
HAL Id: hal-02915635
https://cnrs.hal.science/hal-02915635

Submitted on 14 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Technology-agnostic power optimization for AES block
cipher

Kais Chibani, Adrien Facon, Sylvain Guilley, Youssef Souissi

To cite this version:
Kais Chibani, Adrien Facon, Sylvain Guilley, Youssef Souissi. Technology-agnostic power
optimization for AES block cipher. ICECS, Dec 2018, Bordeaux, France. pp.397-400,
�10.1109/ICECS.2018.8617921�. �hal-02915635�

https://cnrs.hal.science/hal-02915635
https://hal.archives-ouvertes.fr


Technology-agnostic power optimization for AES
block cipher

Kais Chibani∗, Adrien Facon∗,†, Sylvain Guilley∗,†,‡ and Youssef Souissi∗

∗ Secure-IC S.A.S † École Normale Supérieure ‡ TELECOM ParisTech

Abstract—On the one hand, IoT applications require low-
power consumption. On the other hand, they also need to
embed strong cryptographic algorithms to protect the data they
manipulate. We address this issue in the context of the AES block
cipher. The challenge is to design an AES module consuming
as little as possible, mostly by leveraging on the architecture.
This paper presents two contributions. First of all, we present
design guidelines for low-power AES, including lazy dataflow,
glitch reduction techniques in combinational logic and algebraic
simplification of diffusion operations. These optimizations allow
to divide by two the power consumption of the AES module. Sec-
ond, we show a methodology to improve the power consumption
using a high-level technology-independent power and security
evaluation tool (Virtualyzr).

Key words: IoT, low-power, AES architecture, high-level
power optimization, LORA, BLE

I. INTRODUCTION

Recent advances in technologies of wireless communica-
tion, sensors, and embedded microprocessors have laid a solid
foundation for the emerging pradigm of Internet of Things
(IoT). It is a quickly growing market, driven by new applica-
tions such as smart devices (e.g., sensor networks, RFID tags,
smart bulbs, gadgets, etc).

Low-power devices are required as they will typically be
deployed for years without being connected to a power source.
Some leverage on energy scavenging, but others such as
battery-powered systems, shall live with limited energy. At the
same time, the continuous development of IoT raises concerns
about the security which is, nowadays, crucial and must no
longer be seen as an additional feature for many applications.
Consequently, low power devices shall communicate in a
secure way. Transmission of information, especially the uplink,
consumes a lot of energy when it is wireless. Moreover, this
information shall be protected, hence cryptography is required.

Software implementations of cryptographic functions re-
duce the overall throughput and increase power consumption.
Therefore, implementing these functions in hardware can be
used to optimize throughput and power consumption [2] and
to achieve good security, power, and area trade-offs. In IoT
applications, the Advanced Encryption Standard (AES) [9] is
a core security element used in the current IoT proposals
such as LoraWan [8] and Sigfox [11]. The same remark
applies to Bluetooth Low Energy (BLE) technology which
already uses the AES-GCM cipher to provide data encryption
and integrity over the wireless link. Moreover, AES is a
conventional block cipher primitive which is currently adopted

by standard Internet security protocol, such as IPSec and TLS.
Therefore, we focus our analysis on AES, even though this
block cipher is not the most lightweight. In this respect, we
propose a methodology based on a set of architectural power
optimizations that can be used to implement low-power AES
crypto module. Our main goal is to optimize the architecture
of data encryption on custom silicon (ASIC) libraries with
energy-efficiency as a target. We show also a new method
to improve the power consumption of several architectures
independently of the target technology.

The rest of the paper is structured as follows. Section II
describes the methodology to optimize the power by apply-
ing various activity minimization techniques. Implementation
results will be discussed in Section III. The conclusion and
perspectives are in Section IV.

II. HIGH-LEVEL POWER OPTIMIZATIONS

In this section, we explain how to optimize the power
at a high-level description. We do not address high-level
power estimation, which is a different topic. Neither do we
address technology-level power improvements, such as sub-
/near-threshold circuit techniques [12].

