W. Eisenreich, T. Rudel, J. Heesemann, and W. Goebel, How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication, Front. Cell. Infect. Microbiol, vol.9, p.42, 2019.

P. Mehrbod, S. R. Ande, J. Alizadeh, S. Rahimizadeh, A. Shariati et al., The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections, Virulence, vol.10, pp.376-413, 2019.

L. Ahmad, S. Mostowy, and V. Sancho-shimizu, Autophagy-Virus Interplay: From Cell Biology to Human Disease. Front. Cell Dev. Biol, vol.6, 2018.

L. Sage, V. Cinti, A. Amorim, R. Mouland, and A. , Adapting the Stress Response: Viral Subversion of the mTOR Signaling Pathway, Viruses, vol.8, p.152, 2016.

J. Votteler and U. Schubert, Human Immunodeficiency Viruses: Molecular Biology, Encyclopedia of Virology

R. C. Burdick, C. Li, M. H. Munshi, J. M. Rawson, K. Nagashima et al., HIV-1 uncoats in the nucleus near sites of integration, Proc. Natl. Acad. Sci, vol.2020, pp.5486-5493

R. A. Saxton, D. M. Sabatini, and . Mtor, Signaling in Growth, vol.169, pp.361-371, 2017.

Y. Ma and Y. Vassetzky, Dokudovskaya, S. mTORC1 pathway in DNA damage response, Biochim. Biophys. Acta-Mol. Cell Res, vol.1865, pp.1293-1311, 2018.

C. Cervera, F. Cofan, C. Hernandez, D. Soy, M. A. Marcos et al., Effect of mammalian target of rapamycin inhibitors on cytomegalovirus infection in kidney transplant recipients receiving polyclonal antilymphocyte globulins: A propensity score-matching analysis, Transpl. Int, vol.29, pp.1216-1225, 2016.

J. L. Piñana, A. Perez-pitarch, B. Guglieri-lopez, E. Giménez, J. C. Hernandez-boluda et al., Sirolimus exposure and the occurrence of cytomegalovirus DNAemia after allogeneic hematopoietic stem cell transplantation, Am. J. Transplant, vol.18, pp.2885-2894, 2018.

J. B. Mannick, M. Morris, H. P. Hockey, G. Roma, M. Beibel et al., TORC1 inhibition enhances immune function and reduces infections in the elderly, Sci. Transl. Med, vol.10, 1564.

A. Heredia, A. Amoroso, C. Davis, N. Le, E. Reardon et al., Rapamycin causes down-regulation of CCR5 and accumulation of anti-HIV -chemokines: An approach to suppress R5 strains of HIV-1, Proc. Natl. Acad. Sci, vol.100, pp.10411-10416, 2003.

M. Donia, J. A. Mccubrey, K. Bendtzen, and F. Nicoletti, Potential use of rapamycin in HIV infection, Br. J. Clin. Pharmacol, vol.70, pp.784-793, 2010.

F. Nicoletti, P. Fagone, P. Meroni, J. Mccubrey, and K. Bendtzen, mTOR as a multifunctional therapeutic target in HIV infection, Drug Discov. Today, vol.16, pp.715-721, 2011.

A. Heredia, N. Le, R. B. Gartenhaus, E. Sausville, S. Medina-moreno et al., Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice, Proc. Natl. Acad. Sci, vol.112, pp.9412-9417, 2015.

N. M. Kocaturk and D. Gozuacik, Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System, Front. Cell Dev. Biol, vol.6, 2018.

B. D. Manning, A. Toker, . Akt/pkb, and . Signaling, , vol.169, pp.381-405, 2017.

C. C. Dibble, W. Elis, S. Menon, W. Qin, J. Klekota et al., TBC1D7 Is a Third Subunit of the TSC1-TSC2 Complex Upstream of mTORC1, Mol. Cell, vol.47, pp.535-546, 2012.

E. Vander-haar, S. Lee, S. Bandhakavi, T. J. Griffin, and D. Kim, Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40, Nat. Cell Biol, vol.9, pp.316-323, 2007.

