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Abstract 1

Priors and payo↵s are known to a↵ect perceptual decision-making, but little is understood 2

about how they influence confidence judgments. For optimal perceptual decision-making, 3

both priors and payo↵s should be considered when selecting a response. However, for con- 4

fidence to reflect the probability of being correct in a perceptual decision, priors should 5

a↵ect confidence but payo↵s should not. To experimentally test whether human ob- 6

servers follow this normative behavior for natural confidence judgments, we conducted 7

an orientation-discrimination task with varied priors and payo↵s that probed both per- 8

ceptual and metacognitive decision-making. The placement of discrimination and con- 9

fidence criteria were examined according to several plausible Signal Detection Theory 10

models. In the normative model, observers use the optimal discrimination criterion (i.e., 11

the criterion that maximizes expected gain) and confidence criteria that shift with the 12

discrimination criterion that maximizes accuracy (i.e., are not a↵ected by payo↵s). No 13

observer was consistent with this model, with the majority exhibiting non-normative con- 14

fidence behavior. One subset of observers ignored both priors and payo↵s for confidence, 15

always fixing the confidence criteria around the neutral discrimination criterion. The 16

other group of observers incorrectly incorporated payo↵s into their confidence by always 17

shifting their confidence criteria with the same gains-maximizing criterion used for dis- 18

crimination. Such metacognitive mistakes could have negative consequences outside the 19
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laboratory setting, particularly when priors or payo↵s are not matched for all the possible 20

decision alternatives. 21

22

Keywords: decision-making, metacognition, confidence, reward, Signal Detection The- 23

ory 24

1 Introduction 25

In making a perceptual decision, it is wise to consider information beyond the available 26

sensory evidence. To maximize expected gains, one should consider both the baseline 27

probability of each possible world state, i.e., priors, as well as the associated risks and 28

rewards for choosing or not choosing each response alternative, i.e., payo↵s. In the Signal 29

Detection Theory (SDT) framework, priors and payo↵s alter the threshold amount of 30

evidence required to choose one alternative versus another, that is, a shift in the criterion 31

for reporting option “A” versus option “B” in a binary task. For example, consider a 32

radiologist trying to detect a tumor in an x-ray image. The radiologist should be more 33

likely to report a positive result for a suspicious shadow if the patient’s file indicates they 34

are a smoker, as this means they have a higher prior probability of cancer. Similarly, the 35

high cost of waiting to treat the cancer should also bias the radiologist towards declaring 36

a positive result. In both real and laboratory environments, observers have been found 37

to factor in priors and payo↵s to varying extents when setting the decision criterion 38

(Maddox and Bohil, 1998, 2000; Maddox and Dodd, 2001; Wolfe et al., 2005; Ackermann 39

and Landy, 2015; Horowitz, 2017). 40

Decisions about the state of the world (cancer or not cancer, cat or dog, tilted clock- 41

wise or counter-clockwise) are referred to as stimulus-conditioned responses or Type 1 42

decisions. Judgments can also be made about our Type 1 decisions, such as our confi- 43

dence in the decision, which are referred to as response-conditioned responses or Type 2 44

decisions (Clarke et al., 1959; Galvin et al., 2003; Mamassian, 2016). Confidence judg- 45

ments are often operationalized in binary decision-making experiments as a subjective 46
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estimate of the probability the Type 1 response was correct (Pouget et al., 2016). Con- 47

fidence plays a broad role in guiding behavior, subsequent decision-making, and learning 48

in a multitude of scenarios for both humans and animals (Metcalfe and Shimamura, 1994; 49

Smith et al., 2003; Beran et al., 2012). 50

How does an ideal-observer radiologist modify confidence judgments in response to 51

varying priors or payo↵s? Intuitively, a radiologist should be more confident in a pos- 52

itive diagnosis when the patient is a smoker, given that they have been educated on 53

the prior scientific evidence on the health risks of smoking. Additional confirmatory 54

information should boost confidence in that positive diagnosis, and contrary evidence 55

should reduce confidence, because priors (smoker or non-smoker) and sensory evidence 56

(cancerous-looking shadow) are both informative about the probability of possible world 57

states. However, this is not the case for payo↵s. Incentivizing the di↵erent responses 58

with rewards or punishment (e.g., delivering good or bad news) does not change the un- 59

certainty about the world state. The radiologist should not be more or less confident in 60

their cancer diagnosis if the type of cancer would be deadly or benign or if the surgical 61

procedure is expensive or not, even though these factors should a↵ect their initial diag- 62

nosis. In fact, sometimes payo↵s will lead the decision-maker to choose the less probable 63

alternative and this should be reflected by low confidence in the decision, such as the 64

radiologist erring on the side of caution for a patient with an otherwise perfect health 65

history. 66

The literature is scarce on the issue of how human observers adjust confidence in 67

response to prior-payo↵ structures. In one perceptual study, the prior probabilities of 68

target present versus absent a↵ected the placement of the criteria for Type 1 and 2 69

judgments (Sherman et al., 2015), with some evidence that confidence better predicts 70

performance for responses congruent with the more probable outcome than those that 71

are incongruent. In the realm of social judgments, prior probabilities have been shown 72

to modulate the degree of confidence, with higher confidence assigned to more probable 73

outcomes (Manis et al., 1980). However, others have found counter-productive incorpo- 74

ration of priors, with over-confidence for low-probability outcomes and under-confidence 75
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for high-probability outcomes (Dunning et al., 1990). In regards to payo↵s, early work on 76

monetary incentives in human perceptual categorization did collect confidence ratings, 77

however they were not included in any analyses (Lee and Zentall, 1966). A recent study, 78

however, has found motivational e↵ects of monetary incentives on the calibration of per- 79

ceptual confidence (Lebreton et al., 2018). In contrast, consideration of payo↵ structures 80

is ubiquitous in animal studies of confidence that employ wagering methods (Smith et al., 81

2003). For example, in the opt-out paradigm, the animal is o↵ered a choice between a 82

small but certain reward and a risky alternative with either high reward or no reward, for 83

correct and incorrect perceptual responses respectively. The fact that the animal chooses 84

the small but certain reward in di�cult trials is taken as evidence that it can distinguish 85

between low and high levels of confidence (Kiani and Shadlen, 2009). 86

We sought to characterize how human observers adjust their perceptual decisions and 87

confidence in response to joint manipulation of priors and payo↵s within the same per- 88

ceptual task. We placed our participant in a visual orientation-discrimination task by 89

presenting oriented Gabor patterns tilted left or right of vertical with a fixed orientation 90

magnitude. In separate sessions we adjusted the prior-payo↵ structure by selecting the 91

probability of a leftward-tilted versus rightward-tilted Gabor and by assigning di↵erent 92

rewards for each of the response alternatives. We considered three classes of confidence 93

behavior in our modeling. In the normative-shift models, priors but not payo↵s deter- 94

mine the placement of confidence criteria; as discussed above, this is what participants 95

should theoretically aim for. In the gains-shift models, both priors and payo↵s deter- 96

mine confidence criteria; this is what would happen if participants ignored the reason 97

why they shifted the Type 1 criterion. Finally, in the neutral-fixed models, the ob- 98

server is insensitive to the prior-payo↵ context when placing confidence criteria. We 99

also considered the possibility that participants were not optimal in using priors and 100

payo↵s in the discrimination decision. Therefore, variants of models within each class 101

included 1) the nature of Type 1 criterion placement relative to optimal (e.g., decision 102

conservatism), and 2) whether Type 1 conservatism was also present when participants 103

were making their Type 2 decision. We found that almost all observers were best fit by 104
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either a gains-shift model or neutral-fixed model, neither of which constituted norma- 105

tive confidence behaviour. Furthermore, all observers who shifted the confidence criteria 106

in response to changes in priors/payo↵s maintained their Type 1 conservatism at the 107

Type 2 metacognitive stage of decision-making. These results demonstrate that natural 108

confidence judgments fail to correctly handle both priors and payo↵s for metacognitive 109

decision-making. 110

2 The Decision Models 111

Before presenting the outcome of our experiment, we describe the rationale and back- 112

ground for the modeling of Type 1 and Type 2 decision-making. This will allow us to 113

directly interpret our behavioral results. We follow the example of a left-right orientation 114

judgment followed by a binary low-high confidence judgment to match the experimental 115

paradigm used in the present study. First the range of Type 1 models are identified, which 116

assess the placement of the discrimination-decision criterion under di↵erent prior-payo↵s 117

scenarios. Then the Type 2 models are outlined, describing the di↵erent potential rela- 118

tionships between the decision criteria for confidence and the criterion for discrimination. 119

2.1 The Type 1 Decision 120

To make the Type 1 decision, observers must relate a noisy internal measurement, x, 121

of the stimulus, s, where s 2 {sL, sR}, to a binary response, which in the context of 122

our experiment is “tilted left” (say “s = sL”) or “tilted right” (say “s = sR”). This is 123

done by a comparison to an internal criterion, k1, such that if x < k1, the observer will 124

respond with“tilted left”, and otherwise “tilted right” (Figure 1a). The only component 125

of the Type 1 model the observer controls is the placement of the criterion. The optimal 126

value of k1 (kopt) maximizes the expected gain, ensuring the observer makes the most 127

points/money/etc. over the course of the experiment. The value of kopt depends on three 128

things: 129

(i) The sensitivity of the observer, d0. In the standard model of the decision space, 130
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P (x|sL) ⇠ N(µL, �L) and P (x|sR) ⇠ N(µR, �R), with µL = �µR and �L = �R = 1. 131

Under this transformation, the sensitivity d0 corresponds to the distance between 132

the peaks of the two internal measurement distributions. 133

(ii) The prior probability of each stimulus alternative, P (sL) and P (sR) = 1� P (sL). 134

(iii) The rewards for the four possible stimulus-response pairs, Vr,s, which are the rewards 135

