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Stress & Symbiosis: Heads or Tails?
Alexis Bénard, Fabrice Vavre and Natacha Kremer*

Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France

An increasing number of organisms are subjected to abiotic (e.g., air, water, and soil
quality, temperature), but also biotic (e.g., new pathogens) stressors. These stressors
may disturb the chemical and physiological homeostasis of living systems, and thus
impact their ecology and evolution. Because eukaryotes are often associated with
symbionts, these changes do not only impact the host but rather the holobiont,
an assemblage of interacting species. Indeed, stressors can modify the symbiotic
community composition and functions directly, but also indirectly through their impact
on host physiology. Any disruption of the symbiotic homeostasis can then impact the
host fitness. On the other side, several symbionts protect their host against various
threats, and they may facilitate the adaptation of the holobiont to the new environment
by limiting the negative impact of stress on the host. It now remains to clarify if
their presence constitutes a driver of adaptation of the host or an obstacle limiting
the selection of adaptive traits in the host, and to discuss if symbiosis is always the
optimal strategy to cope with stressors. The reciprocal impact between stress and
symbiosis can become more complex when stressors are considered in combination, as
it occurs in nature. Indeed, synergistic or antagonistic effects may impact the holobiont
response, and studies characterizing individual disturbances may not be sufficient. In the
current context of climate change and globalized pollution, it is thus crucial to develop
integrative approaches to predict how organisms, communities and ecosystems will
face combinations of stressors.

Keywords: biotic and abiotic stressors, symbiotic communities, stress-response mechanisms, beneficial
symbiosis, adaptation

INTRODUCTION

Stress is an ambiguous term that causes confusion when attempting to understand organismal
responses to environmental change, because it is often used to refer to both the environmental
perturbation and the response itself (Schulte, 2014). To gain clarity, we will consider here the
stressor as any biotic or abiotic environmental factor able to disrupt homeostasis, the stress as
an actual or potential decline in the fitness of the organism after exposure to a stressor, and
the stress response as the physiological and behavioral response to the stressor (see review on
existing definitions of stress in Schulte, 2014). Depending on the nature of the stressor, its intensity
and its occurrence (i.e., single, episodic, or chronic), the organism may adapt -or not- to the
environmental stressor through the selection of plastic or genetic stress response mechanisms that
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buffer the stressor (Rymer et al., 2016). This ability to persist
after such stress is called resilience (Hodgson et al., 2015), but in
some cases, the organisms cannot cope with the stressors, which
strongly decrease their fitness.

A majority of organisms live in tight relationship with
other organisms, and this assemblage is called holobiont.
In this case, stressors may affect not only the host but
also its symbiotic community (i.e., parasites, commensals,
or mutualists), and the relationship between partners.
A canonical example is the negative impact of global
warming on the coral holobiont, which leads to symbiosis
breakdown (Paxton et al., 2013), and reef ecosystem
destabilization (Putnam et al., 2017). On the other side,
some symbionts are described to protect their host against
different kinds of stressors and can play a role in the adaptation
of the holobiont to stressful environments (Miransari,
2010; Feldhaar, 2011; Flórez et al., 2015; Shapira, 2016;
Hopkins et al., 2017).

Because global changes associated with anthropization
impose stressors to many ecosystems, we need to better
understand the role of symbiosis in the vulnerability or resilience
to stressors. In this review, we will thus focus on acute
stressors and directed changes in the environment, such as
global change, and their interaction with symbionts across
animals and plants. We will first develop some examples
on the impact of such biotic and abiotic stressors on
holobionts, and on the influence of symbionts on organism
resilience (Figure 1). We will then discuss different factors
that can influence the selection of specific stress response
mechanisms, including genetic and phenotypic responses from
the host and the symbionts, and debate if the association
of organisms with symbionts is the optimal strategy to
cope with stressors.