S. Dokudovskaya and M. P. Rout, SEA you later alli-GATOR-a dynamic regulator of the TORC1 stress response pathway, J. Cell Sci, vol.128, pp.2219-2228, 2015.

R. L. Wolfson and D. M. Sabatini, The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway, Cell Metab, vol.26, pp.301-309, 2017.

J. J. Howell, K. Hellberg, M. Turner, G. Talbott, M. J. Kolar et al., Metformin Inhibits Hepatic mTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex, Cell Metab, vol.25, pp.463-471, 2017.

J. Brugarolas, K. Lei, R. L. Hurley, B. D. Manning, J. H. Reiling et al., Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex, Genes Dev, vol.18, pp.2893-2904, 2004.

P. Awasthi, M. Foiani, and A. Kumar, ATM and ATR signaling at a glance, J. Cell Sci, vol.129, 1285.

S. Montaner, A. Sodhi, S. Pece, E. A. Mesri, and J. S. Gutkind, The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B, Cancer Res, vol.61, pp.2641-2648, 2001.

J. D. Powell, K. N. Pollizzi, E. B. Heikamp, and M. R. Horton, Regulation of Immune Responses by mTOR, Annu. Rev. Immunol, vol.30, pp.39-68, 2012.

M. Linke, S. D. Fritsch, N. Sukhbaatar, and M. Hengstschläger, Weichhart, T. mTORC1 and mTORC2 as regulators of cell metabolism in immunity, FEBS Lett, vol.591, pp.3089-3103, 2017.

T. N. Iwata, J. A. Ramírez-komo, H. Park, and B. M. Iritani, Title: Control of B Lymphocyte Development and Functions by the mTOR Signaling Pathways, Cytokine Growth Factor Rev, vol.35, pp.47-62, 2017.

C. Liu, N. M. Chapman, P. W. Karmaus, H. Zeng, and H. Chi, mTOR and metabolic regulation of conventional and regulatory T cells, J. Leukoc. Biol, vol.97, pp.837-847, 2015.

T. Weichhart, M. Hengstschläger, and M. Linke, Regulation of innate immune cell function by mTOR, Nat. Rev. Immunol, vol.15, pp.599-614, 2015.

G. M. Delgoffe, T. P. Kole, Y. Zheng, P. E. Zarek, K. L. Matthews et al., The mTOR Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Commitment, Immunity, vol.30, pp.832-844, 2009.

G. M. Delgoffe, K. N. Pollizzi, A. T. Waickman, E. Heikamp, D. J. Meyers et al., The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2, Nat. Immunol, vol.12, pp.295-303, 2011.

Y. Kurebayashi, S. Nagai, A. Ikejiri, M. Ohtani, K. Ichiyama et al., PI3K-Akt-mTORC1-S6K1/2 Axis Controls Th17 Differentiation by Regulating Gfi1 Expression and Nuclear Translocation of ROR?, Cell Rep, vol.1, pp.360-373, 2012.

K. Yang, S. Shrestha, H. Zeng, P. W. Karmaus, G. Neale et al., Cell Exit from Quiescence and Differentiation into Th2 Cells Depend on Raptor-mTORC1-Mediated Metabolic Reprogramming, Immunity, pp.39-1043, 2013.

Y. Park, H. Jin, J. Lopez, C. Elly, G. Kim et al., TSC1 regulates the balance between effector and regulatory T cells, J. Clin. Investig, vol.123, pp.5165-5178, 2013.

L. V. Sinclair, J. Rolf, E. Emslie, Y. Shi, P. M. Taylor et al., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation, Nat. Immunol, vol.14, pp.500-508, 2013.

M. Nakaya, Y. Xiao, X. Zhou, J. Chang, M. Chang et al., Inflammatory T Cell Responses Rely on Amino Acid Transporter ASCT2 Facilitation of Glutamine Uptake and mTORC1 Kinase Activation, Immunity, vol.40, pp.692-705, 2014.