(positive) or costs (negative) of responding r when the stimulus is s. 136

An ideal observer that maximizes expected gain (Green and Swets, 1966) uses criterion 137

kopt =
ln �opt

d0
, (1)

where the likelihood ratio �opt at the optimal criterion is a function of priors and payo↵s: 138

�opt =
P (sL)

P (sR)

VL,L � VL,R

VR,R � VR,L
. (2)

In our experiment, 0 points are awarded for incorrect answers, allowing us to simplify: 139

ln �opt = ln
P (sL)VL,L

P (sR)VR,R
= ln

P (sL)

P (sR)
+ ln

VL,L

VR,R
. (3)

Thus, kopt = kp + kv, where kp is the optimal criterion location if only priors were 140

asymmetric and kv is the optimal criterion if only the payo↵s were asymmetric. As can 141

be seen in Eq. 3, the e↵ects of priors and payo↵s sum when determining the optimal 142

criterion (illustrated in Figure 1b). When the priors are more similar, or the payo↵s are 143

closer to equal, kopt is closer to the neutral criterion kneu = 0. Note that in the case of 144

symmetric payo↵s, kopt maximizes both expected gain and expected accuracy, whereas 145

when asymmetric payo↵s are involved, kopt maximizes expected gain only (i.e., kopt 6= kp). 146

This is because to maximize expected gain, from time to time the observer is incentivized 147

to choose the less probable outcome because it is more rewarded. 148
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2.2 Conservatism 149

Often, human observers use a sub-optimal value of k1 when the prior probabilities or 150

payo↵s are not identical for each alternative. A common observation is that the criterion 151

is not adjusted far enough from the neutral criterion towards the optimal criterion, kneu < 152

k1 < kopt or kneu > k1 > kopt, a behavior referred to as conservatism (Green and Swets, 153

1966; Maddox, 2002). It is useful to express conservatism as a weighted sum of the neutral 154

and optimal criterion: 155

k1 = (1� ↵)kneu + ↵kopt = ↵kopt, (4)

with 0 < ↵ < 1 indicating conservative criterion placement. The degree of conservatism 156

is greater the closer ↵ is to 0 (Figure 1c). Several studies have contrasted the conser- 157

vatism for unequal priors versus unequal payo↵s, typically finding greater conservatism 158

for unequal payo↵s (Lee and Zentall, 1966; Ulehla, 1966; Healy and Kubovy, 1981; Ack- 159

ermann and Landy, 2015) with few exceptions (Healy and Kubovy, 1978). This may 160

result from an underlying criterion-adjustment strategy that depends on the shape of the 161

expected-gain curve (as a function of criterion placement) and not just on the position 162

of the optimal criterion maximizing expected gain (Busemeyer and Myung, 1992; Acker- 163

mann and Landy, 2015) or a strategy that trades o↵ between maximizing expected gain 164

and maximizing expected accuracy (Maddox, 2002; Maddox and Bohil, 2003). Given that 165

the e↵ects of priors and payo↵s sum in Eq. 3, we will consider a sub-optimal model of 166

criterion placement that has separate conservatism factors for payo↵s and priors: 167

k1 =
1

d0


↵p ln

P (sL)

P (sR)
+ ↵v ln

VL,L

VR,R

�
= ↵pkp + ↵vkv. (5)

The conservatism factors, ↵p and ↵v, scale these individually before they are summed to 168

give the final conservative criterion placement, taking into account both prior and payo↵ 169

asymmetries. This formulation allows for di↵ering degrees of conservatism for priors and 170

payo↵s. 171
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2.3 Type 1 Decision Models 172

We consider four models of the Type 1 discrimination decision in this paper, includ- 173

ing the optimal model (i) and three sub-optimal models that include varying forms of 174

conservatism (ii-iv): 175

(i) ⌦1,opt : k1 = kopt = kp + kv 176

(ii) ⌦1,1↵ : k1 = ↵kopt = ↵ (kp + kv) 177

(iii) ⌦1,2↵ : k1 = ↵pkp + ↵vkv 178

(iv) ⌦1,3↵ :

8
>>>>>><

>>>>>>:

k1 = ↵pvkopt if kp 6= 0 and kv 6= 0 (i.e., both asymmetric)

k1 = ↵pkp if kv = 0 (i.e., payo↵s symmetric)

k1 = ↵vkv if kp = 0 (i.e., priors symmetric).

179

Thus, we consider models with no conservatism (⌦1,opt), with an identical degree of conser- 180

vatism due to asymmetric priors and payo↵s (⌦1,1↵), or di↵erent amounts of conservatism 181

for prior versus payo↵ manipulations (⌦1,2↵). In the fourth model, we drop the assump- 182

tion (that was based on the optimal model) that e↵ects of payo↵s and priors on criterion 183

sum, i.e., that behavior with asymmetric priors and payo↵s can be predicted from behav- 184

ior with each e↵ect alone (⌦1,3↵). We consider this final model because the additivity of 185

criterion shifts (Eq. 3) has not yet been experimentally confirmed with human observers 186

(Stevenson et al., 1990). 187

In all models, we also consider an additive bias term, �, corresponding to a perceptual 188

bias in perceived vertical. The bias is also included in the neutral criterion kneu = �. For 189

clarity, however, we have omitted it from the mathematical descriptions of the models. 190

Note that any observer best fit by ⌦1,opt but with a � significantly di↵erent from 0 would 191

no longer be considered as having optimal behavior. 192

2.4 Confidence Criteria 193

Confidence judgments should reflect the belief that the selected alternative in the dis- 194

crimination decision correctly matches the true world state. Generally speaking, the 195



9a)

Internal Measurement

P
ro
ba
bi
lit
y

P (x |sL) P (x |sR)

say “left” say “right”

k1

b)

P (sL) = 0.75

VL,L = 2

P (sR) = 0.25

VR,R = 4

kneu kpkv kopt

+

=

c)

koptkneu

k1?

↵
=
0.
2

↵
=
0.
4

↵
=
0.
6

↵
=
0.
8

d)
k2 k⇤1 = k1 k2

��

hi
gh
co
nf

lo
w
co
nf

lo
w
co
nf

hi
gh
co
nf

e)

k
⇤
1
=
k p

kv k 1
=
k o
pt

k2 k2

f)

k
⇤
1
=
k p

kv k 1
=
k o
pt

k2 k2

Figure 1: Illustration of the full SDT model. a) On each trial, an internal measurement
of stimulus orientation is drawn from a Gaussian probability distribution conditional on
the true stimulus value. The Type 1 criterion, k1, defines a cut-o↵ for reporting “left”
or “right”. The ideal observer in a symmetrical priors and payo↵s scenario is shown.
b) The ideal observer’s criterion placement with both prior and payo↵ asymmetry. This
prior asymmetry encourages a rightward criterion shift to kp and the payo↵ asymmetry a
leftward shift to kv. The optimal criterion placement that maximizes expected gain, kopt,
is a sum of these two criterion shifts. For comparison, the neutral criterion, kneu is shown.
As the prior asymmetry is greater than the payo↵ asymmetry, 3:1 vs 1:2, kopt 6= kneu.
c) A sub-optimal conservative observer will not adjust their Type 1 criterion far enough
from kneu to be optimal. The parameter ↵ describes the degree of conservatism, with
values closer to 0 being more conservative and closer to 1 less conservative. d) In the case
of symmetric payo↵s and priors, the Type 2 confidence criteria, k2, are placed equidistant
from the Type 1 decision boundary by ±�, carving up the internal measurement space
into a low- and high-confidence region for each discrimination response option. e) For
the normative Type 2 model, the confidence criteria are placed symmetrically around a
hypothetical Type 1 criterion that only maximizes accuracy (k⇤

1 = kp). This figure shows
the division of the measurement space as per the prior-payo↵ scenario in (b). As a left-
tilted stimulus is much more likely, this results in many high-confidence left-tilt judgments
and few high-confidence right-tilt judgments. Note that left versus right judgments still
depend on k1. f) The same as in (e) but with a small value of �. Note the low-confidence
region where confidence should be high (left of the left-hand k2). This happens because in
this region the observer will choose the Type 1 response that conflicts with the accuracy-
maximizing criterion, hence they will report low confidence in their decision. Note that
the displacements of the criteria from the neutral criterion in this figure are exaggerated
for illustrative purposes.
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further the internal measurement is from a well-placed decision boundary, the more evi- 196

dence there is for the discrimination judgment. This is instantiated in the extended SDT 197

framework by the addition of two or more confidence criteria, k2 (Maniscalco and Lau, 198

2012, 2014). There are two such criteria for a binary confidence task and more confidence 199

criteria when more than two confidence levels are provided. We restrict our treatment to 200

the binary case, which can be trivially extended to include more gradations of confidence. 201

As illustrated in Figure 1d, for the case of symmetric payo↵s and priors, there is a 202

k2 confidence criterion on each side of the k1 decision boundary. If the measurement 203

obtained is beyond one of these criteria relative to k1, then the observer will report high 204

confidence, and otherwise will report low confidence. Stated another way, the addition of 205

the confidence criteria e↵ectively divides the measurement axis into four regions: high- 206

confidence left, low-confidence left, low-confidence right, and high-confidence right. The 207

closer to the discrimination decision boundary that the observer places k2, the more 208

high-confidence responses they will give. We denote this distance as �. � is not always 209

assumed to be identical for both confidence criteria (e.g. Maniscalco and Lau, 2012), 210

but we assumed a single value of � for model simplicity. Type 2 judgments were not 211

incentivized in our experiment to allow observers to make a discrimination decision that 212

was not influenced by a monetary reward on the confidence decision. Thus, there is no 213

explicit cost function to constrain the distance parameter �, so the precise setting of � 214

will not factor into the evaluation of how well the normative model fits observer behavior. 215

