C. T. Lefevre, N. Menguy, F. Abreu, U. Lins, M. Posfai et al., A Cultured Greigite-Producing Magnetotactic Bacterium in a Novel Group of Sulfate-Reducing Bacteria. Science (80-), vol.334, pp.1720-1723, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00819278

S. E. Greene and A. Komeili, Biogenesis and subcellular organization of the magnetosome organelles of magnetotactic bacteria. Current Opinion in Cell Biology, pp.490-495, 2012.

S. Barber-zucker, K. , N. Zarivach, and R. , From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria, Protein Science, pp.338-351, 2016.

S. Barber-zucker and R. Zarivach, A look into the biochemistry of Magnetosome biosynthesis in magnetotactic bacteria, ACS Chemical Biology, pp.13-22, 2017.

D. A. Bazylinski and R. B. Frankel, Magnetosome formation in prokaryotes, Nat Rev Microbiol, vol.2, pp.217-230, 2004.

D. Faivre and D. Schüler, Magnetotactic bacteria and magnetosomes, Chem Rev, vol.108, pp.4875-4898, 2008.

A. Lohße, S. Ullrich, E. Katzmann, S. Borg, G. Wanner et al., Functional analysis of the magnetosome Island in magnetospirillum gryphiswaldense: The mamAB operon is sufficient for magnetite biomineralization, PLoS One, vol.6, 2011.

C. Jogler, G. Wanner, S. Kolinko, M. Niebler, R. Amann et al., Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum, Proc Natl Acad Sci U S A, vol.108, pp.1134-1139, 2011.

D. Murat, A. Quinlan, H. Vali, and A. Komeili, Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle, Proc Natl Acad Sci U S A, vol.107, pp.5593-5598, 2010.

D. Schü-ler, Molecular analysis of a subcellular compartment: The magnetosome membrane in Magnetospirillum gryphiswaldense, Arch Microbiol, vol.181, pp.1-7, 2004.

S. Sonkaria, G. Fuentes, C. Verma, R. Narang, V. Khare et al., Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK. PLoS One, vol.7, 2012.

R. Uebe, K. Junge, V. Henn, G. Poxleitner, E. Katzmann et al., The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly, Mol Microbiol, vol.82, p.22007638, 2011.

D. H. Nies, Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiology Reviews, pp.313-339, 2003.

R. Uebe, N. Keren-khadmy, N. Zeytuni, E. Katzmann, Y. Navon et al., The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization, Mol Microbiol, vol.107, pp.542-557, 2018.

M. Lu and D. Fu, Structure of the zinc transporter YiiP. Science (80-), vol.317, pp.1746-1748, 2007.

C. A. Cotrim, R. J. Jarrott, J. L. Martin, and D. Drew, A structural overview of the zinc transporters in the cation diffusion facilitator family, Acta Crystallographica Section D: Structural Biology. International Union of Crystallography, pp.357-367, 2019.

M. L. Lopez-redondo, N. Coudray, Z. Zhang, J. Alexopoulos, and D. L. Stokes, Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP, Proc Natl Acad Sci U S A, vol.115, pp.3042-3047, 2018.

V. Cherezov, N. Hö-fer, D. Szebenyi, O. Kolaj, J. G. Wall et al., Insights into the Mode of Action of a Putative Zinc Transporter CzrB in Thermus thermophilus, Structure, vol.16, pp.1378-1388, 2008.

M. Lu and D. Fu, Structure of the zinc transporter YiiP. Science (80-), vol.317, pp.1746-1748, 2007.

M. Lu, J. Chai, and D. Fu, Structural basis for autoregulation of the zinc transporter YiiP, Nat Struct Mol Biol, vol.16, pp.1063-1067, 2009.

N. Zeytuni, R. Uebe, M. Maes, G. Davidov, M. Baram et al., Cation diffusion facilitators transport initiation and regulation is mediated by cation induced conformational changes of the cytoplasmic domain, PLoS One, vol.9, 2014.