THE VULNERABILITY OF SYMBIOTIC
ASSOCIATIONS TO STRESSORS

Symbiotic communities are very dynamic and often change
over the host lifespan, in response to changes in host
physiological states (life stages, immunity, etc.), but also to
environmental perturbations. Many stressors strongly impact
relative abundances and shift symbiotic communities of well-
established symbioses, thus impacting host physiology, and at a
larger scale, ecological communities.

Certain acute stressors can specifically modify the
composition of symbiotic communities, as observed in
many host species, such as sponges (Blanquer et al., 2016),
scleratinian corals (Thurber et al., 2009), mice (Ravussin et al.,
2012; Bharwani et al., 2016), plants (Erlacher et al., 2015; Santos-
Medellín et al., 2017), or insects (Muturi et al., 2016). When host
are colonized by a single symbiont, stressors can also directly
impact symbiont density. For instance, a cold shock decreases
Cardinium density in parasitoid wasps (Doremus et al., 2019).
Elevated temperatures can also eliminate symbionts, like the gut
bacteria necessary for the survival of the southern green stinkbug
Nezara viridula (Kikuchi et al., 2016).

The impact of stressors on symbiotic communities can
also be indirect, through the modification of the host niche
where symbionts reside [e.g., in plants: nutrients, exudates, and
signaling molecules (Hartman and Tringe, 2019)]. This is also
particularly true for intracellular symbionts, whose density can
decrease in response to the effect of stressors on host cell
physiology (Moné et al., 2014). For instance, sublethal doses
of insecticides (e.g., the neurotoxic molecule thiamethoxan),
or pesticides (e.g., the pro-oxidant paraquat), respectively,
decrease the density of Buchnera obligate symbiont in soybean
aphids (Enders and Miller, 2016), and Wolbachia facultative
endosymbionts in fruit flies (Monnin et al., 2016).

Stressors can also indirectly impact host-associated symbiotic
communities through an effect on host immunity. Indeed,
the disruption of host immunity can modify the control
of symbionts, and/or allow opportunistic symbionts to
invade the host (Williams et al., 2016). For instance, Ostreid
herpesvirus infections cause an immune-compromised state
in pacific oysters that leads to a massive opportunistic
pathogen proliferation (de Lorgeril et al., 2018), and
neonicotinoid pesticides affect honey bee immunity and
promote viral pathogen replication (O’Neal et al., 2018). In
plants, as the high temperature compromises the salicylic
acid pathway that mediates the response against pathogens,
climate change may also enhance susceptibility to pathogens
(Huot et al., 2017).

Such changes in community are generally characterized
at the symbiotic taxonomic level by a rapid decrease in
the intra-individual diversity, but stressors can also impact
stochastically the microbiome composition and increase the
inter-individual diversity (Kandalepas et al., 2015; Rocca et al.,
2019). As proposed by the “Anna Karenina principle” applied
to the symbiotic community, “all healthy microbiomes are
similar but each dysbiotic microbiome is dysbiotic in its
own way” (Lesser et al., 2016; Zaneveld et al., 2017). These
increases in ß-diversity are notably observed after recovery or
directed change in the environment (Silverstein et al., 2015;
Ahmed et al., 2019), and could result from a host immune
dysregulation or the release of the symbiotic niche by a
sensitive symbiont.

Overall, because the symbiotic composition is tightly
regulated, any disruption of the symbiotic homeostasis can
change the costs and benefits associated with the presence
of symbionts. This unbalance can result in a transition
along the mutualism-parasitism continuum and impact the
associated ecosystem (Kiers et al., 2010). One of the most
striking illustrations of the immediate effects of environmental
perturbations is the coral bleaching resulting from the impact
of heat stress on cnidarian-dinoflagellate symbioses. Indeed,
elevated temperatures photo-inhibit dinoflagellate algae and alter
the metabolism of both partners. In sub-bleaching conditions,
the mutualistic Symbiodinium algae then becomes a nutritional
parasite, as it overtakes resources from its coral host (Baker et al.,
2018). Temperature increase thus induces changes in metabolic
profiles and cellular responses associated to bleaching (Hillyer
et al., 2016), and the destabilization of the coral ecosystem
(Pita et al., 2018).
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FIGURE 1 | Effects of stressors on the holobiont. Stressors can alter directly (1) the host physiology and immunity and (2) the symbiotic community composition and
density. Stressors may also indirectly affect the symbiotic community by altering the host physiology (which represents the symbiotic niche), and the immune state of
the host. Conversely, symbionts can buffer stressors via nutrient provision, physiological tolerance, and defense against host natural enemies.