2.5 The Counterfactual Type 1 Criterion 216

The above description of how confidence responses are generated is well suited to cases 217

where the payo↵s are symmetric. This is because the optimal Type 1 decision criterion 218

maximizes both gain and accuracy. For an internal measurement at the discrimination 219

boundary, it is equally probable that the stimulus had a rightward versus leftward ori- 220

entation. Expressed another way, the log-posterior ratio at kopt is 1. Thus, the distance 221

from the discrimination boundary is a good measure for the probability that the Type 1 222

response is correct (i.e., confidence as we defined it above). This, however, is not the case 223
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when payo↵s are asymmetric (k1 = kp + kv = kopt where kv 6= 0), as the ideal observer 224

maximizes gain but not accuracy. The log-posterior ratio is not 1 at kopt but rather it is 225

equal to 1 at kp. 226

To extend the SDT model of confidence to asymmetric payo↵s, we introduce a new 227

criterion. We call counterfactual criterion, k⇤
1, the criterion that the ideal observer would 228

have used if they ignored the payo↵ structure of the environment and exclusively max- 229

imized accuracy and not gain (i.e., k⇤
1 = kp). It is this discrimination criterion that 230

confidence criteria are yoked to in our normative model (Figure 1e). Note that whenever 231

payo↵s are symmetrical (kv = 0), k1 = k⇤
1. Figure 1f illustrates a situation unique to this 232

model that may occur when payo↵s are asymmetric. Here, the value of � is su�ciently 233

small that both k2 criteria fall on the same side of k1. As a result, the region between k1 234

and the left-hand k2 criterion results in a low-confidence response despite being beyond 235

the k2 boundary (relative to k⇤
1). This occurs because this region is to the right of k1 236

and thus, due to asymmetric payo↵s, the observer will make the less probable choice, 237

which then results in low confidence in that choice. E↵ectively, the left-hand confidence 238

criterion is shifted from k2 to k1. Here, we rely on the assumption that the confidence 239

system is aware of the Type 1 decision (for further discussion of this issue, see Fleming 240

and Daw, 2017). 241

The notion of an observer computing additional criteria for counterfactual reasoning is 242

not new. For example, in the model of Type 1 conservatism of Maddox and Bohil (1998), 243

where observers trade o↵ gain versus accuracy, k1 is a weighted average of the optimal 244

criteria for maximizing expected gain (kopt) and for exclusively maximizing accuracy (kp). 245

In Zylberberg et al. (2018), observers learned prior probabilities of each stimulus type 246

by an updating decision-making mechanism that computes the confidence the observer 247

would have had if they had used the neutral criterion (kneu) for their Type 1 judgment. 248

We suggest that for determining confidence in the face of asymmetric payo↵s, normative 249

observers compute the confidence they would have reported if they had instead used the 250

kp criterion for the discrimination judgment. 251
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2.6 Type 2 Decision Models 252

In addition to the normative model we just described (i), we considered four sub-optimal 253

models (ii-v) for the counterfactual Type 1 criterion about which the Type 2 criteria are 254

yoked: 255

(i) ⌦2,acc : k⇤
1 = kp 256

(ii) ⌦2,acc+cons : k⇤
1 = ↵pkp 257

(iii) ⌦2,gain : k⇤
1 = kopt 258

(iv) ⌦2,gain+cons : k⇤
1 = k1 259

(v) ⌦2,neu : k⇤
1 = kneu 260

All of these models are characterized by the placement of the counterfactual criterion, k⇤
1; 261

the distance � is the only free parameter for all models and only alters the probability of 262

a Type 2 response given the Type 1 response. That is, � represents the propensity to re- 263

spond low confidence, but the confidence criteria, k2, will be placed around k⇤
1 regardless 264

of the particular value of �. Thus, an observer’s overall confidence bias will be indepen- 265

dent from a test of normativity. In the normative-shift model (⌦2,acc), the confidence 266

criteria shift along with the discrimination criterion that maximizes accuracy and ignores 267

possible payo↵s. We also consider a gains-shift model in which confidence criteria shift 268

with the criterion that maximizes expected gain (⌦2,gain), which is incorrect behavior in 269

the case of asymmetric payo↵s. In the neutral-fixed model (⌦2,neu), confidence criteria 270

remain fixed around the neutral Type 1 criterion, regardless of the prior or payo↵ ma- 271

nipulation. Finally, for the classes of models that involve shifting confidence criteria (i.e., 272

not the neutral-fixed model), we consider variants where conservatism in the discrimina- 273

tion criterion placement also a↵ects k⇤
1: for the normative-shift model (⌦2,acc+cons) or the 274

gains-shift model (⌦2,gain+cons). For the gains-shift model with carry-over conservatism, 275

k⇤
1 is identical to k1. For all other models, some combinations of priors and payo↵s will 276

decouple k⇤
1 from k1. For the normative-shift model with carry-over conservatism, the 277
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decoupling only occurs for asymmetric payo↵s. For the three remaining models, this 278

decoupling occurs whenever priors and/or payo↵s are asymmetric. 279

For simplicity, our models assume that the k2 criteria are placed symmetrically around 280

k⇤
1 at a distance of ±�. However, the ability to identify the underlying Type 2 model 281

should not be a↵ected by this assumption. Consider an observer whose low-confidence 282

region to the left of k⇤
1 was always greater than their low-confidence region to the right of 283

k⇤
1, such that k⇤

1 � k2� > k2+ � k⇤
1. Then, the estimate of � would be similar because the 284

experimental design tested the mirror prior-payo↵ condition (i.e., for fixed k2, one condi- 285

tion would have k⇤
1 attracted to neutral and the other repelled, which is not the behaviour 286

of k⇤
1 in any Type 2 model). Thus, the best-fitting model would be unlikely to change 287

when � is asymmetric, but the quality of the model fit would be impaired. Alternatively, 288

an asymmetry in � could be mirrored about the neutral criterion (e.g., the low confidence 289

region closest to the neutral criterion is always smaller). Then, the � asymmetry would 290

be indistinguishable from a bias in the conservatism parameter. Although the confidence 291

criteria are still yoked to k⇤
1, ultimately it is the patterns of confidence-criteria shift from 292

all conditions jointly that are captured by the model comparison. 293

3 Methods 294

3.1 Participants 295

Ten participants (5 female, age range 22-43 years, mean 27.0 years) took part in the 296

experiment. All participants had normal or corrected-to-normal vision, except one am- 297

blyopic participant. All participants were naive to the research question, except for three 298

of the authors who participated. On completion of the study, participants received a cash 299

bonus in the range of $0 to $20 based on performance. In accordance with the ethics 300

requirements of the Institutional Review Board at New York University, participants 301

received details of the experimental procedures and gave informed consent prior to the 302

experiment. 303
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3.2 Apparatus 304

Stimuli were presented on a gamma-corrected CRT monitor (Sony G400, 36 x 27 cm) 305

with a 1280 x 1024 pixel resolution and an 85 Hz refresh rate. The experiment was 306

conducted in a dimly lit room, using custom-written code in MATLAB version R2014b 307

(The MathWorks, Natick, MA), with PsychToolbox version 3.0.11 (Brainard, 1997; Pelli, 308

1997; Kleiner et al., 2007). A chin-rest was used to stabilize the participant at a viewing 309

distance of 57 cm. Responses were recorded on a standard computer keyboard. 310

3.3 Stimuli 311

Stimuli were Gabor patches, either right (clockwise) or left (counterclockwise) of vertical, 312

presented on a mid-gray background at the center of the screen. The Gabor had a 313

sinusoidal carrier with spatial frequency of 2 cycle/deg, a peak contrast of 10%, and a 314

Gaussian envelope (SD: 0.5 deg). The phase of the carrier was randomized on each trial 315

to minimize contrast adaptation. 316

3.4 Experimental Design 317

Orientation discrimination (Type 1, 2AFC, left/right) and confidence judgments (Type 2, 318

2AFC, low/high) were collected for seven conditions defined by the prior and payo↵ struc- 319

ture. The probability of a right-tilted Gabor could be 25, 50, or 75%. The points awarded 320

for correctly identifying a right- versus a left-tilt could be 4:2, 3:3, or 2:4. In the 3:3 payo↵ 321

scheme, a correct response was awarded 3 points. In the 2:4 and 4:2 schemes, correct 322

responses were awarded 2 or 4 points depending on the stimulus orientation. Incorrect re- 323

sponses were not rewarded (0 points). We were interested in people’s natural confidence 324

behavior, so confidence responses were not rewarded, allowing participants to respond 325

with their subjective sense of probability correct. The prior and payo↵ structure was 326

explicitly conveyed to the participant before the session began (Fig. 2b) and after every 327

50 trials. There were 7 prior-payo↵ conditions (Fig. 2c): no asymmetry (50%, 3:3), single 328

asymmetry (50%, 4:2; 50%, 2:4; 25%, 3:3; 75%, 3:3), or double asymmetry (25%, 4:2; 329
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Figure 2: Experimental methods. a) Trial sequence including an outline of the initial
condition information screen (see part (b) for details) and final (mock) leaderboard screen.
Participants were shown either a right- or left-tilted Gabor and made subsequent Type 1
and Type 2 decisions before being awarded points and given auditory feedback based on
the Type 1 discrimination judgment. b) Sample condition-information displays from a
double-asymmetry condition. Below: Example Gabor stimuli, color-coded blue for left-
and orange for right-tilted. The exact stimulus orientations depended on the participant’s
sensitivity. c) Condition matrix. Pie charts show the probability of stimulus alternatives
(25, 50, or 75%) and dollar symbols represent the payo↵s for each alternative (2, 3, or
4 pts). Squares are colored and labeled by the type of symmetry. d) Timeline of the
eight sessions. The order of conditions was randomized within the single- and within the
double-asymmetry conditions.
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75%, 2:4). Note that two of the possible double asymmetry conditions (25%, 2:4; and 330

75%, 4:2) were not tested because these conditions incentivized one response alternative 331

to such a degree that they would not be informative for model comparison. Participants 332

first completed the full-symmetry condition, followed by the single-asymmetry conditions 333

in random order, and finally the double-asymmetry conditions, also in random order 334

