T. A. Rouault, Iron metabolism in the CNS: implications for neurodegenerative diseases, Nat. Rev. Neurosci, vol.14, pp.551-564, 2013.

A. I. Bush, The metal theory of Alzheimer's disease, J. Alzheimers Dis, vol.33, issue.1, pp.277-281, 2013.

S. Ayton, P. Lei, and A. I. Bush, Metallostasis in Alzheimer's disease. Free Radic, Bio. Med, vol.62, pp.76-89, 2013.

J. Sian-hülsmann, S. Mandel, M. B. Youdim, and P. Riederer, The relevance of iron in the pathogenesis of Parkinson's disease, J. Neurochem, vol.118, pp.939-957, 2011.

D. R. Richardson, Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol, Proc. Natl Acad. Sci. USA, vol.107, pp.10775-10782, 2010.

A. Ndayisaba, C. Kaindlstorfer, and G. K. Wenning, Iron in neurodegeneration -cause or consequence?, Front. Neurosci, vol.13, p.180, 2019.

A. H. Schapira, Mitochondrial complex I deficiency in Parkinson's disease, Lancet, vol.333, p.1269, 1989.

P. Ibáñez, Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease, Lancet, vol.364, pp.1169-1171, 2004.

L. Pihlstrøm, A comprehensive analysis of SNCA-related genetic risk in sporadic parkinson disease, Ann. Neurol, vol.84, pp.117-129, 2018.

A. B. Singleton, alpha-Synuclein locus triplication causes Parkinson's disease, Science, vol.302, p.841, 2003.

Y. Peng, C. Wang, H. H. Xu, Y. Liu, and F. Zhou, Binding of alphasynuclein with Fe(III) and with Fe(II) and biological implications of the resultant complexes, J. Inorg. Biochem, vol.104, pp.365-370, 2010.

J. S. Mcdowall, Alpha-synuclein ferrireductase activity is detectible in vivo, is altered in Parkinson's disease and increases the neurotoxicity of DOPAL, Mol. Cell. Neurosci, vol.85, pp.1-11, 2017.

J. Levin, Generation of ferric iron links oxidative stress to ?-synuclein oligomer formation, J. Parkinsons Dis, vol.1, pp.205-216, 2011.

D. T. Dexter, Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease, J. Neurochem, vol.52, pp.1830-1836, 1989.

P. Riederer, Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains, J. Neurochem, vol.52, pp.515-520, 1989.

J. Wang, Meta-analysis of brain iron levels of Parkinson's disease patients determined by postmortem and MRI measurements, Sci. Rep, vol.6, p.36669, 2016.

K. M. Davies, Copper pathology in vulnerable brain regions in Parkinson's disease, Neurobiol. Aging, vol.35, pp.858-866, 2014.

Y. Muñoz, C. M. Carrasco, J. D. Campos, P. Aguirre, and M. T. Núñez, Parkinson's disease: the mitochondria-iron link, Parkinsons Dis, p.7049108, 2016.

B. R. Stockwell, Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease, Cell, vol.171, pp.273-285, 2017.

A. A. Belaidi and A. I. Bush, Iron neurochemistry in Alzheimer's disease and Parkinson's disease: targets for therapeutics, J. Neurochem, vol.139, pp.179-197, 2016.

S. J. Guiney, P. A. Adlard, A. I. Bush, D. I. Finkelstein, and S. Ayton, Ferroptosis and cell death mechanisms in Parkinson's disease, Neurochem. Int, vol.104, pp.34-48, 2017.

S. Genoud, Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson's disease brain, Metallomics, vol.9, pp.1447-1455, 2017.

E. J. New, V. C. Wimmer, and D. J. Hare, Promises and pitfalls of metal imaging in biology, Cell Chem. Biol, vol.25, pp.7-18, 2018.

C. Grochowski, Analysis of trace elements in human brain: its aim, methods, and concentration levels, Front. Chem, vol.7, p.115, 2019.

M. W. Bourassa and L. M. Miller, Metal imaging in neurodegenerative diseases, Metallomics, vol.4, pp.721-738, 2012.

A. P. Hitchcock, Correlative spectromicroscopy and tomography for biomedical applications involving electron, ion, and soft X-ray microscopies, Microsc. Today, vol.27, pp.12-19, 2019.

C. J. Fahrni, Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals, Curr. Opin. Chem. Biol, vol.11, pp.121-127, 2007.

J. F. Collingwood and F. Adams, X-ray microscopy for detection of metals in the brain, Metals in the Brain: Measurement and Imaging, pp.7-32, 2017.

M. Szczerbowska-boruchowska, Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation. X-Ray Spectrom, vol.33, pp.3-11, 2004.

E. Carboni, Imaging of neuronal tissues by x-ray diffraction and x-ray fluorescence microscopy: evaluation of contrast and biomarkers for neurodegenerative diseases, Biomed. Opt. Express, vol.8, pp.4331-4347, 2017.

M. J. Hackett, Elemental characterisation of the pyramidal neuron layer within the rat and mouse hippocampus, Metallomics, vol.11, pp.151-165, 2019.

S. Bohic, Intracellular chemical imaging of the developmental phases of human neuromelanin using synchrotron X-ray microspectroscopy, Anal. Chem, vol.80, pp.9557-9566, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00410454

T. Du?i?, X-ray fluorescence analysis of iron and manganese distribution in primary dopaminergic neurons, J. Neurochem, vol.124, pp.250-261, 2013.