A. Considerations for power evaluation

Power can be static, caused by leakage, or dynamic, caused
by switching. Switching activity is crucial because dynamic
power is, after all, proportional to the value of the toggle count
switching activity in the design. In general, the toggle count
equals the number of 0→ 1 and 1→ 0 transitions of a design
object (for example, a net, pin, or port) per unit of time.

The majority of the power in digital systems is dissipated
dynamically, i.e., static leakage is ignored and dynamic power
is estimated as the number of gates toggles. This means that
each gate which toggles consumes the same amount of power.
Obviously, those two assumptions are approximations of the
truth. Indeed, static power does exist, and also contributes
to the leakage. Besides, dynamic power is indeed increasing
when the number of toggling gates increase, however, each
gate has its own leaking profile. One should weight each
gate independently from the others. This is why we focus
on reducing dynamic power consumption. Several factors can
have a simultaneous impact on the power consumption in AES
such as the chosen operation mode (e.g., ECB, GCM, etc.)
or the use of techniques for improving area efficiency (e.g.,
the Common Subexpression Elimination (CSE) algorithms



adopted to eliminate the redundant gates). By investigating
the power consumption of each primitive component in AES,
it appeared that the key scheduling and the SubBytes functions
consume much of the total as shown in [1]. Thus, the toggle
count parameter and thereby the power dissipation extremely
depends on the approaches used to implement these functions.

B. Low-Power Architecture

The fundamental method to reduce the power is to size
the AES to its strict minimum. Therefore, all power-hungry
features are banned. The encryption AES core we propose in
this context is restricted to the following features: 128-bit key,
ECB mode of operation, no countermeasure against physical
attacks and the round key is computed in advance (i.e., the
key is already unrolled hence no energy is lost to compute it).

The AES is operated column-wise: one round is sched-
uled in four clock cycles. Therefore, 128-bit encryption is
performed in 40 clock cycles. The property of the proposed
architecture is that each gate which toggles must contribute to
advance the computation in such a way that total toggle count
is greatly minimized. This will be our metric for improvement
over classical architecture. Two strategies are leveraged to
minimize the energy consumption at architectural level:

At state-register level, keep all inactive registers in enable;
in practice, only four bytes out of the sixteen making up the
datapath are updated at each clock operation.

At combinational logic level, the number of dynamic haz-
ards (i.e., glitches) should be reduced to a minimum since
they impact directly the number of toggles during execution.
To this end, we design the AES to perform AddRoundKey
transformation (i.e., XOR operations) as close as possible
to the registers. In addition, the SubBytes and MixColumns
transformations are combined together into a single step,
nicknamed T-box [4], using a logic style which minimizes
glitches. The AES T-box based algorithm was first proposed
for a software implementation using 32-bit processor [5].
Then, it was adapted for hardware implementations [6].

The architectural datapath block of this architecture is
shown in Fig. 1. In the following, we list optimizations which
have been performed on the basis of the proposed architecture.

Figure 1. Architectural data path block for AES encryption

1) Keep unused registers in enable state: Each of the 16
bytes of the state are kept in enable, except with the four
which are written to. Those registers are not the same as the
original registers of the column, owing to ShiftRows. This

strategy is termed "lazy datapath", as only those register bits
to be updated indeed have their values changed; the rest of
the datapath remains still. We construct column by column
the new state. A scratch-pad register of 3 × 32 bits (96 bits)
is required, as shown in Fig. 1, but this extra hardware allows
to save some more power.

2) Reduce glitches from the combinational logic: As
illustrated in Fig. 1, placing the flip-flops containing the AES
encryption state just before XOR gates (notoriously amenable
to glitching) minimizes the chance the signal arrival times are
different between two inputs of each XOR gate. The T-box
approach allows for power savings, as it consists in a pre-
computation. This transformation is based on four T-tables
T0, T1, T2, T3 which are of the size of 8× 32 bits. An output
column of this transform equals:c0

c1
c2
c3

 = T0[a0]⊕ T1[a1]⊕ T2[a2]⊕ T3[a3], where:

T0[a0] =

2S(a0)
S(a0)
S(a0)
2S(a0)

 T1[a1] =

3S(a1)
2S(a1)
S(a1)
S(a1)