(Fig. 2d). Session order facilitated task completion and participants’ understanding of 335

the prior and payo↵ asymmetries before encountering both simultaneously. Each con- 336

dition was tested in a separate session with no more than one session per day. In all 337

sessions, participants were instructed to report their confidence in the correctness of 338

their discrimination judgment. 339

3.5 Thresholding Procedure 340

A thresholding procedure was performed prior to the main experiment to equate di�culty 341

across observers to approximately d0 = 1. Observers performed a similar orientation- 342

discrimination judgment as in the main experiment. Absolute tilt magnitude varied in 343

a series of interleaved 1-up-2-down staircases to converge on 71% correct. Each block 344

consisted of three staircases with 60 trials each. Participants performed multiple blocks 345

until it was determined that performance had plateaued (i.e., learning had stopped). 346

Preliminary thresholds were calculated using the last 10 trials of each staircase. At the 347

end of each block, if none of the three preliminary thresholds were better than the best of 348

the previous block’s preliminary thresholds, then the stopping rule was met. As a result, 349

participants completed a minimum of two blocks and no participant completed more than 350

five blocks. A cumulative Gaussian psychometric function was fit by maximum likelihood 351

to all trials from the final two blocks (360 trials total). The slope parameter was used to 352

calculate the orientation corresponding to 69% correct for an unbiased observer (d0 = 1; 353

Macmillan and Creelman, 2005). This orientation was then used for this subject in the 354

main experiment. Thresholds ranged from 0.36 to 0.78 deg, with a mean of 0.59 deg. 355
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3.6 Main Experiment 356

Participants completed seven sessions, each of which had 700 trials with the first 100 357

treated as warm-up and discarded from the analysis. All subjects were instructed to 358

hone their response strategy in the first 50 trials to encourage stable criterion placement. 359

The trial sequence is outlined in Fig. 2a. Each trial began with the presentation of a 360

fixation dot for 200 ms. After a 300 ms inter-stimulus interval, a Gabor stimulus was 361

displayed for 70 ms. Participants judged the orientation (left/right) and then indicated 362

their confidence in that orientation judgment (high/low). Feedback on the orientation 363

judgment was provided at the end of the trial by both an auditory tone and the awarding 364

of points based on the session’s payo↵ structure. Additionally, the running percentage 365

of potential points earned was shown on a leaderboard at the end of each session to 366

foster inter-subject competition. Participants’ cash bonus was calculated by selecting 367

one trial at random from each session and awarding the winnings from that trial, with 368

a conversion of 1 point to $1, capped at $20 over the sessions. Total testing time per 369

subject was approximately 8 hrs. 370

3.7 Model Fitting 371

Detailed description of the model-fitting procedure can be found in the Supplementary 372

Information (Sections 1 and 2). Briefly, model fitting was performed in three sequential 373

steps. First, we estimated a per-participant d0 and meta-d0 using a hierarchical Bayesian 374

model. We used as inputs the empirical d0 and meta-d0 calculated separately for each 375

prior-payo↵ condition. These per-participant sensitivities were fixed for all subsequent 376

modeling. Second, we fit the discrimination behaviour according to the Type 1 models, 377

selecting the best-fitting Type 1 model for each participant before the final step of fitting 378

the confidence behavior according to the Type 2 models. For the Type 1 and Type 2 379

models, we calculated the log likelihood of the data given a dense grid of parameters (↵, 380

�, and �) using multinomial distributions defined by the stimulus type, discrimination 381

response, and confidence response. All seven prior-payo↵ conditions were fit jointly. 382

Model evidence was calculated by marginalizing over all parameter dimensions and then 383
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Figure 3: Model comparison for the Type 1 and Type 2 responses. a) The protected
exceedance probabilities (PEPs; see text for details) of the four Type 1 models. b) PEPs
of the five Type 2 models. Note that model comparisons were performed first for Type 1
and then for Type 2 responses, using the best-fitting Type 1 model and parameters,
on a per-subject basis, in the Type 2 model evaluation. c) Best-fitting models for each
participant. Purple: normative-shift models, green: gains-shift models, yellow: neutral-
fixed model.

normalizing to account for grid spacing. 384

4 Results 385

We sought to understand how observers make perceptual decisions and confidence judg- 386

ments in the face of asymmetric priors and payo↵s. Participants performed an orientation- 387

discrimination task followed by a confidence judgment. To account for the behavior, we 388

defined two sets of models. Type 1 models defined the contribution of conservatism to the 389

discrimination responses. Type 2 models defined the role of priors, payo↵s, and conser- 390

vatism in the confidence reports. We were interested in which of three classes of models 391

best fits confidence behavior: neutral-fixed, gains-shift, or normative-shift. 392
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4.1 Model Fits 393

Type 1 models were first fit using the discrimination responses alone. Four models were 394

compared: optimal criterion placement (⌦1,opt), equal conservatism for priors and payo↵s 395

(⌦1,1↵), di↵erent degrees of conservatism for priors and payo↵s (⌦1,2↵), and a model in 396

which there was a failure of summation of criterion shifts in the double-asymmetry con- 397

dition (⌦1,3↵). Fitting the Type 1 models also provided an estimate of left/right response 398

bias, �. We performed a Bayesian model selection procedure using the SPM12 Toolbox 399

(Wellcome Trust Centre for Neuroimaging, London, UK) to calculate the protected ex- 400

ceedance probabilities (PEPs) for each model (Figure 3a). The exceedance probability 401

(EP) is the probability that a particular model is more frequent in the general popula- 402

tion than any of the other tested models. The PEP is a conservative measure of model 403

frequency that takes into account the overall ability to reject the null hypothesis that all 404

models are equally likely in the population (Stephan et al., 2009; Rigoux et al., 2014). 405

Overall, an additional parameter in the double-asymmetry conditions was needed to ex- 406

plain Type 1 criterion placement, indicating a failure of summation of criterion shifts 407

(i.e., the best-fitting model was ⌦1,3↵). 408

In the second step, the Type 2 models were fit using each participant’s best Type 1 409

model and the associated maximum a posteriori (MAP) parameter estimates. The Type 2 410

models di↵ered in the placement of the Type 2 criteria, which split the internal response 411

axis into “high” and “low” confidence regions, for each “right” and “left” discrimination 412

response. We modeled the two Type 2 criteria as shifting to account for only the prior 413

probability, maximizing accuracy with the confidence response (⌦2,acc; normative-shift 414

class), shifting the confidence criteria in response to payo↵ manipulations (⌦2,gain; gains- 415

shift class), or failing to move the confidence criteria away from neutral at all (⌦2,neu; 416

neutral-fixed class). For the models with shifted confidence criteria, we also tested for 417

e↵ects of Type 1 conservatism on Type 2 decision-making (⌦2,acc+cons and ⌦2,gain+cons; 418

both sub-optimal). We again compared the models quantitatively with PEPs (Figure 3b). 419

The favored model was the gains-shift model with carry-over conservatism, ⌦2,gain+cons. 420

This model shifts the confidence criteria in response to both prior and payo↵ manipula- 421
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tions with the conservatism that participants exhibited in the Type 1 decisions a↵ecting 422

placement of the confidence criteria. 423

Figure 3c shows the best-fitting models for individual participants, according to the 424

amount of relative model evidence (here the marginal log-likelihood). All of the sub- 425

optimal Type 1 models (i.e., not ⌦1,opt) were a best-fitting model for at least one of the 426

ten participants. Similarly, no one was best fit by the normative-shift without Type 1 427

conservatism either (⌦2,acc). Overall, there was no clear pattern between the pairings of 428

Type 1 and Type 2 models. 429

4.2 Model Checks 430

We performed several checks on the fitted data to ensure that parameters were capturing 431

expected behavior and that the models could predict the data well (reported in detail in 432

Section 3 of the Supplementary Information). The quality of a model is not only depen- 433

dent on how much more likely it is than others, but it is also dependent on its overall 434

predictive ability. To visualize each model’s ability to predict the proportion of each 435

response type (“right” vs. “left” x “high” vs. “low”), we calculated the expected propor- 436

tion of each response type given the MAP parameters for each model and participant. 437

We compared the predicted response proportions to the empirical proportions (Figure 4). 438

Larger residuals are represented by more saturated colors. For the best-fitting models, 439

the residuals are small and unpatterned. 440

We also compared the Type 1 criteria and the counterfactual confidence criteria (Fig- 441

ure 5). We constrained the empirical counterfactual confidence criterion to be the mid- 442

point between the two Type 2 criteria (i.e., k⇤
1 ⌘ (k2�+k2+)/2). Using k⇤

1, the predictions 443

made by the Type 2 models are highly distinguishable. In the left-most column, predicted 444

k1 and k⇤
1 for each session are shown for each model, assuming d0 = 1 and either ⌦1,opt 445

or ⌦1,1↵ where ↵ = 0.5. In the top row, empirical criteria from the same two example 446

participants as in Figure 4 are shown. Empirical criteria are calculated with the standard 447

SDT method (detailed in Section 1 of the Supplementary Information, see Figure S1). 448