SYMBIOSIS AS AN ADAPTIVE
RESPONSE TO STRESSORS

We have shown above that stressors can negatively impact
symbiotic partners, but symbionts can also participate in the
buffering of stressors, in providing to their host a resistance
or a tolerance mechanism, which that reduces the fitness costs
associated to stressors (Miransari, 2010; Clay, 2014; Shapira,
2016; Lemoine et al., 2020). These two mechanisms are involved
in the resilience to stressors, through the withstanding of
a stressor that is normally unfavorable. Classically defined
in immunology, resistance limits the parasite burden while
tolerance limits the physiological impact of the parasite burden
without decreasing its amount (Råberg et al., 2009), but these
definitions can be broadened to any kind of stressor. The
following is a non-exhaustive series of examples that suggest the
driver effect of symbiosis in host adaptation to stressors.

A first series concerns symbionts that limit perturbations
associated with seasonal abiotic variations, such as drought,
salinity, or heat stress. For instance, endophytic fungi can
promote plant growth and survival under such abiotic stress
(Azad and Kaminskyj, 2016), potentially via the elicitation
of induced systemic tolerance (Qin et al., 2016). Arbuscular
mycorrhiza can promote plant tolerance to salinity and water
stress by an adjustment of osmolytes (e.g., carbohydrates and
electrolytes) in plant roots (Miransari, 2010). The endosymbiont
Buchnera confers thermal tolerance to aphids through the
expression of a small heat-shock protein (Dunbar et al., 2007),

and tyrosine-supplementing symbionts protect beetles from
desiccation through the production of a thicker cuticle
(Vigneron et al., 2014; Anbutsu et al., 2017; Engl et al.,
2018). Also, the proportion of heat-tolerant algal or bacterial
symbionts increases in reefs that are severely affected by climate
change (Baker et al., 2004), which promotes carbohydrate
metabolism, nitrogen fixation, iron scavenging, and protein
folding (Ziegler et al., 2017). Seasonal abiotic variations
can also limit resources, and certain symbionts can benefit
hosts experiencing a sporadic nutritional stress. For instance,
arbuscular mycorrhiza improve Phosphorus and Nitrogen
fixation in plants from impoverished soils (Johnson et al., 2010),
and fly gut microbiota (Lactobacillus plantarum in particular)
promotes larval growth upon food deprivation by modulating
hormonal signals (Storelli et al., 2011).

In addition to abiotic stressors, various symbionts can protect
their host against biotic stressors: their natural enemies. Because
of the abundant literature in this field, we will focus on insect
symbioses, and highlight a few canonical examples [but see
extensive reviews such as Flórez et al. (2015) in animals and
Pieterse et al. (2014) in plants]. Symbionts can protect their host
in different ways. The most documented way is when defensive
symbionts produce specific toxins targeting the competitor. For
instance, the APSE bacteriophage from Hamiltonella defensa
protects aphids against parasitoid wasp attacks (Oliver et al.,
2009; Martinez et al., 2014). The maternally inherited bacterium
Spiroplasma limits the sterilization of Drosophila neotestacea
flies by parasitic nematodes, through the production of a toxin
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(Jaenike et al., 2010; Hamilton et al., 2016). Streptomyces bacteria
are released from the antennal reservoirs of beewolves, coat
the brood cell, and secrete antimicrobial peptides that protect
the immature wasp against opportunistic fungi from the soil
(Kaltenpoth et al., 2005; Koehler et al., 2013). Symbionts can also
turn the insect food into compounds that are toxic against many
pathogens. This is the case of phenolic compounds converted by
locust gut symbionts from plant secondary metabolites (Dillon
and Charnley, 2002), or organic acids produced by honeybee
gut symbionts from lactic acid fermentation (Olofsson et al.,
2016). Such organic products decrease pH, and can modify the
host niche in a way that limits pathogen survival (Palmer-Young
et al., 2019). Additionally, symbionts can prime host immunity,
as it has been reported with Wolbachia in the mosquito Aedes
aegypti (Moreira et al., 2009). Finally, they can exploit the
same limited resource as the parasite (Gerardo and Parker,
2014), and enter in competition with it. For instance Wolbachia,
which blocks viral replication of positive-strand RNA viruses
in Drosophila and mosquitoes (Teixeira et al., 2008; Bian et al.,
2010), possibly exploits cholesterol necessary for viral replication
(Caragata et al., 2013).

