A. Acharya, A model of crystal plasticity based on the theory of continuously distributed dislocations, J. Mech. Phys. Solids, vol.49, issue.4, pp.761-784, 2001.

A. Acharya, Driving forces and boundary conditions in continuum dislocation mechanics, Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, p.459, 2002.

A. Acharya, Constitutive analysis of finite deformation field dislocation mechanics, J. Mech. Phys. Solids, vol.52, pp.301-316, 2004.

E. Aifantis, Strain gradient interpretation of size effects, Int. J. Fract, vol.95, pp.299-314, 1999.

E. Amouyal, Y. Rabkin, and . Mishin, Correlation between grain boundary energy and geometry in Ni-rich NiAl, Acta Mater, vol.53, issue.14, pp.3795-3805, 2005.

A. Arsenlis and D. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density, Acta Mater, vol.47, issue.5, pp.1597-1611, 1999.

A. Arsenlis and D. M. Parks, Crystallographic aspects of geometricallynecessary and statistically-stored dislocation density, Acta Materialia, vol.47, issue.5, pp.1597-1611, 1999.

M. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag, vol.21, issue.170, pp.399-424, 1970.

S. Berbenni, V. Taupin, K. S. Djaka, and C. Fressengeas, A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics, International Journal of Solids and Structures, vol.51, issue.23, pp.4157-4175, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01515210

S. Berbenni, V. Taupin, and R. Lebensohn, A fast fourier transform-based mesoscale field dislocation mechanics study of grain size effects and reversible plasticity in polycrystals, J. Mech. Phys. Solids, vol.135, p.103808, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02391955

R. Bullough and B. Bilby, Continuous Distributions of Dislocations : Surface Dislocations and the Crystallography of Martensitic Transformations, Proc. Phys. Soc. Sect. B, vol.69, issue.12, pp.1276-1286, 1956.

F. Caballero, H. Yen, M. Miller, J. Yang, J. Cornide et al., Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels, Acta Mater, vol.59, issue.15, pp.6117-6123, 2011.

M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A, vol.527, pp.2738-2746, 2010.

H. Cheng, Q. Zhou, H. Lu, L. Gao, and . Lu, Extra strengthening and work hardening in gradient nanotwinned metals, Science, vol.362, issue.6414, 2018.

S. Cordero, E. Forest, S. Busso, M. Berbenni, and . Cherkaoui, Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals, Comput. Mater. Sci, vol.52, issue.1, pp.7-13, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00658644

B. Devincre, R. Madec, G. Monnet, S. Queyreau, R. Gatti et al., Modeling crystal plasticity with dislocation dynamcis simulations : The "mi-croMEGAS" code, Nano-Objects, pp.81-100, 2011.

A. Dubinko, D. Terentyev, A. Bakaeva, K. Verbeken, M. Wirtz et al., Evolution of plastic deformation in heavily deformed and recrystallized tungsten of ITER specification studied by TEM, Int. J. Refract. Met. Hard Mater, vol.66, pp.105-115, 2017.

B. El-dasher, B. Adams, and A. Rollett, Viewpoint : experimental recovery of geometrically necessary dislocation density in polycrystals. Scripta Materialia, vol.48, pp.141-145, 2003.

X. Feaugas, On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K : Back stress and effective stress, Acta Mater, vol.47, issue.13, pp.3617-3632, 1999.

G. Fleck, M. Muller, J. Ashby, and . Hutchinson, Strain gradient plasticity : Theory and experiment, Acta Metall. Mater, vol.42, issue.2, pp.475-487, 1994.

M. Fleck, J. Ashby, and . Hutchinson, The role of geometrically necessary dislocations in giving material strengthening, Scr. Mater, vol.48, issue.2, pp.179-183, 2003.

C. Fressengeas, Mechanics of Dislocation Fields, 2017.

H. Gao and Y. Huang, Geometrically necessary dislocation and size-dependent plasticity, Scr. Mater, vol.48, pp.113-118, 2003.

H. Gao, Y. Huang, W. Nix, and J. Hutchinson, Mechanism-based strain gradient plasticity-I. Theory, J. Mech. Phys. Solids, vol.47, issue.6, pp.1239-1263, 1999.

J. Gibeling, W. Nix, ;. S. Haouala, S. Lucarini, J. Llorca et al., Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization, J. Mech. Phys. Solids, vol.28, p.134, 1980.

S. He, B. He, K. Zhu, and M. Huang, Evolution of dislocation density in bainitic steel : Modeling and experiments, Acta Mater, vol.149, pp.46-56, 2018.

J. Hirth and J. Lothe, Theory of Dislocations, 1982.

T. Hsieh and R. Balluffi, Observations of roughening/de-faceting phase transitions in grain boundaries, Acta Metall, vol.37, issue.8, pp.2133-2139, 1989.