K. Araki, A. P. Turner, V. O. Shaffer, S. Gangappa, S. A. Keller et al., Ahmed, R. mTOR regulates memory CD8 T-cell differentiation, Nature, vol.460, pp.108-112, 2009.

E. L. Pearce, M. C. Walsh, P. J. Cejas, G. M. Harms, H. Shen et al., Enhancing CD8 T-cell memory by modulating fatty acid metabolism, Nature, vol.460, pp.103-107, 2009.

R. R. Rao, Q. Li, K. Odunsi, and P. A. Shrikant, The mTOR Kinase Determines Effector versus Memory CD8 + T Cell Fate by Regulating the Expression of Transcription Factors T-bet and Eomesodermin, Immunity, vol.32, pp.67-78, 2010.

H. Zeng, K. Yang, C. Cloer, G. Neale, and P. Vogel, Chi, H. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function, Nature, vol.499, pp.485-490, 2013.

V. De-rosa, M. Galgani, A. Porcellini, A. Colamatteo, M. Santopaolo et al., Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants, Nat. Immunol, vol.16, pp.1174-1184, 2015.

V. A. Gerriets, R. J. Kishton, M. O. Johnson, S. Cohen, P. J. Siska et al., Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression, Nat. Immunol, vol.17, pp.1459-1466, 2016.

J. Wei, L. Long, K. Yang, C. Guy, S. Shrestha et al., Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis, Nat. Immunol, vol.17, pp.277-285, 2016.

T. N. Iwata, J. A. Ramírez, M. Tsang, H. Park, D. H. Margineantu et al., Conditional Disruption of Raptor Reveals an Essential Role for mTORC1 in B Cell Development, Survival, and Metabolism, J. Immunol, vol.197, pp.2250-2260, 2016.

A. L. Raybuck, S. H. Cho, J. Li, M. C. Rogers, K. Lee et al., Cell-Intrinsic mTORC1 Promotes Germinal Center-Defining Transcription Factor Gene Expression, Somatic Hypermutation, and Memory B Cell Generation in Humoral Immunity, J. Immunol, pp.2627-2639, 0200.

S. Zhang, M. Pruitt, D. Tran, W. Bois, K. Zhang et al., Cell-Specific Deficiencies in mTOR Limit Humoral Immune Responses, J. Immunol, vol.191, pp.1692-1703, 2013.

H. S. Zhang, Z. Zhang, Z. Zhou, G. Du, H. Li et al., PKM2-mediated inhibition of autophagy facilitates Tat's inducing HIV-1 transactivation, Arch. Biochem. Biophys, pp.17-23, 2017.

B. Kumar, S. Arora, S. Ahmed, and A. C. Banerjea, Hyperactivation of mammalian target of rapamycin complex 1 by HIV-1 is necessary for virion production and latent viral reactivation, vol.31, pp.180-191, 2017.

J. Van-grol, C. Subauste, R. M. Andrade, K. Fujinaga, J. Nelson et al., HIV-1 inhibits autophagy in bystander macrophage/ monocytic cells through Src-Akt and STAT3, PLoS ONE, vol.5, 2010.

M. Xue, S. Yao, M. Hu, W. Li, T. Hao et al., HIV-1 Nef and KSHV oncogene K1 synergistically promote angiogenesis by inducing cellular miR-718 to regulate the PTEN/AKT/mTOR signaling pathway, Nucleic Acids Res, vol.42, pp.9862-9879, 2014.

A. Cinti, V. Le-sage, M. P. Milev, F. Valiente-echeverría, C. Crossie et al., HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases

D. Planas, J. Routy, P. Ancuta, D. Planas, Y. Zhang et al., HIV-1 selectively targets gut-homing mechanisms Find the latest version: HIV-1 selectively targets gut-homing mechanisms, JCI Insight, vol.2, 2017.

D. Molle, C. Segura-morales, G. Camus, C. Berlioz-torrent, J. Kjems et al., Endosomal trafficking of HIV-1 gag and genomic RNAs regulates viral egress, J. Biol. Chem, vol.284, 2009.