The visualization in the top row and left-most column of Figure 5 illustrates several 449
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Figure 4: Visualization of the raw and predicted response rates for two example partici-
pants. Grids are formed of the seven conditions (rows) and the eight possible stimulus-
response-confidence combinations (columns). See Figure S3 in the Supplement for con-
dition order. The fill indicates the proportion of trials for that condition and stimulus
that have that combination of response and confidence. Top row: Raw response rates of
two example subjects. Subsequent rows, columns 1 and 3: Predicted response rates for
each Type 2 model using the best-fitting parameters of the best-fitting Type 1 model for
that individual. Columns 2 and 4: Di↵erence between raw and predicted response rates.
Green boxes: winning models (Subject 7: ⌦gain+cons; subject 9: ⌦neu). Colored circles by
model names indicate purple: normative-shift models, green: gains-shift models, yellow:
neutral-fixed model.
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behavioral phenomena. The response bias, �, results in a shift in all criteria in the 450

same direction, translating all data points parallel to the identity line. Conservatism 451

is represented by an attraction of all data toward the origin on the x-axis for Type 1 452

and the y-axis for Type 2 judgments. The Type 2 models predict qualitatively di↵erent 453

arrangements of the data points. If the prior and payo↵ asymmetries a↵ect the placement 454

of the Type 1 criterion but not the Type 2 criteria (⌦2,neu; neutral-fixed), the data are 455

clustered along a single value on the y-axis. If the prior and the payo↵ a↵ect the placement 456

of the Type 1 and Type 2 criteria equally, (⌦2,gain; gains-shift), then the data fall on the 457

identity line. With normative-shift behavior (⌦2,acc), the prior asymmetry conditions 458

(grey triangles) fall on the identity line because confidence tracks the prior, while in the 459

payo↵ asymmetry conditions (blue squares), the data have the same k2 midpoint as in 460

the neutral condition (grey squares) because confidence does not track the payo↵. 461

Vectors in all 10 of the bottom right polar plots represent the di↵erence (i.e., the 462

residual) between the empirical and the predicted criteria from the model fits. While the 463

model prediction column is based on fixed parameters, the predicted data in the 10 polar 464

plots use parameters that best fit the participant’s data using that model. It is immedi- 465

ately clear that the normative-shift model without carry-over conservatism (second row) 466

does a poor job of describing participants’ behavior, and that, in general, conservatism 467

is a necessary component of both the Type 1 and Type 2 models. 468

4.3 Type 1 Conservatism 469

While not the main focus of the study, it was important to consider the role of Type 1 470

conservatism to properly capture the Type 1 decision-making behavior. First, we remark 471

on the relative magnitude of conservatism due to priors and payo↵s. Figure 6a shows 472

fitted ↵p and ↵v under the most complex conservatism model (⌦1,3↵) and Figure 6b 473

shows them under the best-fitting model for each observer. These figures show that 474

eight of the ten participants were conservative in their criterion placement for both prior 475

and payo↵ manipulations, as indicated by data points in the gray regions. Of the eight 476

participants that displayed conservatism, five were significantly more conservative for 477
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Figure 6: Conservatism for Type 1 decision-making. a) A comparison of the extent of
conservatism under payo↵ versus prior asymmetries. Each data point represents the best-
fitting conservatism parameters of a single observer when fit by ⌦1,3↵. These parameters
are only contingent on the conservatism in the single-asymmetry conditions. In this
model, conservatism in the double-asymmetry conditions is captured by a separate model
parameter. Darker marker fill: additional conservatism parameters were required to fit to
that observer’s data. Dashed line: equality line. Dark grey region: conservatism greater
for prior than payo↵ manipulations (i.e., ↵p < ↵v). Light grey region: conservatism is
greater for payo↵s (i.e., ↵p > ↵v). Data points outside these regions are not consistent
with conservative criterion placement. b) Same as (a) using fit parameters from the best-
fitting Type 1 model for each observer. c) Test of summation of criterion shifts using
the ⌦1,3↵ model fits. Observers who required a third ↵ to capture their data (i.e., were
best fit by ⌦1,3↵) had criterion shifts for the double-asymmetry conditions that were not
well predicted as the sum of the shifts in the single-asymmetry conditions. d) Criterion
placement in the double-asymmetry conditions. These are the same data as in the y-axis
of (c), but extended to more easily compare the actual criterion placement with potential
other task-relevant criteria. Horizontal criteria lines assume d0=1.
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payo↵ asymmetries than prior asymmetries (↵v < ↵p), whereas only one was significant in 478

the opposite direction (↵p < ↵v). At the group level, however, we did not find a significant 479

di↵erence between the best fitting ↵v and ↵p, either for the best-fitting Type 1 model or 480

the winning model (paired t-tests, p > 0.05). Note that the negative ↵ values derive from 481

a participant who shifted criteria consistently in the opposite direction expected from a 482

rational observer in response to manipulations of payo↵s and priors. 483

An additional implication of SDT is that an ideal observer’s criterion shift due to 484

payo↵s and due to priors should sum (Stevenson et al., 1990): kpv = kp + kv (Figure 1b). 485

Figure 6c contrasts the prediction of this additive rule with the empirical results. The 486

di↵erence between the predicted and actual criterion shift is significant (t = 2.41, p = 487

.039), with the e↵ect primarily driven by the four observers best fit by the non-additive 488

conservatism model, ⌦1,3↵. Each of these four observers had 95% CIs that did not overlap 489

with the identity line. We show the criterion placement in the double-asymmetry cases 490

in Figure 6d. Most observers did not shift their criterion far enough from neutral to the 491

optimal placement, kopt. Three observers, however, placed their criterion beyond kopt, 492

with two stopping short of the accuracy-maximizing criterion kp. 493

5 Discussion 494

5.1 Confidence Behavior 495

The primary focus of this study was to assess how observers assigned confidence to the dis- 496

crimination decision for di↵erent prior-payo↵ scenarios. Three Type 2 model classes were 497

characterized by the placement rule for the counterfactual Type 1 criterion, k⇤
1, to which 498

the confidence criteria, k2, were yoked. The classes were defined by the counterfactual 499

criterion coinciding with the accuracy-maximizing criterion (normative-shift), the gain- 500

maximizing criterion (gains-shift), or the neutral criterion (neutral-fixed). The majority 501

of observers were best explained by the gains-shift model with carry-over conservatism 502

(⌦2,gain+cons) or the neutral-fixed model (⌦2,neu), with the Bayesian model selection favor- 503

ing the former. One participant was best fit by the normative-shift model with carry-over 504
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conservatism (⌦2,acc+cons). Furthermore, we found no clear pattern between the number 505

of Type 1 conservatism parameters required to explain discrimination behavior and the 506

placement strategy for confidence criteria. 507

For the subset of observers who were best fit by the neutral-fixed model, the per- 508

ceived tilt magnitude was predictive of confidence in all prior-payo↵ scenarios. While 509

these observers correctly did not allow the payo↵ structure of the environment to a↵ect 510

confidence, it was non-normative to ignore the additional information provided by the 511

priors for the response alternatives. This notion of ‘sticky’ or fixed confidence criteria 512

has been examined previously in the context of changing stimulus reliability, where con- 513

fidence criteria should be shifted to avoid a preponderance of high-confidence reports for 514

the low-reliability stimuli. Empirical results are mixed; Zylberberg et al. (2014) found 515

participants were reluctant to shift their criteria su�ciently to account for the di↵erent 516

reliabilities, whereas a fixed-criterion model was rejected by Adler and Ma (2018). Our 517

results suggest that some observers can be insensitive to the prior-payo↵ context when 518

it comes to placing confidence criteria, despite our e↵orts to present each prior-payo↵ 519

context in separate sessions, keep stimulus reliability and attentional factors constant, 520

and provide substantial context information and training. 521

In contrast, the confidence criteria of gains-shift observers tracked the placement of 522

the criterion used for the Type 1 judgment. As such, priors were correctly incorporated 523

into confidence judgments but payo↵s were inappropriately incorporated also. For such 524

people, higher relative reward leads to selection of the highly rewarded alternative and, on 525

average, higher confidence about reporting that outcome. In e↵ect, gains-shift behavior 526

can be viewed as a näıve optimism for selecting the highly rewarded outcome: “this 527

highly rewarding perceptual alternative that I have selected is certainly the state of the 528

world”. This bias for higher confidence with greater reward is consistent with what has 529

been reported previously in the perceptual lottery tasks of Lebreton et al. (2018). 530

The finding that most observers did not appropriately dissociate Type 1 and Type 2 531

criteria is compelling, particularly so in the case of the gains-shift observers. By not selec- 532

tively decoupling their k1 and k⇤
1 for asymmetric payo↵s, these observers faced a trade-o↵ 533
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between maximizing gains with the discrimination report and faithfully representing per- 534

ceived accuracy with the confidence report. Consider the following real-world example of 535

a pilot judging whether their aircraft is heading for collision with an upcoming mountain 536

peak using weak sensory evidence (e.g., night time or fog). A normative-shift pilot would 537

make a corrective action because of the high cost of collision, but not be confident that 538

a collision will occur. In contrast, a gains-shift pilot would similarly adjust the aircraft 539

heading, but would also be likely to have high confidence that the collision was imminent 540

despite the weak sensory evidence. The experience of the gains-shift pilot in a world full 541

of dangerous possibilities would be unsettling. However, if this gains-shift pilot places 542

their discrimination criterion somewhere between the gains-maximizing criterion and the 543

accuracy-maximizing criterion (i.e., payo↵ conservatism), then their confidence judgments 544

will better reflect the true state of the world. Subsequent laboratory experiments can ex- 545

amine this trade-o↵ by using more complex reward structures and/or elaborated decision 546

scenarios. 547

We also note some simple experimental factors that may have produced the observed 548

pattern of confidence results. First, the lack of adaptability of the neutral-fixed observers 549

should not be taken as evidence of an inability to adapt. It is possible that these observers 550

ignored the prior-payo↵ structure entirely for confidence because it changed from session 551

to session, and instead opted for a criterion-placement strategy that would work best for 552

all conditions of the experiment. This is unlikely, however, because they did not adopt 553

such a strategy for discrimination. For the gains-shift observers, we note that a failure to 554

understand the task instructions could explain their behavior. It is possible that observers 555

did not report the probability they were correct, as per the experimenter instructions, 556

but instead considered their expected gain from the trial when reporting confidence. 557

However, all participants deviated from normative behavior, making it unlikely that 558

these experimental factors alone can explain our results. 559
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5.2 Reward and Type 2 Behaviour 560

