M. A. Alfhili and M. Lee, Triclosan: an update on biochemical and molecular mechanisms, Oxid. Med. Cell. Longev, vol.2019, pp.1-28, 2019.

R. Altenburger, H. Walter, and M. Grote, What contributes to the combined effect of a complex mixture?, Environ. Sci. Technol, vol.38, pp.6353-6362, 2004.

G. T. Ankley, R. S. Bennett, R. J. Erickson, D. J. Hoff, M. W. Hornung et al., Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment, Environ. Toxicol. Chem, vol.29, pp.730-741, 2010.

D. J. Beale, A. V. Karpe, and W. Ahmed, Beyond metabolomics: a review of multiomics-based approaches, Microbial Metabolomics, pp.289-312, 2016.

D. Beale, A. Karpe, W. Ahmed, S. Cook, P. Morrison et al., A community multi-omics approach towards the assessment of surface water quality in an urban river system, Int. J. Environ. Res. Public Health, vol.14, 2017.

R. Beauvais-flück, V. I. Slaveykova, and C. Cosio, Transcriptomic and physiological responses of the green microalga Chlamydomonas reinhardtii during short-term exposure to subnanomolar methylmercury concentrations, Environ. Sci. Technol, vol.50, pp.7126-7134, 2016.

J. C. Betts, A. Mclaren, M. G. Lennon, F. M. Kelly, P. T. Lukey et al., Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis, Antimicrob. Agents Chemother, vol.47, pp.2903-2913, 2003.

E. K. Brockmeier, G. Hodges, T. H. Hutchinson, E. Butler, M. Hecker et al., The role of omics in the application of adverse outcome pathways for chemical risk assessment, Toxicol. Sci, vol.158, pp.252-262, 2017.

B. Buchfink, C. Xie, and D. H. Huson, Fast and sensitive protein alignment using DIAMOND, Nat. Methods, vol.12, pp.59-60, 2015.

J. G. Bundy, J. K. Sidhu, F. Rana, D. J. Spurgeon, C. Svendsen et al., Systems toxicology" approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus, BMC Biol, vol.6, 2008.

W. Busch, S. Schmidt, R. Kühne, T. Schulze, M. Krauss et al., Micropollutants in European rivers: a mode of action survey to support the development of effect-based tools for water monitoring: micropollutants in European rivers: a mode-of-action, Environ. Toxicol. Chem, vol.35, pp.1887-1899, 2016.

M. Capdevielle, R. Van-egmond, M. Whelan, D. Versteeg, M. Hofmann-kamensky et al., Consideration of exposure and species sensitivity of triclosan in the freshwater environment, Integr. Environ. Assess. Manag, vol.4, p.15, 2008.

A. Caverzan, G. Passaia, S. B. Rosa, C. W. Ribeiro, F. Lazzarotto et al., Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection, Genet. Mol. Biol, vol.35, pp.1011-1019, 2012.

M. L. Delignette-muller, E. Billoir, F. Larras, and A. Siberchicot, DRomics: Dose Response for Omics. Reference Manual. R Package Version 2.0 (Accessed 2nd, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02309919

G. Dhillon, S. Kaur, R. Pulicharla, S. Brar, M. Cledón et al., Triclosan: current status, occurrence, environmental risks and bioaccumulation potential, Int. J. Environ. Res. Public Health, vol.12, pp.5657-5684, 2015.

P. Dranguet, C. Cosio, S. Le-faucheur, R. Beauvais-flück, A. Freiburghaus et al., Transcriptomic approach for assessment of the impact on microalga and macrophyte of in-situ exposure in river sites contaminated by chlor-alkali plant effluents, Water Res, vol.121, pp.86-94, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01996647

. Efsa-scientific-committee, A. Hardy, D. Benford, T. Halldorsson, M. J. Jeger et al., Update: use of the benchmark dose approach in risk assessment, EFSA J, vol.15, 2017.

K. M. Eriksson, C. H. Johansson, V. Fihlman, A. Grehn, K. Sanli et al., Long-term effects of the antibacterial agent triclosan on marine periphyton communities: toxicity of triclosan to marine periphyton communities, Environ. Toxicol. Chem, vol.34, pp.2067-2077, 2015.

S. Franz, R. Altenburger, H. Heilmeier, and M. Schmittjansen, What contributes to the sensitivity of microalgae to triclosan?, Aquat. Toxicol, vol.90, pp.102-108, 2008.

U. Gündel, S. Kalkhof, D. Zitzkat, M. Von-bergen, R. Altenburger et al., Concentration-response concept in ecotoxicoproteomics: effects of different phenanthrene concentrations to the zebrafish, 2012.

, Ecotoxicol. Environ. Saf, vol.76, pp.11-22

R. Haas, A. Zelezniak, J. Iacovacci, S. Kamrad, S. Townsend et al., Designing and interpreting 'multi-omic' experiments that may change our understanding of biology, Curr. Opin. Syst. Biol, vol.6, pp.37-45, 2017.

S. Haider and R. Pal, Integrated analysis of transcriptomic and proteomic data, Curr. Genomics, vol.14, pp.91-110, 2013.

A. Jamers, R. Blust, W. De-coen, J. L. Griffin, and O. A. Jones, An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii, Aquat. Toxicol, vol.126, pp.355-364, 2013.