M. Calvez, G. Hseeh, S. Benzer, and A. M. Brown, Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways, J. Neurovirol, vol.25, pp.384-396, 2019.

F. P. Blanchet, A. Moris, D. S. Nikolic, M. Lehmann, S. Cardinaud et al., Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses, Immunity, vol.32, pp.654-669, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00488629

J. Li, W. Wang, P. Tong, C. Leung, G. Yang et al., Autophagy Induction by HIV-Tat and Methamphetamine in Primary Midbrain Neuronal Cells of Tree Shrews via the mTOR Signaling and ATG5/ATG7 Pathway, Front. Neurosci, vol.12, p.921, 2018.

A. Poggi, R. Carosio, D. Fenoglio, S. Brenci, G. Murdaca et al., Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: Competition by HIV-1 Tat, Blood, vol.103, pp.2205-2213, 2004.

D. Germini, T. Tsfasman, M. Klibi, R. El-amine, A. Pichugin et al., HIV Tat induces a prolonged MYC relocalization next to IGH in circulating B-cells, Leukemia, vol.31, pp.2515-2522, 2017.

M. A. Kurnaeva, E. V. Sheval, Y. R. Musinova, and Y. S. Vassetzky, Tat basic domain: A "Swiss army knife" of HIV-1 Tat?, Rev. Med. Virol, vol.29, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02323073

V. Lahiri, W. D. Hawkins, and D. J. Klionsky, Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism, Cell Metab, vol.29, pp.803-826, 2019.

A. S. Dossou and A. Basu, The Emerging Roles of mTORC1 in Macromanaging Autophagy. Cancers (Basel) 2019, 11, 1422

N. Van-beek, D. J. Klionsky, and F. Reggiori, Genetic aberrations in macroautophagy genes leading to diseases, Biochim. Biophys. Acta-Mol. Cell Res, vol.1865, pp.803-816, 2018.

R. Nardacci, F. Ciccosanti, C. Marsella, G. Ippolito, M. Piacentini et al., Role of autophagy in HIV infection and pathogenesis, J. Intern. Med, vol.281, pp.422-432, 2017.

Z. Liu, Y. Xiao, C. Torresilla, É. Rassart, and B. Barbeau, Implication of Different HIV-1 Genes in the Modulation of Autophagy, vol.9, p.389, 2017.

G. B. Kyei, C. Dinkins, A. S. Davis, E. Roberts, S. B. Singh et al., Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages, J. Cell Biol, vol.186, pp.255-268, 2009.

G. R. Campbell, P. Rawat, R. S. Bruckman, and S. A. Spector, Human Immunodeficiency Virus Type 1 Nef Inhibits Autophagy through Transcription Factor EB Sequestration, PLoS Pathog, vol.11, 2015.

S. Castro-gonzalez, Y. Shi, M. Colomer-lluch, Y. Song, K. Mowery et al., HIV-1 Nef counteracts autophagy restriction by enhancing the association between BECN1 and its inhibitor BCL2 in a PRKN-dependent manner, Autophagy, vol.8627, pp.1-25, 2020.

C. Chang, L. N. Young, K. L. Morris, S. Bülow, J. Schöneberg et al., Bidirectional Control of Autophagy by BECN1 BARA Domain Dynamics. Mol. Cell, vol.73, pp.339-353, 2019.

L. Espert, M. Denizot, M. Grimaldi, V. Robert-hebmann, B. Gay et al., Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4, J. Clin. Investig, vol.116, pp.2161-2172, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02421918

L. Espert, M. Varbanov, V. Robert-hebmann, S. Sagnier, I. Robbins et al., Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection, PLoS ONE, vol.4, p.5787, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00420499

S. Sagnier, C. F. Daussy, S. Borel, V. Robert-hebmann, M. Faure et al., Autophagy Restricts HIV-1 Infection by Selectively Degrading Tat in CD4 + T Lymphocytes, J. Virol, vol.89, pp.615-625, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01909014

G. R. Campbell, R. S. Bruckman, S. D. Herns, S. Joshi, D. L. Durden et al., Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication, J. Biol. Chem, vol.293, pp.5808-5820, 2018.

