematical modelling of kinetics into the therapeutic decision, PLoS ONE, vol.12, p.176080, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01585748

E. Schindler, Pharmacometric Modeling of Liver Metastases' Diameter, Volume, and Density and Their Relation to Clinical Outcome in Imatinib-Treated Patients With Gastrointestinal Stromal Tumors, CPT: Pharmacometrics & Systems Pharmacology, vol.6, pp.449-457, 2017.

E. Schindler, M. A. Amantea, M. O. Karlsson, and L. E. Friberg, PK-PD modeling of individual lesion FDG-PET response to predict overall survival in patients with sunitinib-treated gastrointestinal stromal tumor, CPT: Pharmacometrics & Systems Pharmacology, vol.5, pp.173-181, 2016.

K. Iwata, K. Kawasaki, and N. Shigesada, A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors, J Theor Biol, vol.203, pp.177-186, 2000.

H. Haeno, Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies, Cell, vol.148, pp.362-375, 2012.

M. Bilous, Quantitative mathematical modeling of clinical brain metastasis dynamics in non-small cell lung cancer, Sci Rep, vol.9, p.13018, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02509474

N. Hartung, Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice, Cancer Res, vol.74, pp.6397-6407, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01107681

S. Benzekry, Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach, Cancer Res, vol.76, pp.535-547, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01222046

M. W. Retsky, Computer simulation of a breast cancer metastasis model, Breast Cancer Res Treat, vol.45, pp.193-202, 1997.

L. Hanin, K. Seidel, and D. Stoevesandt, A "universal" model of metastatic cancer, its parametric forms and their identification: what can be learned from sitespecific volumes of metastases, J Math Biol, vol.72, pp.1633-1662, 2016.

F. Mentré, Pharmacometrics and Systems Pharmacology 2030, Clinical Pharmacology & Therapeutics, vol.107, pp.76-78, 2020.

T. L. Lai, M. Shih, and S. P. Wong, A new approach to modeling covariate effects and individualization in population pharmacokinetics-pharmacodynamics, J Pharmacokinet Pharmacodyn, vol.33, pp.49-74, 2006.

J. Knights, Vertical Integration of Pharmacogenetics in Population PK/PD Modeling: A Novel Information Theoretic Method, CPT: Pharmacometrics & Systems Pharmacology, vol.2, p.25, 2013.

M. C. Lancaster and E. A. Sobie, Improved Prediction of Drug-Induced Torsades de Pointes Through Simulations of Dynamics and Machine Learning Algorithms, Clin. Pharmacol. Ther, vol.100, pp.371-379, 2016.

C. Nicolò, Machine Learning and Mechanistic Modeling for Prediction of

, Metastatic Relapse in Early-Stage Breast Cancer, JCO Clin Cancer Inform, vol.4, pp.259-274, 2020.

J. Ciccolini, S. Benzekry, and F. Barlesi, Deciphering response and resistance to immunecheckpoint inhibitors in lung cancer with artificial intelligence-based analysis: the PIONeeR and QUANTIC projects, British Journal of Cancer under review, 2020.

K. Clark, The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, J Digit Imaging, vol.26, pp.1045-1057, 2013.

D. A. Gutman, The Digital Slide Archive: A Software Platform for

, Analysis of Histology for Cancer Research, Cancer Res, vol.77, pp.75-78, 2017.

K. Hede, Project Data Sphere to Make Cancer Clinical Trial Data Publicly Available, J Natl Cancer Inst, vol.105, pp.1159-1160, 2013.