M. Kanehisa, KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res, vol.28, pp.27-30, 2000.

F. Larras, E. Billoir, V. Baillard, A. Siberchicot, S. Scholz et al., DRomics: a turnkey tool to support the use of the dose-response framework for omics data in ecological risk assessment, Environ. Sci. Technol, vol.52, pp.14461-14468, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02309919

M. D. Machado and E. V. Soares, Sensitivity of freshwater and marine green algae to three compounds of emerging concern, J. Appl. Phycol, vol.31, pp.399-408, 2019.

L. Mcmurry, M. Oethinger, and S. Levy, Triclosan targets lipid synthesis, Nature, vol.394, pp.531-532, 1998.

B. B. Misra, C. Langefeld, M. Olivier, and L. A. Cox, Integrated omics: tools, advances and future approaches, J. Mol. Endocrinol. R21-R45, 2019.

S. Moisset, S. K. Tiam, A. Feurtet-mazel, S. Morin, F. Delmas et al., Journal of Hazardous Materials, vol.397, p.122727, 2020.

P. , Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures, Environ. Sci. Pollut. Res. -Int, vol.22, pp.4046-4055, 2015.

C. Pan, F. Peng, W. Shi, L. Hu, X. Wei et al., Triclosaninduced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii, Ecotoxicol. Environ. Saf, vol.148, pp.393-401, 2018.

S. Pesce, J. Beguet, N. Rouard, M. Devers-lamrani, and F. Martin-laurent, Response of a diuron-degrading community to diuron exposure assessed by real-time quantitative PCR monitoring of phenylurea hydrolase A and B encoding genes, Appl. Microbiol. Biotechnol, vol.97, pp.1661-1668, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794785

S. Pillai, R. Behra, H. Nestler, M. J. Suter, .. Sigg et al., Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver, Proc. Natl. Acad. Sci, vol.111, pp.3490-3495, 2014.

J. L. Pinckney, L. Thompson, and S. Hylton, Triclosan alterations of estuarine phytoplankton community structure, Mar. Pollut. Bull, vol.119, pp.162-168, 2017.

F. R. Pinu, D. J. Beale, A. M. Paten, K. Kouremenos, S. Swarup et al., Systems biology and multi-omics integration: viewpoints from the metabolomics research community, vol.9, p.76, 2019.

J. Riedl, R. Schreiber, M. Otto, H. Heilmeier, R. Altenburger et al., Metabolic effect level index links multivariate metabolic fingerprints to ecotoxicological effect assessment, Environ. Sci. Technol, vol.49, pp.8096-8104, 2015.

N. Sarkar, S. Lemaire, D. Wu-scharf, E. Issakidis-bourguet, and H. Cerutti, Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation-induced DNA damage, Eukaryot. Cell, vol.4, pp.262-273, 2005.

A. Schüttler, K. Reiche, R. Altenburger, and W. Busch, The transcriptome of the zebrafish embryo after chemical exposure: a meta-analysis, Toxicol. Sci, vol.157, pp.291-304, 2017.

A. Schüttler, R. Altenburger, M. Ammar, M. Bader-blukott, G. Jakobs et al., Map and model-moving from observation to prediction in toxicogenomics, 2019.

H. Singer, S. Müller, C. Tixier, and L. Pillonel, Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and Lake Sediments, Environ. Sci. Technol, vol.36, pp.4998-5004, 2002.

S. Smetanová, J. Riedl, D. Zitzkat, R. Altenburger, and W. Busch, High-throughput concentration-response analysis for omics datasets: concentration-response analysis for omics datasets, Environ. Toxicol. Chem, vol.34, pp.2167-2180, 2015.

B. Sotton, A. Paris, S. Le-manach, A. Blond, C. Duval et al., Specificity of the metabolic signatures of fish from cyanobacteria rich lakes, Chemosphere, vol.226, pp.183-191, 2019.
URL : https://hal.archives-ouvertes.fr/mnhn-02299394

T. Tato and R. Beiras, The use of the marine microalga tisochrysis lutea (T-iso) in standard toxicity tests; comparative sensitivity with other test species. Front, Mar. Sci, vol.6, 2019.

, UniProt: a worldwide hub of protein knowledge, The UniProt Consortium, vol.47, pp.506-515, 2019.

R. S. Thomas, B. C. Allen, A. Nong, L. Yang, E. Bermudez et al., A method to integrate benchmark dose estimates with genomic data to assess the functional effects of chemical exposure, Toxicol. Sci, vol.98, pp.240-248, 2007.

C. Vogs and R. Altenburger, Time-dependent effects in algae for chemicals with different adverse outcome pathways: a novel approach, Environ. Sci. Technol, vol.50, pp.7770-7780, 2016.

P. C. Von-der-ohe, M. Schmitt-jansen, J. Slobodnik, and W. Brack, Triclosan-the forgotten priority substance?, Environ. Sci. Pollut. Res. -Int, vol.19, pp.585-591, 2012.

P. Wang, P. Xia, J. Yang, Z. Wang, Y. Peng et al., A reduced transcriptome approach to assess environmental toxicants using zebrafish embryo test, Environ. Sci. Technol, vol.52, pp.821-830, 2018.

X. Xin, G. Huang, C. An, R. Raina-fulton, and H. Weger, Insights into long-term toxicity of triclosan to freshwater green algae in Lake Erie, Environ. Sci. Technol, vol.53, pp.2189-2198, 2019.

X. Zhang, P. Xia, P. Wang, J. Yang, and D. J. Baird, Omics advances in ecotoxicology, Environ. Sci. Technol, vol.52, pp.3842-3851, 2018.

F. Larras, Journal of Hazardous Materials, vol.397, p.122727, 2020.