Y. Wei and D. Fu, Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP, J Biol Chem, vol.281, pp.23492-23502, 2006.

E. Shusterman, O. Beharier, L. Shiri, R. Zarivach, Y. Etzion et al., ZnT-1 extrudes zinc from mammalian cells functioning as a Zn 2+/H+ exchanger, Metallomics, vol.6, pp.1656-1663, 2014.

N. Coudray, S. Valvo, M. Hu, R. Lasala, C. Kim et al., Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy, Proc Natl Acad Sci U S A, vol.110, pp.2140-2145, 2013.

T. Higuchi, M. Hattori, Y. Tanaka, R. Ishitani, and O. Nureki, Crystal structure of the cytosolic domain of the cation diffusion facilitator family protein, Proteins Struct Funct Bioinforma, vol.76, pp.768-771, 2009.

V. Cherezov, N. Hö-fer, D. Szebenyi, O. Kolaj, J. G. Wall et al., Insights into the Mode of Action of a Putative Zinc Transporter CzrB in Thermus thermophilus, Structure, vol.16, pp.1378-1388, 2008.

G. Grass, M. Otto, B. Fricke, C. J. Haney, C. Rensing et al., YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress, Arch Microbiol, vol.183, p.15549269, 2005.

B. Shiran, J. Mangapuram, S. V. , K. Itamar, S. Kolusheva et al., Metal binding to the dynamic cytoplasmic domain of the cation diffusion facilitator (CDF) protein MamM induces a 'locked-in' configuration, FEBS J, vol.972, 2019.

N. Zeytuni, R. Uebe, M. Maes, G. Davidov, M. Baram et al., Bacterial magnetosome biomineralization-A novel platform to study molecular mechanisms of human CDF-related type-II diabetes, PLoS One, vol.9, 2014.

R. Uebe, N. Keren-khadmy, N. Zeytuni, E. Katzmann, Y. Navon et al., The dual role of MamB in magnetosome membrane assembly and magnetite biomineralization, Mol Microbiol, vol.107, pp.542-557, 2018.

M. Lu, J. Chai, and D. Fu, Structural basis for autoregulation of the zinc transporter YiiP, Nat Struct Mol Biol, vol.16, pp.1063-1067, 2009.

O. Raschdorf, F. Bonn, N. Zeytuni, R. Zarivach, and D. Becher, Schü ler D. A quantitative assessment of the membrane-integral sub-proteome of a bacterial magnetic organelle, J Proteomics, pp.89-99, 2018.

O. Raschdorf, Y. Forstner, I. Kolinko, R. Uebe, J. M. Plitzko et al., Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis, PLoS Genet, vol.12, pp.1-23, 2016.

H. Nudelman and R. Zarivach, Structure prediction of magnetosome-associated proteins, Front Microbiol, vol.5, pp.1-17, 2014.

N. Guex and M. C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling, Electrophoresis, vol.18, pp.2714-2723, 1997.

W. Lin, G. A. Paterson, Q. Zhu, Y. Wang, E. Kopylova et al., Origin of microbial biomineralization and magnetotaxis during the Archean, Proc Natl Acad Sci, 2017.

I. R. Loftin, N. J. Blackburn, and M. M. Mcevoy, Tryptophan Cu(I)-? interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF, J Biol Inorg Chem, vol.14, p.19381697, 2009.

D. W. Waite, I. Vanwonterghem, C. Rinke, D. H. Parks, Y. Zhang et al., Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to epsilonbacteraeota (phyl. nov.). Front Microbiol, vol.8, 2017.

D. H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski et al., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat Biotechnol, vol.36, pp.996-1004, 2018.