Our results describe the natural confidence behavior of humans in response to variations 561

of priors and payo↵s. How might responses change under di↵erent experimental designs 562

where reward interacts with confidence? Can normative behavior be assessed when pay- 563

o↵s are asymmetric? 564

First we consider traditional wagering methods for measuring metacognition. One im- 565

plementation is where selecting high confidence comes with greater risk in the outcome 566

of the trial than low confidence (Shields et al., 2005; Persaud et al., 2007). Another is the 567

opt-out paradigm, where a third, less rewarding but certain “low confidence” alternative 568

is o↵ered (Kiani and Shadlen, 2009). Both of these methods would fail to assess nor- 569

mative behavior as it is not possible to report confidence independent of reward; a high 570

confidence response is incentivized by increasing the reward for one choice alternative, 571

leading a decision-maker that maximizes expected gain to select that alternative with 572

“high confidence” when indeed their true feeling is for “low confidence” as per normative 573

behavior. 574

An alternative wagering method developed by Lebreton et al. (2018) directly incen- 575

tivizes confidence judgments. Here the decision-maker rates their confidence on a con- 576

tinuous probability scale, and then is either rewarded according to their discrimination 577

response or a lottery according to a stochastic process. In this method, a participant 578

maximizes their reward when their confidence rating is equal to the probability of being 579

correct. Such a paradigm would allow for normative dissociations when payo↵s are sym- 580

metric. Further work could investigate whether incentivizing confidence in this manner 581

could lead to normative behavior. 582

5.3 Discrimination Behavior 583

Before discussing the e↵ect of Type 1 conservatism on Type 2 criteria, we need to consider 584

the secondary results of our study pertaining to discrimination behavior. Observers were 585

generally conservative in the placement of the discrimination criterion, k1, as most partic- 586

ipants were best described by a model with some form of conservatism, with the majority 587
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best fit with two or three separate ↵ parameters. In the Type 1 model comparison, the 588

winner was the non-additive conservative model (⌦1,3↵), where three ↵ parameters were 589

needed to capture discrimination behaviour (Healy and Kubovy, 1981). Despite Bayesian 590

model selection favoring the non-additivity model, only 40% of our sample population was 591

best fit by this model, which is as similarly inconclusive as it was for previous attempts 592

at testing additivity (Stevenson et al., 1990). We found significant di↵erences at the 593

individual-subject level, but not at the group level, that conservatism was stronger when 594

the payo↵s were asymmetric than when the priors were asymmetric. Thus, the observed 595

di↵erences in conservatism for priors and payo↵s in our study were less apparent than 596

in most previous studies (Lee and Zentall, 1966; Ulehla, 1966; Healy and Kubovy, 1981; 597

Maddox, 2002; Ackermann and Landy, 2015), but not all (Healy and Kubovy, 1978). 598

Several factors may have contributed to the observed Type 1 conservatism. One 599

hypothesis is that observers trade o↵ between maximizing gains and maximizing accuracy 600

(Maddox and Bohil, 1998), as it may be hard for the observer to sacrifice accuracy for 601

expected gain. In Section 4 of the Supplementary Information, we demonstrate that gain- 602

accuracy trade-o↵ model of conservatism is equivalent to our ⌦1,2↵ model, indicating 603

that the gain-accuracy trade-o↵ strategy alone cannot account for the observed non- 604

additivity. Alternatively, conservatism could depend on the criterion-adjustment strategy 605

(Busemeyer and Myung, 1992), which suggests that observers will not shift their criterion 606

far from neutral for an inconsequential gain, causing them to fall short of optimal. Non- 607

additivity is possible due to the non-linear e↵ects on the slope of the expected-gain 608

function from combining asymmetric priors and payo↵s. However, 30% of observers 609

placed their criterion beyond the optimal criterion in the double-asymmetry conditions, 610

which is inconsistent with a reluctance to shift the criterion su�ciently from neutral. In 611

fact, these criteria are biased in the direction of the accuracy-maximizing criterion, as 612

would be expected under the gain-accuracy trade-o↵ hypothesis. A mix of gain-accuracy 613

trade-o↵ strategy and criterion-adjustment strategy (Maddox and Bohil, 2003), that could 614

produce both unequal conservatism and non-additivity, would better explain our results. 615

A metacognitive source of conservatism proposed by Kubovy (1977) implicates d0 in 616
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Eq. 5. Observers likely form an estimate of their overall performance from experience with 617

the task. If they happen to overestimate performance (i.e., d̂0 > d0), then it follows from 618

Eq. 5 that k1 < kopt. Note that this is not confidence for a given discrimination response, 619

but a metacognitive appraisal of the di�culty of the task, such as the expected perfor- 620

mance indicated by the uncertainty in the stimulus (Zylberberg et al., 2014). According 621

to this hypothesis, most of the observers would have been overestimating performance to 622

be conservative, with the one observer with liberal criterion placement underestimating 623

their performance. Observations of overconfidence are a common finding in metacogni- 624

tive studies (Baldassi et al., 2006; Mamassian, 2008; Zylberberg et al., 2014; Mamassian, 625

2016; Lebreton et al., 2018; Charles et al., 2020) as is conservatism (Lee and Zentall, 1966; 626

Ulehla, 1966; Healy and Kubovy, 1981; Maddox, 2002; Ackermann and Landy, 2015). 627

However, overestimation of discrimination performance by itself is an insu�cient ex- 628

planation for conservatism, as it cannot explain the di↵erences in the degree of conser- 629

vatism for priors versus payo↵s, observed for some participants, or the non-additivity 630

results. But, if performance estimations di↵ered under manipulations of priors versus 631

payo↵s, specifically larger overestimations of performance for asymmetric payo↵s, con- 632

servatism would be larger for payo↵s than priors. Furthermore, it is entirely plausible 633

that the contribution of priors and payo↵s to performance estimation is non-linear, which 634

would result in non-additivity of criteria. 635

Finally, we note that a simple experimental factor may have encouraged conservatism 636

in general. By starting testing with the symmetrical prior-payo↵ design in the threshold- 637

ing procedure and initial testing session, this session order may have encouraged partici- 638

pants to anchor the Type 1 decisions to the neutral criterion. However, this explanation 639

cannot account for observed unequal conservatism or non-additivity. Overall, we con- 640

clude that the conservatism observed in this task is likely due to more than one of the 641

following possible factors: noisy behavior, strategies to trade o↵ gain versus accuracy, 642

sub-optimal criterion adjustment, and biases in participants’ judgments of their own d0. 643
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5.4 Type 1 Conservatism Applied to Type 2 Judgments 644

It is currently a matter of debate whether the internal sensory measurement used by the 645

perceptual decision-making system is the same or similar to that used by the metacog- 646

nitive decision-making system (e.g., Resulaj et al., 2009; Fleming and Daw, 2017; Peters 647

et al., 2017). The standard SDT framework assumes the same internal measurement is 648

used for both Type 1 and 2 judgments. However, there is substantial evidence to suggest 649

that additional noise is applied to the internal measurement between the Type 1 and 650

2 judgments (Maniscalco and Lau, 2012; Fleming and Lau, 2014; Maniscalco and Lau, 651

2016; Bang et al., 2019). We found supporting evidence of additional metacognitive noise 652

in the form of reduced metacognitive sensitivity (a ratio of meta-d0 to d0 of 0.86 ± 0.04; 653

see Section 1 of the Supplementary Information), which we incorporated into our SDT 654

model. We also consistently found that Type 1 conservatism carried over into the Type 2 655

confidence-criteria placement for the observers best fit by the gains-shift and normative- 656

shift model classes. This raises a di↵erent, but related question: to what extent are 657

decision-related parameters of the system, such as criteria placement, shared between 658

the perceptual and metacognitive systems? And how is this information shared from the 659

Type 1 to the Type 2 response? We speculate on several possibilities. 660

First is the simplest scenario: the Type 1 and Type 2 processes are computed jointly 661

using the same information, with confidence being an additional readout of the same 662

decision mechanism. However, in addition to the evidence of additional metacognitive 663

noise, there is considerable evidence that neural processing occurs in distinct regions for 664

perceptual and metacognitive decision-making (Shimamura, 2000; Fleming and Dolan, 665

2012; Rahnev et al., 2016; Shekhar and Rahnev, 2018), suggesting this is unlikely the 666

case. 667

Second, the Type 1 system might convey only relative information to the Type 2 sys- 668

tem, such as how far the measurement was from the decision boundary, rather than noisily 669

propagating the internal measurement itself. In this scenario, the additional metacogni- 670

tive noise could be a result of computing this di↵erence. A relative measurement also has 671

the advantage over the other hypotheses that it only requires one piece of information 672
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to be sent to the Type 2 system (i.e., the relative measurement and not context infor- 673

mation). Despite being e�cient, this hypothesis is not supported by our results. Given 674

that the neutral-fixed observers were able to dissociate k1 and k⇤
1 by keeping the latter 675

fixed at the neutral criterion, this suggests that the Type 2 system does not receive an 676

internal measurement coded relative to the discrimination criterion k1. 677

Third, the Type 2 system might be independent of the Type 1 system, but receives 678

the same context information. It also produces conservatism, but is flexible enough to 679

allow k⇤
1 to be independent of k1. All types of observers (gains-shift, normative-shift, and 680

neutral-fixed) can be explained by such a Type 2 system. However, given the flexibility of 681

such a system, why weren’t observers able to reduce the influence of the payo↵ structure 682

at the second processing step? 683

Fourth, the Type 1 system might directly inform the Type 2 system of both its decision 684

boundary k1 and the internal measurement. The gains-shift observers then can yoke 685

their confidence criteria to k1, whereas the neutral-fixed observers can ignore this extra 686

k1 signal. This system is both relatively simple and explains the results of the majority 687

of observers. Thus, we favor this interpretation, in which the discrimination decision 688

boundary is propagated to the Type 2 system. Further work is required to understand 689

why normative metacognitive behavior was not achieved, and why some observers may 690

or may not incorporate k1 into their confidence judgment. 691

5.5 Stability of Criteria, Sensitivity, and Response Bias 692

Often of concern when conducting psychophysical experiments is whether assumptions of 693

criterion stability are valid. In some circumstances, criterion shifts within an experimental 694

session are appropriate and expected, such as Type 1 criterion shifts in response to 695

variable priors (Norton et al., 2017; Zylberberg et al., 2018) or Type 2 criterion shifts 696

when intermixing stimuli of varying di�culty (Zylberberg et al., 2014; Adler and Ma, 697