J. Alfaisal, A. Machado, M. Galais, V. Robert-hebmann, L. Arnauné-pelloquin et al., HIV-1 Vpr inhibits autophagy during the early steps of infection of CD4 T cells, Biol. Cell, vol.111, pp.308-318, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02337548

S. Borel, V. Robert-hebmann, J. Alfaisal, A. Jain, M. Faure et al., HIV-1 viral infectivity factor interacts with microtubule-associated protein light chain 3 and inhibits autophagy, AIDS, vol.29, pp.275-286, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02421817

A. M. Yakasai, Impact of Symptomatic HIV-Related Neurocognitive Disorders in Survival of HIV-Infected Individuals: A Systematic Review and Meta-Analyses, J. Neuroinfect. Dis, vol.06, pp.1-7, 2015.

J. Fields, W. Dumaop, S. Elueteri, S. Campos, E. Serger et al., HIV-1 Tat Alters Neuronal Autophagy by Modulating Autophagosome Fusion to the Lysosome: Implications for HIV-Associated Neurocognitive Disorders, J. Neurosci, vol.35, pp.1921-1938, 2015.

A. P. Bruno, F. I. De-simone, V. Iorio, M. De-marco, K. Khalili et al., HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels, Cell Cycle, vol.13, pp.3640-3644, 2014.

X. Wu, H. Dong, X. Ye, L. Zhong, T. Cao et al., HIV-1 Tat increases BAG3 via NF-?B signaling to induce autophagy during HIV-associated neurocognitive disorder, Cell Cycle, vol.17, pp.1614-1623, 2018.

X. F. Zeng, Q. Li, J. Li, N. Wong, Z. Li et al., HIV-1 Tat and methamphetamine co-induced oxidative cellular injury is mitigated by N-acetylcysteine amide (NACA) through rectifying mTOR signaling, Toxicol. Lett, vol.299, pp.159-171, 2018.

L. Qi, L. Gang, K. W. Hang, C. H. Ling, Z. Xiaofeng et al., Programmed neuronal cell death induced by HIV-1 tat and methamphetamine, Microsc. Res. Tech, vol.74, pp.1139-1144, 2011.

A. Thangaraj, P. Periyasamy, K. Liao, V. S. Bendi, S. Callen et al., HIV-1 TAT-mediated microglial activation: Role of mitochondrial dysfunction and defective mitophagy, Autophagy, vol.14, pp.1596-1619, 2018.

I. Sereti, S. J. Krebs, N. Phanuphak, J. L. Fletcher, B. Slike et al., Albeit Reduced, Chronic Inflammation in Persons Starting Antiretroviral Therapy in Acute HIV Infection, Clin. Infect. Dis, vol.64, pp.124-131, 2017.

T. Tran, V. Guardigni, K. M. Pencina, A. A. Amato, M. Floyd et al., Atypical Skeletal Muscle Profiles in Human Immunodeficiency Virus-Infected Asymptomatic Middle-Aged Adults, Clin. Infect. Dis, vol.66, 1918.

A. P. Thrift and E. Y. Chiao, Are Non-HIV Malignancies Increased in the HIV-Infected Population?, Curr. Infect. Dis. Rep, 2018.

A. Shmakova, D. Germini, and Y. Vassetzky, HIV-1, HAART and cancer: A complex relationship, Int. J. Cancer, vol.146, pp.2666-2679, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02323007

R. L. Hamers, T. F. Rinke-de-wit, and C. B. Holmes, HIV drug resistance in low-income and middle-income countries, Lancet HIV, vol.5, pp.588-596, 2018.

B. Chimukangara, R. J. Lessells, S. Y. Rhee, J. Giandhari, A. B. Kharsany et al., Trends in Pretreatment HIV-1 Drug Resistance in Antiretroviral Therapy-naive Adults in South Africa, vol.9, pp.26-34, 2000.