To summarize, symbionts constitute a “pool of genes”
potentially involved in several physiological functions and can be
acquired rapidly by the host. Such symbionts could thus be part
of an adaptive response to environmental changes, and eventually
get to fixation if biotic and abiotic constraints are stable and
impose a strong selective pressure, and if the benefit of carrying
symbionts is higher than its cost.

SYMBIOSIS AND ADAPTATION: ALWAYS
AN OPTIMAL STRATEGY?

As presented above, the presence of symbionts can limit the
fitness costs associated with a stressful condition (Latef et al.,
2016; Shapira, 2016; Corbin et al., 2017; Hopkins et al., 2017)
through an impact on various physiological functions (Oliver
et al., 2003; Webster and Reusch, 2017; Cheng et al., 2019).
However, various host mechanisms can also be involved in the
buffering of stressors (examples for immune responses: Palmer
and Traylor-Knowles, 2012; Lamiable and Imler, 2014; Obbard
and Dudas, 2014; Kenney et al., 2017; Miller et al., 2017).
The question that arises is thus whether the association with
symbionts is always the optimal strategy, that is, the more
efficient one to buffer the stress at a reduced cost. In other
words, does symbiosis drive or limit host adaptation to a new,
stressful environment?

First imagine that the stressor is frequent, such as a directed
change in the environment. In that case, the selection for genetic,
heritable mechanisms that counteract stressors should be strong.
It can include specific host genes, such as resistance genes
against particular stressors. For instance, high affinity transporter
genes are selected in plants under scarce Nitrogen availability
(Kiba and Krapp, 2016). It can also include the selection of
specific symbionts such as Regiella insecticola in pea aphids,
whose frequency follows a gradient throughout Japan and is
associated with changes in temperature, precipitation and host

plant (Tsuchida et al., 2002). Both mechanisms can also be
selected for: adaptation of Platygyra corals to high temperatures
mirrors the fixation of host alleles limiting oxidative stress
together with the selection of zooxanthellae variants that are
photosynthetically thermotolerant (Howells et al., 2016). On
a broader evolutionary time scale and in the case of stable
changes, symbiont acquisition can play an important role in
ecological adaptation and innovation (Wernegreen and Wheeler,
2009; Douglas, 2015; Sudakaran et al., 2017). An extreme case
is the evolution of co-dependency between insects feeding on
unbalanced diets (e.g., phloem, blood) and their nutritional
vertically-transmitted symbionts (Moran et al., 2003; Douglas,
2009): Buchnera or Serratia in aphids (Shigenobu and Wilson,
2011; Monnin et al., 2020); Wigglesworthia, Wolbachia and
Rickettsia in tsetse flies, bed bugs, and ticks, respectively (Rio
et al., 2016; Duron et al., 2018).