T2[a2] =

 S(a2)
3S(a2)
2S(a2)
S(a2)

 T3[a3] =

 S(a3)
S(a3)
3S(a3)
2S(a3)


and where the bytes ai, for i ∈ [0..3], represent the input
of T-box module as illustrated in Fig. 1. Obviously, T-box
software implementations manipulate 3S(.), S(.), S(.), 2S(.)),
but for hardware, we need simply the concatenation of
(S(.), 2S(.), 3S(.)), where S is the 8 → 8 S-box. The last
round is special, since there is no MixColumns. Hence only
output S(.) of the T-box is used, 4 times. However, the T-
box must be implemented in a glitch-less manner. Bertoni et
al. propose in [3] an interesting method to implement AES
S-box on ASIC using a synthesis methodology composed
of three main blocks: a multi-level decoder followed by a
permutation block, which does the S-Box computation, and
finally an encoder. A decoder is used to convert one 8-bit
input into 256 lines of one bit. The permutation block is used
to rewire the output lines of decoder stage. It infers no logic
and involves only routing of the signals. The structure of this
method is shown in Fig. 2.

Figure 2. The structure of the S-box in [3]

Only one bit of the decoder output and one bit of the
encoder input are in logic ’1’ level at the same time. The
others are in logic ’0’ level. When an arbitrary number of
inputs switch, only a certain number of bits are activated (i.e.,
have some switching activity) between decoder, permutation
and encoder blocks. The same decode-permute-encode scheme



can be made to compute the remaining (2S(.), 3S(.)) needed
by T-box module. In this case, each input byte of the T-box
module requires one decoder, three permutation blocks and
three encoders to obtain (S(.), 2S(.), 3S(.)).

3) Algebraic optimization: The above mentioned multipli-
cation of permutation blocks and encoders per T-box input
byte increases substantially the area of the AES core and
causes more toggles leading to additional power consumption.
In order to limit these costs, we optimize the scheme presented
in Fig. 2 as shown in Fig. 3. The main goal of this optimization
is to compute (2S(.)) based on (S(.)) and then, deduct (3S(.))
from (S(.), 2S(.)), since 3S(.) = S(.)⊕ 2S(.). The added 11
XOR gates do glitch, but they consume less power than the
required 256→ 8 encoders.

Figure 3. Optimization of the S, 2S, 3S computation for T-box module

4) Finite State Machine by using one-hot encoding: The
control part of the AES core can be optimized too. The one-
hot encoding is a greedy encoding for finite state machines
(FSMs). Indeed, only one of the bits of the state variable is "1"
(hot) for any given state. All the other bits are "0". Hamming
distance of this techniques is 2. As a result, the state machine is
already decoded and determined simply by finding out which
flip-flop is active. This encoding technique reduces the width
of the combinatorial logic and leads to a minimum number of
transitions between states, hence to reach a local minimum in
terms of power consumption of the control part.

5) Applying Clock-gating: In synchronous digital circuits,
the clock is responsible for significant part of dynamic power
consumption, up to 40% according to [7]. Clock continuously
consumes power because it induces dissipation while changing
values at the capacitive input of flip-flops, even if those are
disabled. Reduction of clock switching by clock gating is thus
desirable. Clock gating can be inserted to prevent state register
clock from toggling since only four bytes out of sixteen are
updated at each clock cycle.

III. IMPLEMENTATION RESULTS

Experiments have been carried out on 5 various implementa-
tions whose the specifications are given in Tab. I. In Imp_2, the
T-box module (i.e., the computation of (S(.), 2S(.), 3S(.))) is
implemented using the Galois Field (GF) combinational logic
whose synthesis is delegated to the silicon compiler. Imp_5
includes clock-gating system during synthesis process at gate-
level. These implementations are synthesized on two CMOS

technologies. The first one is 65 nm, 1.0 V. The second one
is 28 nm, 0.9 V. The main goal is to see the impact of the
proposed optimizations presented in Sec. II.