J. N. Blankson, D. Persaud, and R. F. Siliciano, The Challenge of Viral Reservoirs in HIV-1 Infection, Annu. Rev. Med, vol.53, pp.557-593, 2002.

E. Eisele and R. F. Siliciano, Redefining the Viral Reservoirs that Prevent HIV-1 Eradication, Immunity, vol.37, pp.377-388, 2012.

J. Vanhamel, A. Bruggemans, and Z. Debyser, Establishment of latent HIV-1 reservoirs: What do we really know?, J. Virus Erad, vol.5, pp.3-9, 2019.

E. Abner and A. Jordan, HIV "shock and kill" therapy: In need of revision, Antivir. Res, vol.166, pp.19-34, 2019.

M. M. Elsheikh, Y. Tang, D. Li, and G. Jiang, Deep latency: A new insight into a functional HIV cure, vol.45, pp.624-629, 2019.

A. M. Spivak and V. Planelles, Novel Latency Reversal Agents for HIV-1 Cure, Annu. Rev. Med, vol.69, pp.421-436, 2018.

E. Besnard, S. Hakre, M. Kampmann, H. W. Lim, N. N. Hosmane et al., The mTOR Complex Controls HIV Latency, Cell Host Microbe, vol.20, pp.785-797, 2016.

A. R. Martin, R. A. Pollack, A. Capoferri, R. F. Ambinder, C. M. Durand et al., Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity, J. Clin. Investig, vol.127, pp.651-656, 2017.

F. Z. Chowdhury, Z. Ouyang, M. Buzon, B. D. Walker, M. Lichterfeld et al., Metabolic pathway activation distinguishes transcriptional signatures of CD8+ T cells from HIV-1 elite controllers, AIDS, vol.32, pp.2669-2677, 2018.

S. Jin, Q. Liao, J. Chen, L. Zhang, Q. He et al., TSC1 and DEPDC5 regulate HIV-1 latency through the mTOR signaling pathway, Emerg. Microbes Infect, vol.7, pp.1-11, 2018.

T. Van-montfort, R. Van-der-sluis, G. Darcis, D. Beaty, K. Groen et al., Dendritic cells potently purge latent HIV-1 beyond TCR-stimulation, activating the PI3K-Akt-mTOR pathway, vol.42, pp.97-108, 2019.

D. B. Reeves, E. R. Duke, T. A. Wagner, S. E. Palmer, A. M. Spivak et al., A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation, Nat. Commun, vol.9, p.4811, 2018.

M. S. Shiels and E. A. Engels, Evolving epidemiology of HIV-associated malignancies, Curr. Opin. HIV AIDS, vol.12, pp.6-11, 2017.

C. C. Tomlinson and B. Damania, The K1 Protein of Kaposi's Sarcoma-Associated Herpesvirus Activates the Akt Signaling Pathway, J. Virol, vol.78, 1918.

S. Montaner, Akt/TSC/mTOR activation by the KSHV G protein-coupled receptor: Emerging insights into the molecular oncogenesis and treatment of Kaposi's sarcoma, Cell Cycle, vol.6, pp.438-443, 2007.

D. A. Kerr, S. V. Busarla, D. C. Gimbel, A. R. Sohani, R. M. Nazarian et al., VEGF, PDGFR, and c-kit signaling pathway activation in Kaposi sarcoma, Hum. Pathol, vol.65, pp.157-165, 2017.

H. H. Chang and D. Ganem, A Unique Herpesviral Transcriptional Program in KSHV-Infected Lymphatic Endothelial Cells Leads to mTORC1 Activation and Rapamycin Sensitivity, Cell Host Microbe, vol.13, pp.429-440, 2013.

S. Sin, D. Roy, L. Wang, M. R. Staudt, F. D. Fakhari et al., Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling, Blood, vol.109, pp.2165-2173, 2007.