Let’s now imagine a case where the stressor(s) fluctuate(s),
in term of intensity or temporality. We would expect that
plastic mechanisms should be favored in that situation. Indeed,
host resistance mechanisms may be costly when constitutively
expressed, unless compensation mechanisms are selected for,
in the absence of stressor (Kliot and Ghanim, 2012; but see
Ffrench-Constant and Bass, 2017). Presence of symbionts may
also be costly in the absence of stressor, notably when the
response against stressor is mediated by a high symbiotic
density that consumes nutrients and uses the cellular machinery
(Martinez et al., 2015; Hopkins et al., 2017). This is particularly
true for vertically-transmitted symbionts, whose modulation by
the host in the absence of stressor is limited. For instance,
the presence of Hamiltonella defensa, an endosymbiont that
efficiently protects aphids against parasitoid attacks but is highly
costly in its absence (Polin et al., 2014), might not be an
optimal defense strategy (Hopkins et al., 2017). In addition, the
presence of symbionts can negatively impact the selection of
host genes that buffer stressors. Indeed, Metcalf and Koskella
(2019) predict from a theoretical point of view that defensive
symbionts (or more generally microbiomes that favor resistance
or tolerance against a pathogen) can decrease the selection
for host immune mechanisms and drive the loss of immunity,
especially when the cost of host immunity is high. The potential
of symbionts to be a possible obstacle to the selection of
host adaptive responses has been tested in fruit flies, where
Wolbachia can protect the host against RNA viruses (Teixeira
et al., 2008). After evolution in a context of viral infection, the
presence of Wolbachia in flies reduced the strength of selection
for the host resistance gene Pastrel (Martinez et al., 2016);
strength that was increased again after the removal of Wolbachia
(Faria et al., 2018). Alternatively, plastic mechanisms, such as
programming of host gene expression, chromatin remodeling
(e.g., histone modifications, chromatin compartmentalization)
have been observed during many fluctuating biotic and abiotic
stress responses in insects, mammals (Vihervaara et al., 2018),
plants (Lämke and Bäurle, 2017), and marine organisms
(Eirin-Lopez and Putnam, 2019). Also, a rapid change in
the composition of the host-associated symbiotic community,
notably when symbionts are horizontally acquired from the
environment, can constitute a tremendous resource of biological
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FIGURE 2 | Factors that can influence the holobiont stress response. The holobiont response to stressors is difficult to predict as many factors can be under
selection. This includes host resistance genes and plastic mechanisms, but also acquisition of symbionts that can constitute a pool of genes with new functions. We
describe here some key factors that can preferentially select for the host or the symbionts to adapt to stressors: (1) the features of the stressor, such as its frequency
or amplitude, but also its combination with another stressor that can lead to an additive, synergistic or antagonist interaction, (2) the transmission mode of the
symbionts, and (3) the specificity and the efficiency of the given buffering mechanism, and the net balance between its cost and its benefit.

functions that can be involved in the control of stressors.
For instance, the composition and functional profile of the
microbiome of the coral Acropora hyacinthus quickly shifts in
response to a transient heat stress (Ziegler et al., 2017). These
composition changes can result from the selection of fittest
symbionts in this new stressful environment (Suggett et al.,
2017), but can also result from host partner choice within
a “biological market” of horizontally-transmitted symbionts
(Werner et al., 2014). This partner choice has been exemplified
in symbioses between plants and arbuscular mycorrhizal fungi,
where fungi provide nutrients such as Nitrogen and Phosphorus
to plants in exchange of carbohydrates. Depending on the
resource abundance and fluctuations, plants can select for
specific strains of fungi that offer the most soil-limited nutrients
(Werner and Kiers, 2015).

To summarize (Figure 2), the two extreme situations above
suggest that the frequency of stressors can select for different
degrees of plasticity for the buffering mechanism. Both host
and symbionts can carry this stress response mechanism, but
in case of symbiosis, the transmission mode plays a central
role in the versatility of the response. Indeed, horizontally-
transmitted symbionts should be favored in a fluctuant
environment, as they constitute a flexible microbial pool in
the environment from which certain variants can be selected
for, while vertically-transmitted symbionts should be favored in
a constant environment, as they are durably associated with
their host. Whether the stressor is frequent or fluctuant, the
acquisition of a symbiont by a host (when possible) is an
efficient way to acquire simultaneously a pool of genes potentially
encoding for functions that the host does not necessarily
possess. However, when host and symbionts express genes with

redundant functions, the presence of symbionts might not always
be the optimal strategy, as it can be more costly than the
expression of specific host genes, and/or can limit the evolution
of the host.