Table I
STUDIED IMPLEMENTATIONS

State registers T-Box Clock-gating
Imp_1 After ARK∗ LUTs No
Imp_2 After ARK∗ GF(128) No
Imp_3 Before ARK∗ scheme in Fig. 2 No
Imp_4 Before ARK∗ scheme in Fig. 3 No
Imp_5 Before ARK∗ scheme in Fig. 3 Yes
∗AddRoundKey.

The area expressed as the number of gate equivalents and
the leakage/dynamic power consumption under typical oper-
ating conditions (25◦C) are presented in Tab. II. The power
consumption estimations are based on the cell information of
the target ASIC library and switching activities, which are
captured with gate-level simulations using random test vectors
as the stimuli. It is a very accurate method because the effects
of glitches can be reflected during timing simulations and thus
in the power estimation results.

Clearly, we can observe that Imp_5 which regroups all
optimization techniques is the best low-power implementation.
In fact, for both evaluated ASIC technologies, this implemen-
tation offers the minimal power consumption with a very low
standard deviation, that demonstrates a weak variation with
respect to the various sets we used as test. We can also remark
that the new positioning of registers and the use of decode-
permute-encode schemes have actively contributed to reduce
power consumption. The power dissipation inside combina-
tional logic is progressively minimized thanks to optimizations
used on Imp_3, Imp_4 and Imp_5 which are successful in
reducing glitches. On the other side, classical implementations
(i.e., Imp_1 and Imp_2) seem to be the most power consuming
due to their high switching activity. The consumption of the
combinational gates has been reduced way below that of the
registers. Therefore, only marginal gain is to be expected from
the further decrease of combinational gates including removing
more glitches with respect to sequential logic which cannot be
optimized because it is necessary in the computation of AES to
keep a 128-bit state register. Nevertheless, we notice the non-
negligible effect of clock-gating on reducing the consumption
of registers in Imp_5.

The Virtualyzr tool [10] estimates power consumption based
on toggle count. Using this tool, we compute the total toggle
count for all implementations which have been synthesized
on a generic library in order to determine the effect of
optimizations independently of the target technology. The
Virtualyzr generic library is composed of classical standard
gates (e.g., DFF, INV, AND, OR, XOR). Fig. 4 summarizes,
for each implementation, the average dynamic power (Tab. II)
according to the number of toggles obtained after gate-level
simulations based on the generic library. This figure shows
that Imp_5 leads to a minimum number of toggles. This
justifies the positive impact of our optimizations in terms of
toggles reduction and again confirms the linearity between



Table II
IMPLEMENTATION RESULTS AND COMPARISON (65 NM CMOS TECHNOLOGY, 1.0 V / 28 NM CMOS TECHNOLOGY, 0.9 V)

Average dynamic Deviation standard Combinational Sequential Leakage Area
Implementation power of dynamic power power power power logic

[µW/MHz] [µW/MHz] [µW/MHz] [µW/MHz] [µW/MHz] [kGE]
65 nm CMOS technology, 1.0 V

Imp_1 8,471 0,174 6,362 2,109 0,228 8,451
Imp_2 13,251 0,097 10,889 2,362 0,133 4,339
Imp_3 4,388 0,082 2,539 1,849 0,127 7,260
Imp_4 4,146 0,057 2,319 1,827 0,089 5,479
Imp_5 3,426 0,044 1,952 1,474 0,088 5,384

28 nm CMOS technology, 0.9 V
Imp_1 1,524 0,018 1,003 0,521 0,508 8,344
Imp_2 2,444 0,025 1,856 0,588 0,209 4,350
Imp_3 1,065 0,009 0,530 0,535 0,351 7,034
Imp_4 0,960 0,007 0,425 0,535 0,237 5,371
Imp_5 0,825 0,009 0,438 0,387 0,241 5,235

the dynamic power consumption and the switching activity.
Therefore, the methodology based on the computation of
toggles is useful to quickly estimate and compare the power
consumption of several implementations early in the design
flow, especially that the generic library does not depend on
any specific technology.

The best low-area implementation is Imp_2 since mathe-
matical theorems over Galois fields are possible and various
methods for constructing compact inversion circuits can be
used. However, the difference is not very large compared to
Imp_5 ensuring less power dissipation and a lower toggle
coverage, i.e., around 62.5% versus 96% in case of Imp_2.