H. G. Ramulu, M. Groussin, E. Talla, R. Planel, V. Daubin et al., Ribosomal proteins: Toward a next generation standard for prokaryotic systematics?, Mol Phylogenet Evol, vol.75, pp.103-117, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01913940

S. R. Eddy, Accelerated profile HMM searches, PLoS Comput Biol, 2011.

E. Katzmann, A. Scheffel, M. Gruska, J. M. Plitzko, and D. Schüler, Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense, Mol Microbiol, vol.77, p.20487281, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552637

R. D. Finn, A. Bateman, J. Clements, P. Coggill, R. Y. Eberhardt et al., The protein families database, Nucleic Acids Res, vol.42, pp.222-230, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01294685

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: Improvements in performance and usability, Mol Biol Evol, vol.30, pp.772-780, 2013.

R. Cruickshank, Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Mol Biol Evol, vol.17, pp.540-52, 2000.

L. T. Nguyen, H. A. Schmidt, V. Haeseler, A. Minh, and B. Q. , IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol Biol Evol, vol.32, pp.268-274, 2015.

S. Kalyaanamoorthy, B. Q. Minh, T. Wong, V. Haeseler, A. Jermiin et al., ModelFinder: Fast model selection for accurate phylogenetic estimates, Nat Methods, vol.14, pp.587-589, 2017.

D. A. Morrison and J. T. Ellis, Effects of Nucleotide Sequence Alignment Study of 18s rDNAs of Apicomplexa. Molecular bilogy and evolution, vol.14, pp.428-441, 1997.

F. Onquist, M. Eslenko, P. Ark, D. Yres, and A. Arling, MrBayes 3. 2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space, vol.61, pp.539-542, 2012.

F. W. Studier, Protein production by auto-induction in high density shaking cultures, Protein Expr Purif, vol.41, pp.207-234, 2005.

J. Ilavsky, P. R. Jemian, and . Irena, Tool suite for modeling and analysis of small-angle scattering, J Appl Crystallogr, vol.42, pp.347-353, 2009.

M. Petoukhov, D. Franke, A. Shkumatov, G. Tria, A. G. Kikhney et al., New developments in the ATSAS program package for small-angle scattering data analysis, J Appl Crystallogr, vol.45, pp.342-350, 2012.

A. Guinier and G. Fournet, Small angle scattering of X-rays, J Polym Sci, vol.1, p.268, 1955.

Z. Otwinowski and W. Minor, Processing of X-ray diffraction data collected in oscillation mode, Methods in Enzymology, pp.307-326, 1997.

W. Kabsch and . Xds, Acta Crystallogr Sect D Biol Crystallogr, vol.66, pp.125-132, 2010.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 suite and current developments, Acta Crystallographica Section D: Biological Crystallography, pp.235-242, 2011.

G. Bunkó-czi, N. Echols, A. J. Mccoy, R. D. Oeffner, P. D. Adams et al., MRage: automated molecular replacement, Acta Crystallogr Sect D Biol Crystallogr, vol.69, pp.2276-2286, 2013.

A. J. Mccoy, Solving structures of protein complexes by molecular replacement with Phaser, Acta Crystallogr Sect D Biol Crystallogr, vol.63, pp.32-41, 2006.

A. A. Vagin, R. A. Steiner, A. A. Lebedev, L. Potterton, S. Mcnicholas et al., REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use, Acta Crystallogr Sect D Biol Crystallogr, vol.60, pp.2184-2195, 2004.

R. P. Joosten, F. Long, G. N. Murshudov, and A. Perrakis, The {\it PDB_REDO} server for macromolecular structure model optimization, IUCrJ, vol.1, pp.213-220, 2014.

P. Emsley and K. Cowtan, Coot: Model-building tools for molecular graphics, Acta Crystallogr Sect D Biol Crystallogr, vol.60, pp.2126-2132, 2004.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera-a visualization system for exploratory research and analysis, J Comput Chem, vol.25, pp.1605-1617, 2004.

K. Evgeny and H. Kim, Interface of macromolecular assemblies from crystalline state, Mol Biol, 2007.