PERSPECTIVES: HOW CAN WE
INTEGRATE SYMBIOSIS IN OUR
UNDERSTANDING OF BIOLOGICAL
RESPONSE TO GLOBAL CHANGES?

Because stressors can impact symbiotic associations and,
reciprocally, symbiosis can impact the response of organisms to
stressors, it is important to consider symbiosis when we study
the response of organisms in a context of global change. But
global change means that stressors occur in combination rather
than alone (Crain et al., 2008; Munns, 2011; Goulson et al.,
2015; Van Dam et al., 2015), and this strongly complicates the
framework developed above: the combination of stressors can
vary depending on the timing of each stressor, the frequency
and intensity of the exposure, and the spatial distribution of all
individual stressors; the effect of several stressors can be additive,
synergistic or antagonistic (i.e., interactions leading to a equal,
greater or a lower effect than the sum of the stresses, respectively);
and symbiotic composition and function can vary differentially in
response to each stressor. In insects for instance, the reciprocal
link between symbiosis and stressors is critical to consider, as
the genome reduction of obligate nutritional symbionts makes
them particularly sensitive to heat. In the case of a temperature
increase, the reduction of symbiont density could decrease the
buffering effect against another stress (e.g., infection, nutritional
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stress). In case of obligate mutualism, the loss of symbionts could
indirectly lead to the extinction of the insect species, except
if symbiont switching/complementation occurs (Wernegreen,
2013; Kikuchi et al., 2016; Corbin et al., 2017; Renoz et al., 2019).

Considering as many stressors as possible, together with their
dynamics (e.g., constant/fluctuant, simultaneous/sequential),
is crucial to fit to ecologically relevant situations (Gunderson
et al., 2016), but very difficult to investigate. Still, quantifying
the relative effect of each stressor remains determinant to
pinpoint the main disruptive factors, and to focus studies on
these few stressors. A characterization of their effects on tissues,
individuals and ecosystems can then help to define actions
that will limit their impacts (Anthony et al., 2015; Foucart,
2019). To reach this goal, a few mathematical models have
been developed to integrate multiple stressors (Liess et al.,
2016), to explore tipping points under combined stressors
including parasitic pressure (bee decline: Henry et al., 2017), or
to predict the evolution of species dynamics (coral bleaching:
Cunning et al., 2017). However, their development requires
an extensive knowledge on molecular, physiological, and
ecological mechanisms associated with symbiosis to define
appropriate formulation and parameterization (Widder et al.,
2016). For instance, knowing the mechanism of action of
two stressors on both partners can help in determining if
they are conserved or pleiotropic (Sewelam et al., 2016; Jacob
et al., 2017), and thus to predict a potential synergy or
antagonism (Kaunisto et al., 2016). There is thus an urgent
need to develop integrative studies to better understand the
molecular mechanisms involved in response to stressors, the
link between structure and function of symbiotic communities,
the dialogue between host and symbionts, and the influence of
symbiotic functions on more global ecological processes. This
integrative approach can combine methodologies characterizing
multiple organization levels such as genomics, transcriptomics,
proteomics, metabolomics, and ecological network analyses (e.g.,
Bissett et al., 2013; Colgan et al., 2017; Larrainzar and Wienkoop,
2017; Meena et al., 2017; Rodriguez et al., 2019; Weis, 2019).

Finally, as the acquisition of new symbionts or the
modification of symbiotic communities can play a major role
in the adaptation to stressors, studying symbiosis might be
of particular interest to study the adaptive potential and
the resilience of organisms to stressors. For that purpose,
experimental evolution constitutes a great tool to study the
direct and evolved response to stressors, as well as the
evolution of the symbiotic association under a controlled
stressful environment (Hoang et al., 2016; Erkosar et al.,
2017). Developing experimental and theoretical evolutionary
studies can thus help to pinpoint molecular mechanisms at
play when evolutionary forces act and to validate predictive
mathematical models.
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