2018). In scenarios where they should be fixed, the best practices to encourage stable 698

criteria are to only use one pair of stimuli (i.e., fixed di�culty), collect the data in a 699

single session, and to not combine data across participants (Macmillan and Creelman, 700



33

2005). We met all recommendations, as we ensured context e↵ects were kept constant 701

within an individual session as would be done for fixing di�culty (although our models did 702

include some assumptions about criterion stability across sessions, see Models). However, 703

issues of unstable criteria can occur even in studies with unchanging context (e.g., Yu 704

and Cohen, 2009) or fixed di�culty (e.g., Maniscalco and Lau, 2012). Type 2 criterion 705

instability, indicated in the latter example, is mathematically equivalent to additional 706

noise between the perceptual and confidence decisions (Maniscalco and Lau, 2016), which 707

our models incorporate as meta-d0 (see Supplementary Information, Section 1). But, 708

more generally, how may criterion instability interact with our models? No particular 709

patterns were evident between the best-fitting model and estimated d0, meta-d0, or their 710

ratio (Supplementary Information, Section 1), although a larger sample of participants is 711

likely needed to resolve any small di↵erences. Otherwise, we predict that unstable criteria 712

impact the overall quality of the model fits, but do not introduce a bias in the Type 2 713

model selection. 714

Another concern is whether perceptual sensitivity remained stable across sessions or 715

improved due to perceptual learning. As our analysis pooled all the d0 estimates from 716

each session for an individual into a single estimate, a learning e↵ect would likely impair 717

model fit. However, we found no evidence of perceptual learning (see Supplementary In- 718

formation, Section 3). Similarly, it is possible that information about prior asymmetries 719

changed the response bias of participants (Hu and Rahnev, 2019), which would make 720

our decision to pool over all sessions to get a single response-bias parameter inappro- 721

priate. Our additional analyses found no evidence that biases were smaller when prior 722

probabilities were asymmetric (see Supplementary Information, Section 3). 723

5.6 Conclusion 724

By manipulating priors and payo↵s in a perceptual task, we found natural confidence 725

judgments were non-normative in one of two ways: 1) observers did not consider the role 726

of priors or 2) they incorporated payo↵s, which accord with the neutral-fixed and gains- 727

shift classes of models respectively. Both of these strategies hinder decision-making. For 728
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example, a radiologist who ignores prior probabilities when assigning confidence might 729

hesitate to recommend further tests for a patient who is a heavy smoker. Similarly, a 730

radiologist who inappropriately incorporates payo↵s may be more confident in a positive 731

diagnosis if he receives kickbacks from the imaging center to encourage future scans. The 732

patterns of behavior found in this task point to explanations of why humans may con- 733

sider trade-o↵s between maximizing gain and maximizing accuracy, as well as provide 734

new insights about the role of the decision boundary in Type 1 versus Type 2 compu- 735

tations. The secondary results of our study pertained to the discrimination behavior. 736

Type 1 judgments were conservative, with unexpectedly similar degrees of conservatism 737

for payo↵s and priors, and when both priors and payo↵s were asymmetric, we found that 738

the criterion shifts were non-additive in contradiction with the predictions of SDT. 739
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1 Type 1 and Type 2 Sensitivity

To fit the models presented in this paper, we required an estimate of discrimination sensitivity
(d0) and metacognitive sensitivity (meta-d0) for each observer. Each participant completed a
threshold procedure to find the Gabor orientation that would yield a d

0 of 1. We could have
used this for all analyses, however we sought to utilize all of the decisions made in the main
task to better estimate d

0, as well as obtain a reasonable estimate of meta-d0. To achieve
this, we implemented a hierarchical Bayesian model that leveraged all possible sources of
information to yield a single estimate of d0 and meta-d0 for each participant. We computed
the empirical d0 for participant i in session j of the main task according to the standard
formula

d
0
ij
= z(pHij)� z(pFAij), (S1)

where pH was the probability of selecting “right” when the stimulus was truly rightward
tilted, pFA was the probability of selecting “right” when the stimulus was leftward tilted,
and z refers to the standard z-transform. In a similar fashion, we approximated the meta-d0

from the lower and upper confidence criteria, k2� and k2+ respectively. These confidence
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Figure S1: a) Depiction of example regions for the approximate meta-d0 calculation. Hatched
regions correspond to the probability of a high-confidence judgment for the four possible pair-
ings of stimulus and discrimination response. b) Example of greater sensitivity for perception
(Type 1) than confidence (Type 2). In the standard SDT model, this corresponds to an in-
wards shift of the distributions for confidence. c) Contrast of d0 and meta-d0 results. Each
data point is an observer, with 95% CIs derived from the posterior distribution of parameter
estimates. Marker color indicates best-fitting Type 2 model. Dashed equality line is also
shown for comparison.

criteria can be empirically calculated as per the standard method for deriving a criterion in
Signal Detection Theory (SDT):

k2� =
1

2

⇥
z(pA) + z(pB)

⇤
(S2)

and

k2+ =
1

2

⇥
z(pC) + z(pD)

⇤
. (S3)

The corresponding regions A-D are best demonstrated graphically (Figure S1a). To compute
meta-d0, we used an average of two d

0-like measurements, from the empirical upper and lower
confidence bounds respectively:

meta-d0
ij
=

1

2

⇥
z(pAij)� z(pBij) + z(pDij)� z(pCij)

⇤
. (S4)

The concept behind computing a separate sensitivity parameter for confidence is that ad-
ditional noise may have been applied to the internal measurement between the Type 1 and
Type 2 decisions (Maniscalco and Lau, 2016). In the standard SDT framework, the variances
of the distributions are fixed, and so the additional noise is modeled as a shift in distributions
means (see Figure S1b). As such, we use the confidence bounds to estimate the relative sep-
aration of p(x|SL) and p(x|SR) with this additional metacognitive noise. These confidence
bounds can then be represented in the original Type 1 space by a simple transformation

meta-d0

d0
k2,space2 ! k2,space1, (S5)
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as explained by Maniscalco and Lau (2012) and illustrated in Figure S1b.
In the hierarchical Bayesian model, each observation j of d0 for participant i was assumed

to be drawn from a normally-distributed subject-specific prior,

d
0
ij
⇠ N (d0

i
, �

2
i
), (S6)

where d0
i
is the aggregate estimate of that participant’s d0 for our next stage in modeling, and

�
2
i
is their sensitivity variance, capturing both noise in the calculation from a limited number

of samples and sessional changes in sensitivity (e.g., attention, motivation). Similarly, we
modeled the estimates of meta-d0 as

meta-d0
ij
⇠ N (meta-d0

i
, �

2
i
). (S7)

Again, we have a subject-level estimate of sensitivity, meta-d0
i
, for our modeling. The same

variance parameter was used for both Type 1 and Type 2 estimates, because factors influenc-
ing noise in the observations are likely to be similar for both sensitivity measures. We also
incorporated hyperpriors for both sensitivity measures, leveraging additional information we
had about what to expect for these values. For d0, we used a normally-distributed hyperprior
with a mean of 1.

d
0
i
⇠ N (1, �2

Type1), (S8)

This decision was based on our expectations from the thresholding procedure, where the
stimulus was adjusted to find d

0 = 1, and thus, on average, we expected this sensitivity
for the observers in the main task. The population variance was �

2
Type1. We also used the

following hyperprior for meta-d0:

meta-d0
i
⇠ N (0.8d0

i
, �

2
Type2). (S9)

Based on previous results, we expected the meta-d0 of a participant to be, on average, about
80% of their d0 sensitivity measure (Maniscalco and Lau, 2012). Thus, the mean of the meta-
d
0 hyperprior was adjusted on a per-subject basis. There was a shared variance parameter,

�
2
Type2, representing variations in meta-cognition across participants in the same manner as

�
2
Type1. To ensure good model behavior, all free parameters had reasonable bounds imposed

via a uniform prior either in addition to or in lieu of the other prior distributions described
above: [0, 3] for d0

i
and meta-d0

i
, and [0.1, 5] for �i, �Type1, and �Type2. The model was fit using

custom-written scripts in the R and RStan programming languages (Carpenter et al., 2017),
which implemented an MCMC fitting algorithm with 4000 iterations for each of 4 separate
chains. The first half of the iterations were discarded as warmup. Parameter estimates and
confidence intervals were calculated from the marginal posteriors (i.e., from the mean and
percentile ranges of the samples).

The results of the model of Type 1 and Type 2 sensitivity are shown in Figure S1c. In
general, there was greater sensitivity at the Type 1 level than at the Type 2 level, as expected
(Maniscalco and Lau, 2012). The ratio of Type 2 to Type 1 sensitivity, also known as the
m-ratio in the confidence literature (Fleming and Lau, 2014), was 0.86±0.04 (mean±SEM).
On average, participants’ variability in d

0 over sessions was �̂i = 0.19± 0.02 (mean±SEM).
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Across participants, we saw a variability in Type 1 sensitivity of �̂Type1 = 0.37 (95% CI:
[0.23, 0.60] according to the posterior distribution of parameter fits), and at the Type 2
level, �̂Type2 = 0.12 (95% CI: [0.1, 0.35]).