R. A. Colvin, Q. Jin, B. Lai, and L. Kiedrowski, Visualizing metal content and intracellular distribution in primary hippocampal neurons with synchrotron X-ray fluorescence, PLoS One, vol.11, p.159582, 2016.

E. Kosior, Combined use of hard X-ray phase contrast imaging and Xray fluorescence microscopy for sub-cellular metal quantification, J. Struct. Biol, vol.177, pp.239-247, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00662829

R. Ortega, ?-Synuclein over-expression induces increased iron accumulation and redistribution in iron-exposed neurons, Mol. Neurobiol, vol.53, pp.1925-1934, 2016.

Y. Kashiv, Imaging trace element distributions in single organelles and subcellular features, Sci. Rep, vol.6, p.21437, 2016.

J. Deng, X-ray ptychographic and fluorescence microscopy of frozenhydrated cells using continuous scanning, Sci. Rep, vol.7, p.445, 2017.

A. Carmona, SLC30A10 mutation involved in Parkinsonism results in manganese accumulation within nanovesicles of the Golgi apparatus, ACS Chem. Neurosci, vol.10, pp.599-609, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02017059

N. Korogod, C. C. Petersen, and G. W. Knott, Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation, vol.4, p.5793, 2015.

N. Ohno, N. Terada, Y. Saitoh, and S. Ohno, Overview on recent applications of in vivo cryotechnique in neurosciences, Vivo Cryotechnique in Biomedical Research and Application for Bioimaging of Living Animal Organs, pp.179-183, 2016.

A. Simionovici and P. Chevallier, Micro-XRF with synchrotron radiation, Handbook of Practical X-Ray Fluorescence Analysis, vol.863, 2006.
URL : https://hal.archives-ouvertes.fr/insu-00403036

M. N. Gaugler, Nigrostriatal overabundance of ?-synuclein leads to decreased vesicle density and deficits in dopamine release that correlate with reduced motor activity, Acta Neuropathol, vol.123, pp.653-669, 2012.

J. C. Silva and . Da, Efficient concentration of high-energy x-rays for diffraction-limited imaging resolution, Optica, vol.4, pp.492-495, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691891

V. A. Solé, E. Papillon, M. Cotte, P. H. Walter, and J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectroc. Acta B, vol.62, pp.63-68, 2007.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

H. Roschzttardtz, Plant cell nucleolus as a hot spot for iron, J. Biol. Chem, vol.286, pp.27863-27866, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00623165

I. Robinson, Nuclear incorporation of iron during the eukaryotic cell cycle, J. Synchrotron Rad, vol.23, pp.1490-1497, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01572923

S. Yumoto, S. Kakimi, and A. Ishikawa, Colocalization of aluminum and iron in nuclei of nerve cells in brains of patients with Alzheimer's disease, J. Alzheimer's Dis, vol.65, pp.1267-1281, 2018.

A. Reinert, M. Morawski, J. Seeger, T. Arendt, and T. Reinert, Iron concentrations in neurons and glial cells with estimates on ferritin concentrations, BMC Neurosci, vol.20, p.25, 2019.

A. Höhn and T. Grune, Lipofuscin: formation, effects and role of macroautophagy, Redox Biol, vol.1, pp.140-144, 2013.

K. L. Double, The comparative biology of neuromelanin and lipofuscin in the human brain, Cell. Mol. Life Sci, vol.65, pp.1669-1682, 2008.

A. E. Oakley, Individual dopaminergic neurons show raised iron levels in Parkinson disease, Neurology, vol.68, pp.1820-1825, 2007.

G. Isaya, Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease, Front. Pharmacol, vol.5, p.29, 2014.

P. Zhang, Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism, J. Struct. Biol, vol.150, pp.144-153, 2005.

J. Everett, Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects, Nanoscale, vol.10, pp.11782-11796, 2018.

F. Lermyte, Emerging approaches to investigate the influence of transition metals in the proteinopathies, Cells, vol.8, p.1231, 2019.

S. A. James, Quantitative comparison of preparation methodologies for x-ray fluorescence microscopy of brain tissue, Anal. Bioanal. Chem, vol.401, pp.853-864, 2011.

E. Påsgård, U. Lindh, and G. M. Roomans, Comparative study of freezesubstitution techniques for x-ray microanalysis of biological tissue, Microsc. Res. Tech, vol.28, pp.254-258, 1994.

M. M. Da-cunha, Overview of chemical imaging methods to address biological questions, Micron, vol.84, pp.23-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758315

R. Gao, Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution, Science, vol.363, p.8302, 2019.

J. Dusonchet, J. Bensadoun, B. L. Schneider, and P. Aebischer, Targeted overexpression of the parkin substrate Pael-R in the nigrostriatal system of adult rats to model Parkinson's disease, Neurobiol. Dis, vol.35, pp.32-41, 2009.

W. Bobela, S. Nazeeruddin, G. Knott, P. Aebischer, and B. L. Schneider, Modulating the catalytic activity of AMPK has neuroprotective effects against ?-synuclein toxicity, Mol. Neurodegener, vol.12, p.80, 2017.

F. Villar, Nanopositioning for the ESRF ID16A nano-imaging beamline, Synchrotron Radiat. News, vol.31, pp.9-14, 2018.

A. Brunetti, M. Sanchez-del-rio, B. Golosio, A. Simionovici, and A. Somogyi, A library for X-ray-matter interaction cross sections for X-ray fluorescence applications, Spectroc. Acta B, vol.59, pp.1725-1731, 2004.