Besov spaces in multifractal environment and the Frisch-Parisi conjecture
Abstract
We give a solution to the so-called Frisch-Parisi conjecture by constructing a Baire functional space in which typical functions satisfy a multifractal formalism, with a prescribed singularity spectrum. This achievement combines three ingredients developed in this paper. First we prove the existence of almost-doubling fully supported Radon measure on $\R^d$ with a prescribed multifractal spectrum. Second we define new \textit{heterogeneous} Besov like spaces possessing a wavelet characterization; this uses the previous doubling measures. Finally, we fully describe the multifractal nature of typical functions in these functional spaces.
Origin : Files produced by the author(s)
Loading...