2 Multinomial Decision Model

Model fitting was performed in three sequential steps: (1) fitting of d0 and meta-d0, (2) Type 1
models, and (3) Type 2 models. In each case, the best-fitting parameters (and the best-fitting
model in the Type 1 case) from one step were fixed while fitting models in the subsequent
step. Fitting d

0 and meta-d0 was explained in the previous section.
For Type 1 fits, we chose a dense grid of parameters, bias (�) and between zero and three

conservatism parameters (↵), with which to calculate the likelihood. The likelihood was a
binomial across the two possible discrimination responses. We assumed a fixed lapse rate,
� = 0.02, for all participants, so

P (data | ✓) =
Y

stim2{L,R}

Y

resp2{“L”,“R”}

✓
�/2 + (1� �) p(resp | stim, ✓)

◆Nresp,stim

, (S10)

whereNresp,stim is the number of trials in which that response was made for the discrimination
of that stimulus.

The probability of a response is given by the corresponding area under the normal distri-
bution, as in standard SDT. We fixed the variances of the internal response distributions to
be 1, and positioned them based on the participant’s sensitivity at locations ±d

0
/2. There-

fore, the probabilities for the correct responses, for example, were:

p(“L” |L) = �

✓
� + k1 +

d
0

2

◆
(S11)

and

p(“R” |R) = 1� �

✓
� + k1 �

d
0

2

◆
, (S12)

where � is the standard cumulative normal distribution. Note here that k1 is calculated
from d

0 and ↵ according to the Type 1 model.
The Type 2 fits inherited bias (�) and various conservatism (↵) parameters from the

Type 1 model fits. The d
0 and meta-d0 values were inherited from the hierarchical d0 model

fit. Thus, the counterfactual criterion k
⇤
1 was already fixed, and the Type 2 modeling involved

only a single free parameter, �. Responses were modeled as a multinomial distribution with
four possible responses to each stimulus, defined by the combination of the discrimination
and confidence responses. We used the same lapse rate, but the probability of a particular
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random response was now halved because there were twice as many possible outcomes:

P (data | �) =
Y

stim2{L,R}

Y

resp2{“LH”,“LL”,“RH”,“RL”}

✓
�/4 + (1� �) p(resp | stim, �)

◆Nresp,stim

.

(S13)
The probabilities of each response depend on the Type 2 criteria, for example:

p(“LH”|L) = �

✓
k2� +

d
0

2

◆
(S14)

p(“LL”|L) = �

✓
k1 +

d
0

2

◆
� �

✓
k2� +

d
0

2

◆
(S15)

p(“RL”|R) = �

✓
k2+ � d

0

2

◆
� �

✓
k1 �

d
0

2

◆
(S16)

p(“RH”|R) = 1� �

✓
k2+ � d

0

2

◆
(S17)

k2� and k2+ are the e↵ective left and right confidence criteria respectively, and � was left
out of these equations for readability. In the double-asymmetry conditions, it is possible for
an observer’s Type 1 criterion to be outside the intended symmetric bounds of the Type 2
criteria with a small enough �, as in Figure 1f. In this case, the e↵ective k2� is actually equal
to k1. Concretely, this would happen if an observer was highly confident that the stimulus
was right-tilted, but the potential rewards are so asymmetric that they respond left-tilted
anyway. Because of the potential for these cases, k2� and k2+ were not simply k

⇤
1 ± �, but

rather
k2+ = max(k1, k

⇤
1 + �) (S18)

k2� = min(k1, k
⇤
1 � �). (S19)

We used flat priors on all parameters, so we calculated model evidence by marginalizing
across each dimension of the posterior.

p(data|M) =

Z
p(data|✓,M)p(✓)d✓ (S20)

To do this, we numerically integrated the posterior of our parameter grid with a rectangular
approximation by summing the volume of each grid element:

p(data |M) ⇡
X

✓

p(data | ✓,M)�x✓, (S21)

where �x✓ is the product of step sizes for each dimension in the parameter grid. The model
evidences for all models and all participants were used to compute the protected exceedance
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Figure S2: Checks on the fitted model parameters. a) Relationship between the bias in
perceived vertical (�) and the proportion of “right-tilt” judgments. Red cross: results for
an unbiased observer. b) Relationship between the confidence criteria width parameter, �,
and the proportion of “high confidence” judgments. Small � leads to more high confidence
reports (over-confidence). This predicted relationship is supported by the data. Error bars:
95% CIs from the posterior.

probability with the SPM12 Toolbox (Wellcome Trust Centre for Neuroimaging, London,
UK) according to Rigoux et al. (2014).

3 Model Checks and Fits for All Subjects

Two of the model parameters make clear predictions about behavior. The fitted response
bias parameter, �, should be negatively correlated with the total proportion of trials the
participants responded “right.” Positive � values indicate a rightward tilted line is perceived
as vertical, leading to fewer rightward responses overall. Figure S2a confirms this relationship
(r = �0.995, p < .0001). The average bias is � = .04 ± .06, with 70% of participants
significantly biased according to the posterior parameter distribution. Also, �, half of the
distance between the Type 2 criteria, should be inversely correlated with the proportion
of “high confidence” reports; larger values of � expand the low-confidence region (compare
Figures 1e and f). This predicted relationship was obtained (Figure S2b; r = �0.986, p <

.0001; � = 1.00±0.13). These predictions are not trivial: idiosyncratic biases in one condition
may disappear or reverse on a subsequent day in the inverse condition. Nevertheless, we find
that the � and � parameters are meaningfully capturing patterns of behavior.

We used a single value of d0 for each participant in our models, thereby assuming percep-
tual sensitivity had plateaued after the initial thresholding sessions (i.e., that d0 was stable
across sessions of the main experiment). We tested this assumption by checking if empirical
d
0 increased with session (Figure S3a). We found no evidence that d0 increased over session

(linear mixed model with participant as random e↵ect and session and intercept as fixed
e↵ects; analysis of deviance, Type II Wald chi-square test; �2

1 = 3.09, p = .08).
Our models have a single subject-specific response bias, �, for all sessions. However,

a prior asymmetry may reduce the response bias (Hu and Rahnev, 2019). Therefore, we
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Figure S3: Checks on model assumptions. a) Type 1 sensitivity across session. Perceptual
sensitivity (d0) is plotted for each participant and session. We found no evidence that d0 in-
creased over sessions, permitting the use of a single, fitted d

0 in our models. b) Response bias
by condition. For each participant, estimated response-bias magnitude in the full symmetry
condition is plotted against estimated response-bias magnitude in prior asymmetry condi-
tion pair and payo↵ asymmetry condition pair. Response-bias magnitude was calculated by
taking the absolute value of the empirical estimate of �. For the full-symmetry case, the
empirical � was simply k1. In the asymmetric cases, we calculated the midpoint between the
k1 from the mirrored conditions. Colors: participant.

tested if the bias was smaller during the prior-asymmetry condition than during the full-
symmetry and payo↵-asymmetry conditions (Figure S3b). We took the baseline response-
bias magnitude to be the absolute value of the discrimination criterion, k1, from the full-
symmetry condition because in this condition, the optimal criterion is neutral (kopt = kneu),
and therefore any criterion shift away from neutral was likely due to a response bias. We
assumed that opposite single-asymmetry conditions (rows or columns in Figure 2c) would
shift k1 by an equal but opposite amount. Therefore, we estimated response-bias magnitude
in the single-asymmetry conditions to be the absolute value of the mean of the empirical k1
from each pair of asymmetry sessions. We selected the absolute value of all response biases
in order to compare their magnitudes in the di↵erent conditions. We found no evidence that
bias was reduced during the prior-asymmetry condition, as illustrated by Figure S3b and
statistically via paired t-tests (p > .05 for full symmetry vs. prior asymmetry; p > .05 for
full symmetry vs. payo↵ asymmetry).

The following figures show the results of all subjects in the style of Figures 4 and 5 of
the main paper.
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Figure S4: Raw and predicted response rates for participants 1-5. Grids are formed from
the seven conditions (rows) and the eight possible stimulus-response-confidence combinations
(columns). Condition order: (1) full symmetry, (2) single asymmetry (p(R) = .75), (3) single
asymmetry (p(R) = .25), (4) single asymmetry (VR : VL = 4 : 2), (5) single asymmetry
(VR : VL = 2 : 4), (6) double asymmetry (p(R) = .75, VR : VL = 2 : 4), (7) double asymmetry
(p(R) = .25, VR : VL = 4 : 2). Fill: proportion of trials for that condition and stimulus that
have that combination of response and confidence. Top row: Raw response rates. Subsequent
rows: di↵erence between raw and predicted response rates as per each model. Green boxes:
winning models.
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⇤
1 for participants 1-5. Top
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Figure S1 for k2 calculation details). Left column: predicted relationship between the Type 1
and Type 2 criteria (d0 = 1; all ⌦1,1↵ with ↵ = 0.5). Grey and square symbols: symmetry
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4 Gains-Accuracy Trade-o↵ Strategy and Conservatism

Here, we show how the gain-accuracy trade-o↵ strategy of Maddox and Bohil (1998) is
equivalent to the ⌦1,2↵ model. The gain-accuracy trade-o↵ strategy can be expressed math-
ematically as a weighted sum between the gain-maximizing criterion, kopt, and the accuracy-
maximizing criterion, kp, with weight w (0  w  1). We also applied a single general
conservatism parameter in this weighting strategy, which can be thought of as acting on
each separate component or equivalently to the sum of the components. A simple rearrange-
ment shows how these two models are equivalent:

↵vkv + ↵pkp = w↵kopt + (1� w)↵kp
= ↵(wkv + wkp + kp � wkp)

= ↵(wkv + kp)

= ↵wkv + ↵kp

(S22)

Therefore, we find that di↵erent degrees of conservatism for priors than payo↵s can arise as
a result of weight values less than 1. Specifically, the weight value contributes to an increase
in a general level of conservatism, ↵v = ↵w and ↵p = ↵, where the constraint w  1 ensures
that ↵v  ↵p. If w = 1, then ↵v = ↵p = ↵, which is the single conservatism model ⌦1,1↵.
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