M. Huang, Z. Huang, and . Li, Effect of interfacial dislocation networks on the evolution of matrix dislocations in nickel-based superalloy, Int. J. Plast, vol.110, pp.1-18, 2018.

T. Jiang, A. Britton, and . Wilkinson, Evolution of dislocation density distributions in copper during tensile deformation, Acta Mater, vol.61, pp.7227-7239, 2013.

M. Jiang, B. Devincre, and G. Monnet, Effects of the grain size and shape on the flow stress : A dislocation dynamics study, Int. J. Plast, vol.113, pp.111-124, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01931425

H. Khan, D. Zbib, and . Hughes, Modeling planar dislocation boundaries using multi-scale dislocation dynamics plasticity, Int. J. Plast, vol.20, pp.1059-1092, 2004.

S. Kondo, T. Mitsuma, N. Shibata, and Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries, Sci. Adv, vol.2, issue.11, p.1501926, 2016.

E. Kröner, On the physical reality of torque stresses in continuum mechanics, Int. J. Eng. Sci, vol.1, issue.2, pp.261-278, 1963.

I. Lee, H. Robertson, and . Birnbaum, TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals, Philos. Mag. A, vol.62, issue.1, pp.131-153, 1990.

J. Li, Some elastic properties of an edge dislocation wall, Acta Metall, vol.8, issue.8, pp.563-574, 1960.

J. Li and C. Needham, Some elastic properties of a screw dislocation wall, J. Appl. Phys, vol.31, issue.8, pp.1318-1330, 1960.

D. Liu and D. Dunstan, Material length scale of strain gradient plasticity : A physical interpretation, Int. J. Plast, vol.98, pp.156-174, 2017.

V. Lubarda and D. Kouris, Stress fields due to dislocation walls in infinite and semi-infinite bodies, Mech. Mater, vol.23, issue.3, pp.169-189, 1996.

G. Malyar, C. Dehm, and . Kirchlechner, Strain rate dependence of the slip transfer through a penetrable high angle grain boundary in copper, Scripta Materialia, vol.138, pp.88-91, 2017.

H. Mughrabi, Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals, Acta Metall, vol.31, issue.9, pp.1367-1379, 1983.

H. Mughrabi, Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals, Rev. Phys. Appl, vol.23, issue.4, pp.367-379, 1988.
URL : https://hal.archives-ouvertes.fr/jpa-00245783

T. Mura, General theory of eigenstrains, 1987.

J. Nye, Some geometrical relations in dislocated crystals, Acta Metall, vol.1, issue.2, pp.153-162, 1953.

R. Ohashi, J. Barabash, G. Pang, O. Ice, and . Barabash, X-ray microdiffraction and strain gradient crystal plasticity studies of geometrically necessary dislocations near a Ni bicrystal grain boundary, Int. J. Plast, vol.25, issue.5, pp.920-941, 2009.

W. Pantleon, Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction, Scripta Materialia, vol.58, issue.11, pp.994-997, 2008.

B. Peeters, B. Bacroix, C. Teodosiu, P. Van-houtte, and E. Aernoudt, Workhardening/softening behaviour of b.c.c. polycrystals during changing strain paths : II. TEM observations of dislocation sheets in an IF steel during twostage strain paths and their representation in terms of dislocation densities, Acta Mater, vol.49, issue.9, pp.1621-1632, 2001.

L. Priester, Grain Boundaries : From Theory to Engineering, Grain Boundaries From Theory to Eng, 2013.

C. Rey and G. Saada, The elastic field of periodic dislocation networks. Philosophical Magazine, vol.33, pp.825-841, 1976.

A. Roy and A. Acharya, Finite element approximation of field dislocation mechanics, J. Mech. Phys. Solids, vol.53, issue.1, pp.143-170, 2005.

G. Saada and E. Bouchaud, Dislocation walls, Acta Met. Mater, vol.41, issue.7, pp.2173-2178, 1993.

K. Shih and J. Li, Energy of grain boundaries between cusp misorientations, Surf. Sci, vol.50, issue.1, pp.109-124, 1975.

F. Sun, E. Meade, and N. O'dowd, Strain gradient crystal plasticity modelling of size effects in a hierarchical martensitic steel using the Voronoi tessellation method, Int. J. Plast, 2019.

S. Sun, B. Adams, and W. King, Observations of lattice curvature near the interface of a deformed aluminium bicrystal, Philosophical Magazine A, vol.80, issue.1, pp.9-25, 2000.

A. Sutton and R. Balluffi, Interfaces in Crystalline Materials, 1995.

M. Wu, F. Yang, G. Yuan, Y. Wu, X. Wei et al., Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility, Proc. Natl. Acad. Sci. U. S. A, vol.112, 2015.

L. Yang, C. Wang, P. Zambaldi, R. Eisenlohr, W. Barabash et al., Characterization and modeling of heterogeneous deformation in commercial purity titanium, Jom, vol.63, issue.9, pp.66-73, 2011.