A. Re, C. Cattaneo, and G. Rossi, HIV and lymphoma: From epidemiology to clinical management, Mediterr. J. Hematol. Infect. Dis, vol.11, 2019.

X. Wang, Z. Duan, G. Yu, M. Fan, and M. D. Scharff, Human Immunodeficiency Virus Tat Protein Aids V Region Somatic Hypermutation in Human B Cells, MBio, vol.9, pp.2315-02317, 2018.

M. El-salem, P. N. Raghunath, M. Marzec, X. Liu, M. Kasprzycka et al., Activation of mTORC1 signaling pathway in AIDS-related lymphomas, Am. J. Pathol, vol.175, pp.817-824, 2009.

A. Sebestyén, T. B. Sticz, Á. Márk, M. Hajdu, B. Timár et al., Activity and complexes of mTOR in diffuse large B-cell lymphomas-A tissue microarray study, Mod. Pathol, vol.25, pp.1623-1628, 2012.

M. H. Ágnes-márk, V. Zsófia, T. B. Sticz, N. Nagy, J. Csomor et al., Characteristic mTOR activity in Hodgkin-lymphomas offers a potential therapeutic target in high risk disease-A combined tissue microarray, in vitro and in vivo study, BMC Cancer, vol.13, p.250, 2013.

S. H. Browne, J. A. Diaz-perez, M. Preziosi, C. C. King, G. A. Jones et al., mTOR activity in AIDS-related diffuse large B-cell lymphoma, PLoS ONE, vol.12, 2017.

J. D. Col, P. Zancai, L. Terrin, M. Guidoboni, M. Ponzoni et al., Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma, Blood, vol.111, pp.5142-5151, 2008.

K. Sekihara, K. Saitoh, L. Han, S. Ciurea, S. Yamamoto et al., Targeting mantle cell lymphoma metabolism and survival through simultaneous blockade of mTOR and nuclear transporter exportin-1, Oncotarget, vol.8, pp.34552-34564, 2017.

G. Hess, R. Herbrecht, J. Romaguera, G. Verhoef, M. Crump et al., Phase III Study to Evaluate Temsirolimus Compared With Investigator's Choice Therapy for the Treatment of Relapsed or Refractory Mantle Cell Lymphoma, J. Clin. Oncol, vol.27, pp.3822-3829, 2009.

T. E. Witzig, C. B. Reeder, B. R. Laplant, M. Gupta, P. B. Johnston et al., A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma, Leukemia, vol.25, pp.341-347, 2011.

P. B. Johnston, B. Laplant, E. Mcphail, T. M. Habermann, D. J. Inwards et al., Everolimus combined with R-CHOP-21 for new, untreated, diffuse large B-cell lymphoma (NCCTG 1085 [Alliance]): Safety and efficacy results of a phase 1 and feasibility trial, Lancet Haematol, vol.3, pp.309-316, 2016.

N. N. Bennani, B. R. Laplant, S. M. Ansell, T. M. Habermann, D. J. Inwards et al., Efficacy of the oral mTORC1 inhibitor everolimus in relapsed or refractory indolent lymphoma, Am. J. Hematol, vol.92, pp.448-453, 2017.

P. B. Johnston, L. C. Pinter-brown, G. Warsi, K. White, and R. Ramchandren, Phase 2 study of everolimus for relapsed or refractory classical Hodgkin lymphoma, Exp. Hematol. Oncol, vol.7, p.12, 2018.

S. Faes, N. Demartines, and O. Dormond, Resistance to mTORC1 Inhibitors in Cancer Therapy: From Kinase Mutations to Intratumoral Heterogeneity of Kinase Activity, Oxid. Med. Cell. Longev, 2017.

A. M. Petrich, V. Leshchenko, P. Kuo, B. Xia, V. K. Thirukonda et al., Akt Inhibitors MK-2206 and Nelfinavir Overcome mTOR Inhibitor Resistance in Diffuse Large B-cell Lymphoma, Clin. Cancer Res, vol.18, pp.2534-2544, 2012.