IV. CONCLUSION

We propose a set of architectural optimizations which allow
to optimize considerably the power consumption of an AES
implementation by reducing the number of toggles. The variant
of AES with GF S-boxes show that sometimes area and
power optimizations contradict. However, our careful high-
level optimizations allowed us to save both on the power
(≈ 2.5× less) and on the area (reduced by ≈ 40%).

A simulation-based framework (namely, the Virtualyzr
tool) allows to easily and rapidly improve the power of an
implementation based on the toggle count metric from a
technology-independent library (i.e., synthesize and simulate).
This method is validated on two technologies and enables
more interactive validation of code-level optimizations without
resorting to the lengthy and costly classical power estimations
from a technology (synthesize, extract parasitics, simulate and
estimate power). The same framework can be reused to test
the safety and the security of the AES design. Further work
includes evaluation of the proposed low-power implementation
against side channel attacks and comparison with state of the
art lightweight symmetric cryptography implementations.

ACKNOWLEGMENTS

This work has benefited from a partial funding via TeamPlay
(website at: https://teamplay-h2020.eu/), a project from Euro-
pean Union’s Horizon2020 research and innovation program,
under grant agreement N◦ 779882.

0

2

4

6

8

10

12

14

40000

60000

80000

100000

120000

140000

160000

180000

D
y
n
a
m
ic
p
o
w
e
r
[µ
W
/M
H
z]

Total toggle count

65nm-CMOS-technology
28nm-CMOS-technology

imp_2

imp_1

imp_3imp_4

imp_5 imp_2

imp_1imp_3

imp_4
imp_5

Figure 4. Dynamic power and total toggle count using the generic library

REFERENCES

[1] S. Banik, A. Bogdanov, and F. Regazzoni. Exploring energy efficiency
of lightweight block ciphers. In Selected Areas in Cryptography - SAC
2015 - 22nd International Conference, Sackville, NB, Canada, August
12-14, 2015, Revised Selected Papers, pages 178–194, 2015.

[2] L. Batina, A. Das, B. Ege, E. B. Kavun, N. Mentens, C. Paar, I. Ver-
bauwhede, and T. Yalçin. Dietary Recommendations for Lightweight
Block Ciphers: Power, Energy and Area Analysis of Recently Developed
Architectures. In RFIDSec, 2013.

[3] G. Bertoni, M. Macchetti, L. Negri, and P. Fragneto. Power-efficient
ASIC Synthesis of Cryptographic Sboxes. In Proceedings of the 14th
ACM Great Lakes Symposium on VLSI, GLSVLSI ’04, pages 277–281.

[4] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy.
Implementation of the AES-128 on Virtex-5 FPGA. In Progress in
Cryptology – AFRICACRYPT 2008. Springer Berlin Heidelberg, 2008.

[5] J. Daemen and V. Rijmen. AES Proposal: Rijndael. https://www.nist.
gov/programs-projects/lightweight-cryptography, 1999.

[6] V. Fischer and M. Drutarovský. Two Methods of Rijndael Implemen-
tation in Reconfigurable Hardware. In Ç. K. Koç, D. Naccache, and
C. Paar, editors, Cryptographic Hardware and Embedded Systems —
CHES 2001, pages 77–92. Springer Berlin Heidelberg.

[7] S. Jeff. Analyzing Clock Trees, SNUG Boston 2005.
[8] Lora Alliance. LoraWan Specification, 2015.
[9] N. I. of Standards and Technology. Advanced encryption standard. http:

//csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.
[10] Secure-IC. http://www.secure-ic.com/solutions/virtualyzr/.
[11] Sigfox Technology. http://sigfox.com.
[12] W. Zhao, Y. Ha, and M. Alioto. AES architectures for minimum-energy

operation and silicon demonstration in 65nm with lowest energy per
encryption.

https://teamplay-h2020.eu/
https://www.nist.gov/programs-projects/lightweight-cryptography
https://www.nist.gov/programs-projects/lightweight-cryptography
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.secure-ic.com/solutions/virtualyzr/
http://sigfox.com