A. Heredia, B. Gilliam, O. Latinovic, N. Le, D. Bamba et al., Rapamycin reduces CCR5 density levels on CD4 T cells, and this effect results in potentiation of enfuvirtide (T-20) against R5 strains of human immunodeficiency virus type 1 in vitro, Antimicrob. Agents Chemother, vol.51, pp.2489-2496, 2007.

A. Heredia, O. Latinovic, R. C. Gallo, G. Melikyan, M. Reitz et al., Reduction of CCR5 with low-dose rapamycin enhances the antiviral activity of vicriviroc against both sensitive and drug-resistant HIV-1, Proc. Natl. Acad. Sci, vol.105, pp.20476-20481, 2008.

D. Kumar, S. Konkimalla, A. Yadav, K. Sataranatarajan, B. S. Kasinath et al., Am. J. Pathol, vol.177, pp.813-821, 2010.

S. Rehman, M. Husain, A. Yadav, B. S. Kasinath, A. Malhotra et al., HIV-1 Promotes Renal Tubular Epithelial Cell Protein Synthesis: Role of mTOR Pathway, PLoS ONE, vol.7, 2012.

K. Cheng, P. Rai, A. Plagov, X. Lan, P. W. Mathieson et al., Rapamycin-induced modulation of miRNA expression is associated with amelioration of HIV-associated nephropathy (HIVAN), Exp. Cell Res, vol.319, pp.2073-2080, 2013.

P. Rai, A. Plagov, X. Lan, N. Chandel, T. Singh et al., mTOR plays a critical role in p53-induced oxidative kidney cell injury in HIVAN, Am. J. Physiol. Physiol, vol.305, pp.343-354, 2013.

P. Rai, R. Lederman, S. Haque, S. Rehman, V. Kumar et al., Renin angiotensin system modulates mTOR pathway through AT2R in HIVAN, Exp. Mol. Pathol, vol.96, pp.431-437, 2014.

H. Department-of-health and . Services, Panel on Antiretroviral Guidelines for Adults and Adolescents.Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV, p.10, 2020.

J. S. Shim, R. Rao, K. Beebe, L. Neckers, I. Han et al., Selective Inhibition of HER2-Positive Breast Cancer Cells by the HIV Protease Inhibitor Nelfinavir, JNCI J. Natl. Cancer Inst, vol.104, pp.1576-1590, 2012.

A. Srirangam, R. Mitra, M. Wang, J. C. Gorski, S. Badve et al., Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer, Clin. Cancer Res, vol.12, pp.1883-1896, 2006.

J. Goda, T. Pachpor, T. Basu, S. Chopra, and V. Gota, Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers, Indian J. Med. Res, vol.143, 2016.

D. Aldinucci and N. Casagrande, Inhibition of the CCL5/CCR5 axis against the progression of gastric cancer, Int. J. Mol. Sci, vol.19, 1477.

D. Gao, R. Rahbar, and E. Fish, CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells, Open Biol, 2016.

M. J. Young, Off-target effects of drugs that disrupt human mitochondrial DNA maintenance. Front. Mol. Biosci. 2017, 4, 74

A. M. Margolis, H. Heverling, P. A. Pham, and A. Stolbach, A Review of the Toxicity of HIV Medications, J. Med. Toxicol, vol.10, pp.26-39, 2014.

H. Lin, M. V. Stankov, J. Hegermann, R. Budida, D. Panayotova-dimitrova et al., Zidovudine-mediated autophagy inhibition enhances mitochondrial toxicity in muscle cells, Antimicrob. Agents Chemother, vol.63, pp.1443-1461, 2019.

H. Cheng and L. Y. Wu, Influence of phosphatidylinositol-3-kinase/protein kinase b-mammalian target of rapamycin signaling pathway on the neuropathic pain complicated by nucleoside reverse transcriptase inhibitors for the treatment of HIV infection, Chin. Med. J. (Engl, vol.131, pp.1849-1856, 2018.

W. D. Hardy, Fundamentals of HIV Medicine, 2019.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI