
HAL Id: hal-02521149
https://hal-cnrs.archives-ouvertes.fr/hal-02521149

Submitted on 18 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SASA: a SimulAtor of Self-stabilizing Algorithms
Karine Altisen, Stéphane Devismes, Erwan Jahier

To cite this version:
Karine Altisen, Stéphane Devismes, Erwan Jahier. SASA: a SimulAtor of Self-stabilizing Algorithms.
14th International Conference on Tests and Proofs, Jun 2020, Bergen, Norway. �hal-02521149�

https://hal-cnrs.archives-ouvertes.fr/hal-02521149
https://hal.archives-ouvertes.fr


SASA: a SimulAtor of Self-stabilizing Algorithms???

Karine Altisen, Stéphane Devismes, and Erwan Jahier

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France

Abstract. In this paper, we present SASA, an open-source SimulAtor of Self-
stabilizing Algorithms. Self-stabilization defines the ability of a distributed algo-
rithm to recover after transient failures. SASA is implemented as a faithful repre-
sentation of the atomic-state model. This model is the most commonly used in the
self-stabilizing area to prove both the correct operation and complexity bounds
of self-stabilizing algorithms.
SASA encompasses all features necessary to debug, test, and analyze self-
stabilizing algorithms. All these facilities are programmable to enable users to
accommodate to their particular needs. For example, asynchrony is modeled by
programmable stochastic daemons playing the role of input sequence generators.
Algorithm’s properties can be checked using formal test oracles.
The design of SASA relies as much as possible on existing tools: OCAML, DOT,
and tools developed in the Synchrone Group of the VERIMAG laboratory.

Keywords: simulation, debugging, reactive programs, synchronous languages, dis-
tributed computing, self-stabilization, atomic-state model.

1 Introduction

Starting from an arbitrary configuration, a self-stabilizing algorithm [8] makes a dis-
tributed system eventually reach a so-called legitimate configuration from which every
possible execution suffix satisfies the intended specification. Self-stabilization is de-
fined in the reference book of Dolev [9] as a conjunction of two properties: conver-
gence, which requires every execution of the algorithm to eventually reach a legitimate
configuration; and correctness, which requires every execution starting from a legiti-
mate configuration to satisfy the specification. Since an arbitrary configuration may be
the result of transient faults,1 self-stabilization is considered as a general approach for
tolerating such faults in a distributed system.

The definition of self-stabilization does not directly refer to the possibility of (tran-
sient) faults. Consequently, proving or simulating a self-stabilizing system does not
involve any failure pattern. Actually, this is mainly due to the fact that, in contrast with

? This is a Pre-print version of an article accepted for publication at TAP 2020 (Bergen, Norway)
?? This study was partially supported by the French ANR projects ANR-16-CE40-0023

(DESCARTES) and ANR-16 CE25-0009-03 (ESTATE).
1 A transient fault occurs at an unpredictable time, but does not result in a permanent hard-

ware damage. Moreover, as opposed to intermittent faults, the frequency of transient faults is
considered to be low.



2

most of existing fault tolerance (a.k.a., robust) proposals, self-stabilization is a non-
masking approach: it does try to hide effects of faults, but to repair the system after
faults. As a result, only the consequences of faults, modeled by the arbitrary initial con-
figuration, are treated. Hence, the actual convergence of the system is guaranteed only
if there is a sufficiently large time window without any fault, which is the case when
faults are transient.

Self-stabilizing algorithms are mainly compared according to their stabilization
time, i.e., the maximum time, starting from an arbitrary configuration, before reach-
ing a legitimate configuration. By definition, the stabilization time is impacted by worst
case scenarios which are unlikely in practice. So, in many cases, the average-case time
complexity may be a more accurate measure of performance assuming a probabilis-
tic model. However, the arbitrary initialization, the asynchronism, the maybe arbitrary
network topology, and the algorithm design itself often make the probabilistic analy-
sis intractable. In contrast, another popular approach consists in empirically evaluating
the average-case time complexity via simulations. A simulation tool is also of prime
interest since it allows testing to find flaws early in the design process.
Contribution. We provide to the self-stabilizing community an open-source, versatile,
lightweight (in terms of memory footprint), and efficient (in terms of simulation time)
simulator, called SASA,2 to help the design and evaluate average performances of self-
stabilizing distributed algorithms written in the atomic-state model (ASM). The ASM is
a locally shared memory model in which each process can directly read the local states
of its neighbors in the network. This computational model is the most commonly used
in the self-stabilizing area.3

The SASA programming interface is simple, yet rich enough to allow a direct en-
coding of any distributed algorithm described in the ASM. All important concepts used
in this model are available: simulation can be run and evaluated in moves, atomic steps,
and rounds; the three main time units used in the ASM. Classical execution schedulers,
a.k.a. daemons, are available: the central, locally central, distributed, and synchronous
daemons. All levels of anonymity can be modeled, such as fully anonymous, rooted, or
identified. Finally, distributed algorithms can be either uniform (all nodes execute the
same local algorithm), or non-uniform.

SASA can perform batch simulations that use test oracles to check expected proper-
ties. For example, one can check that the stabilization time in rounds is upper bounded
by a given function. SASA can also be run in an interactive mode, to ease algorithms
debugging. During the simulator development, a constant guideline has been to take, as
much as possible, advantage of existing tools. In particular, SASA heavily relies on the
Synchrone Reactive Toolbox [19] and benefits from its supporting tools, e.g., for testing
using formal oracles and debugging. Another guideline has been to make all SASA’s fa-
cilities easily configurable and programmable so that users can define specific features
tailored for their particular needs.
Related work. Only few simulators dedicated to self-stabilization in locally shared
memory models, such as the ASM, have been proposed [11,15,21]. Overall, they all
have limited capabilities and features, and are not extensible since not programmable.

2 http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/sasa
3 To the best of our knowledge, this model is exclusively used in the self-stabilizing area.

http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/sasa


3

Using these simulators, only few pre-defined properties, such as convergence, can be
checked on the fly.

In more detail, Flatebo and Datta [11] propose a simulator of the ASM to evaluate
leader election, mutual exclusion, and `-exclusion algorithms on restricted topologies,
mainly rings. This simulator is not available today. It proposes limited facilities includ-
ing classical daemons and evaluation of stabilization time in moves only.

Müllner et al. [21] present a simulator (written in Erlang) of the register model, a
computational model which is close to the ASM. This simulator does not allow to eval-
uate stabilization time. Actually, it focuses on three fault tolerance measures, initially
devoted to masking fault-tolerant systems (namely, reliability, instantaneous availabil-
ity, and limiting availability [24]) to evaluate them on self-stabilizing systems. How-
ever, these measures are still uncommon today in analyses of self-stabilizing algorithms.
Moreover, this simulator is heavy in terms of memory footprint. As an illustrative ex-
ample, it simulates the same spanning tree constructions as we do: while they need up
to 1 gigabits of memory for simulating a 256-node random network, we only need up
to 235 megabits for executing the same algorithms in the same settings.

The simulator (written in Java) proposed by Har-Tal [15] allows to run self-
stabilizing algorithms in the register model on small networks (around 10 nodes). It
only proposes a small amount of facilities, i.e., the execution scheduling is either syn-
chronous, or controlled step by step by the user. Only the legitimacy of the current con-
figuration can be tested. Finally, it provides neither batch mode, nor debugging tools.

Roadmap. Section 2 is a digest of the ASM. SASA is presented in Section 3. We give
experimental results in Section 4; an artifact to reproduce these results is available in
appendix. We conclude in Section 5 with future work.

2 An Example: Asynchronous Unison in the Atomic-State Model

We present the atomic-state model (ASM) using the asynchronous unison algorithm
of [7] as a running example: a clock synchronization problem which requires the differ-
ence between clocks of every two neighbors to be at most one increment at each instant.

Algorithm 1 Asynchronous Unison, local algorithm for each node p
Constant Input: Np, the set of p’s neighbors

Variable: p.c ∈ {0, ...,K−1}, where K > n2, and n is the number of nodes

Predicate: behind(a,b) = ((b.c−a.c) mod K)≤ n

Actions:
I(p) :: ∀q ∈Np, behind(p,q) ↪→ p.c← (p.c+1) mod K
R(p) :: p.c 6= 0∧ (∃q ∈Np, ¬behind(p,q)∧¬behind(q, p)) ↪→ p.c← 0

Distributed algorithms. A distributed algorithm consists of a collection of local al-
gorithms, one per node. The local algorithm of each node p (see Algorithm 1) is made



4

of a finite set of variables and a finite set of actions (written as guarded commands) to
update them.

Some of the variables, like Np in Algorithm 1, may be constant inputs in which case
their values are predefined. Actually, here, Np represents the local view of the network
topology at each node p: Np is the set of p’s neighbors in the network. Algorithm 1
assumes the network is connected and bidirectional, so q ∈Np if and only if p ∈Nq.
Then, each node holds a single writable variable, noted p.c and called its local clock.
Each clock p.c is actually an integer with range 0 to K−1, where K > n2 is a parameter
common to all nodes, and n denotes the number of nodes. Communication exchanges
are carried out by read and write operations on variables: a node can read its variables
and those of its neighbors, but can write only to its own variables. For example, in
Algorithm 1, each node p can read the value of p.c and that of q.c, for every q ∈Np,
but can only write to p.c. The state of a node is defined by the values of its variables. A
configuration is a vector consisting of the states of each node.

Each action is of the following form: 〈label〉 :: 〈guard〉 ↪→ 〈statement〉. Labels
are only used to identify actions. A guard is a Boolean predicate involving the variables
of the node and those of its neighbors. The statement is a sequence of assignments on
the node’s variables. An action can be executed only if its guard evaluates to true, in
which case, the action is said to be enabled. By extension, a node is enabled if at least
one of its actions is enabled. In Algorithm 1, we have two (locally mutually exclusive)
actions per node p, I(p) and R(p).

Steps and executions. Nodes run their local algorithm by atomically executing actions.
Asynchronism is modeled by a nondeterministic adversary called daemon. Precisely, an
execution is a sequence of configurations, where the system moves from a configuration
to another as follows. Assume the current configuration is γ . If no node is enabled in
γ , the execution is done and γ is said to be terminal. Otherwise, the daemon activates
a non-empty subset S of nodes that are enabled in γ; then every node in S atomically
executes one of its action enabled in γ , leading the system to a new configuration γ ′,
and so on. The transition from γ to γ ′ is called a step. Usual daemons include: (1) the
synchronous daemon which activates every enabled node at each step, (2) the central
daemon which activates exactly one enabled node at each step, (3) the locally central
daemon which never activates two neighbors at the same step, and (4) the distributed
daemon which activates at least one, maybe more, node at each step.

Self-stabilization of Algorithm 1. Let p be any node. When the clock of p is at most
n increments behind the clock values of all its neighbors, p is enabled to increment its
clock modulo K by Action I(p); see, e.g., node p4 in Configuration 5 of Figure 1. In
contrast, if the clock of p is not equal to 0 and p has a neighbor q such that p.c is more
than n increments behind q.c and q.c more than n increments behind p.c, then p should
reset its clock to 0 using Action R(p); see, e.g., node p1 in Configuration 1. The legiti-
mate configurations of Algorithm 1 are those where for any two neighbors p and q, we
have p.c ∈ {(q.c− 1) mod K,q.c,(q.c+ 1) mod K}. Algorithm 1 is a self-stabilizing
algorithm under the distributed daemon in the sense that starting from an arbitrary con-
figuration, every asynchronous execution of Algorithm 1 eventually reaches a legitimate
configuration from which every possible execution suffix satisfies the following specifi-



5

Fig. 1. Five steps of Algorithm 1 for K = 257 on a 16-node grid (from SASA). "pi : j" means that
pi.c = j. Enabled nodes are in orange and green. Moreover, orange nodes are activated within the
next step.

cation: (1) in each configuration, the difference between clocks of every two neighbors
is at most one (Safety); and (2) each clock is incremented infinitely often (Liveness).

Time complexity units. Three main units are used for counting time: steps, moves,
and rounds. Steps simply refer to atomic steps of the execution. A node moves when it
executes an action in a step. Hence, several moves may occur in a step. Rounds capture
the execution time according to the speed of the slowest node. The first round of an
execution e is the minimal prefix e′ of e during which every node that is enabled in
the first configuration of e either executes an action or becomes disabled (due to some
neighbor actions) at least once. The second round of e starts from the last configuration
of e′, and so on.

These notions are illustrated by Figure 1. The second step (from Configuration 2
to 3) contains two moves (by p2 and p4). The first round ends in Configuration 3. In-
deed, there are two enabled nodes, p1 and p4 in Configuration 1. Node p1 moves in the
first step, however in Configuration 2, the round is not done since p4 has neither moved
nor become disabled. The first round terminates after p4 has moved in the second step.
Consequently, the second round starts in Configuration 3. This latter actually terminates
in Configuration 6.

3 The SASA Simulator

3.1 SASA Features

This Section surveys the SASA main features. More information is available online as
SASA tutorials [16].



6

Batch simulations. They are useful to perform simulation campaigns, e.g., to evaluate
the average-case complexity of an algorithm on wide families of networks, including
random graphs. They can also be used to study the influence on some parameters.

Interactive graphical simulations. It is possible to run a simulation step by step, or
round by round, forward or backward, while visualizing the network as well as the
enabled and activated nodes; see snapshots in Figure 1. New commands can be also
programmed so that users can navigate through the simulation according to their spe-
cific needs.

Predefined and custom daemons. The daemon, which parameterizes the simulation,
can be configured. First, SASA provides several predefined daemons, including the
synchronous, central, locally central, or distributed daemon; for such daemons, non-
determinism is resolved uniformly at random. But, the user can also build its own cus-
tom daemon: this is useful to experiment new activation heuristics, or explore worst
cases. Indeed, the daemon can be interactively controlled using a graphical widget: at
each step, the user selects the nodes to be activated among the enabled ones. The dae-
mon can also be programmed; such a program can take advantage of the simulation
history to guide the simulation into particular directions.

Test oracles. Expected (safety) properties of algorithms can be formalized and used
as test oracles. Typically, they involve the number of steps, moves, or rounds that is
necessary to reach a (user-defined) legitimate configuration. In order to define such
properties, one has access to node state values and activation status [16]. Properties are
checked on the fly at every simulation step.

3.2 The Core of SASA

reads

loads

generates

reads generates Dynamic Library

sasa
Simulation DataNetwork Topology

Algorithm ocamlopt
[.cmxs files]

[bin] [.rif file][.dot file]

[.ml files]
[bin]

Fig. 2. The SASA Core Simulator Architecture

The core of SASA is a stand-alone simulator; see Figure 2. The user has to define
both a network and a self-stabilizing algorithm following the API given in Section 3.3.
The algorithm is written as an OCAML program: the interface has been designed in
such a way that the OCAML program implementing the algorithm is as close as possi-
ble to guarded commands, the usual way to write algorithms in the ASM. The network
topology is specified using the DOT language [12] for which many support exists such
as visualization tools and graph editors. The OCAML algorithm is compiled into a dy-
namic library which is used, together with the DOT network file, by SASA to generate



7

simulation data. A simulation data file contains an execution trace made of the sequence
of configurations. That trace also contains the enabled and activated action history. Such
traces can be visualized using chronogram viewers.

3.3 The SASA Algorithm Programming Interface

SASA algorithms are defined using a simple programming interface specified in the
37 lines OCAML file, algo.mli, which is presented below.

Local States. Node states are defined by the polymorphic type ’st which can repre-
sent any data the designer needs, e.g., integers, arrays, or structures. Nodes can access
their neighbor states using the abstract type ’st neighbor (the "’st" part means
that the type neighbor is parameterized by the type ’st). The access to neighboring
states is made by Function state which takes a neighbor as input and returns its state;
see Listing 1.1.

type ’st neighbor
val state: ’st neighbor -> ’st

Listing 1.1. Access to neighbors’ states

Algorithms. To define an instance of the local algorithm of each node, SASA requires:

1. a list of action names;
2. an enable function, which encodes the guards of the algorithm;
3. a step function, that triggers an enabled action;
4. a state initialization function, used if no initial configuration is provided in the DOT

file. Indeed, even if self-stabilization does not require it, initialization is manda-
tory to begin the simulation. For example, pseudo-random functions can be used to
obtain an arbitrary initial configuration.

type action = string
type ’st enable_fun = ’st -> ’st neighbor list -> action list
type ’st step_fun = ’st -> ’st neighbor list -> action -> ’st
type ’st state_init_fun = int -> ’st

Listing 1.2. The step, enable, and initialization function types

The enable function takes the current state of the node and the list of its neighbors
as arguments. It returns a list of enabled actions. The step function takes the same argu-
ments plus the action to activate, and returns an updated state. The initial configuration
can be set using an initialization function that takes as argument the node’s number
of neighbors.

Topological Information. Algorithms usually depend on parameters relative to the
network topology. For example, Algorithm 1 uses the number n of nodes. SASA pro-
vides access to those parameters through various functions that the algorithms can use.



8

val card: unit -> int
val diameter: unit -> int
val min_degree : unit -> int
val max_degree: unit -> int
val is_connected : unit -> bool

Listing 1.3. Some of the topological parameters provided by the API

Example. Listing 1.4 shows the implementation of Algorithm 1 in SASA: notice that
we obtain a faithful direct translation of Algorithm 1.

open Algo
let n = Algo.card()
let k = n * n + 1
let (init_state: int state_init_fun) = fun _ -> (Random.int k)
let modulo x n = (* for it to return positive values *)
if x < 0 then n+x mod n else x mod n

let behind pc qc = (modulo (qc-pc) k) <= n
let (enable_f: int enable_fun) = fun c nl ->

if List.for_all (fun q -> behind c (state q)) nl
then ["I(p)"] else
if List.exists (fun q -> not (behind c (state q)) &&

not (behind (state q) c)) nl
&& c <> 0

then ["R(p)"] else []
let (step_f: int step_fun) = fun c nl a ->
match a with
| "I(p)" -> modulo (c + 1) k
| "R(p)" -> 0
| _ -> assert false

let actions = Some ["I(p)"; "R(p)"]

Listing 1.4. Implementation of Algorithm 1

3.4 Connection to the Synchrone Reactive Toolbox

In SASA, a simulation is made of steps executed in a loop. Each step consists of two
successive stages. The first stage is made of the atomic and synchronous execution of
all activated nodes (1-a), followed by the evaluation of which nodes are enabled in the
next step (1-b).4 At the second stage, a daemon nondeterministically chooses among the
enabled nodes which ones should be activated at the next step (2). Overall, this can be
viewed as a reactive program (Stage (1)) that runs in closed-loop with its environment
(Stage (2)), where the outputs (resp. the inputs) of the program are the inputs (resp. the
outputs) of its environment.

4 At the first step, the simulation loop starts in (1-b).



9

Thus, we could enlarge the functionalities offered by SASA by connecting our sim-
ulator to the Synchrone Reactive Toolbox [19], which targets the development and val-
idation of reactive programs. The LUTIN language [23], which was designed to model
stochastic reactive systems, is used to program daemons that take the feedback-loop
into account. The synchronous language LUSTRE [14] is used to formalize the expected
properties. Indeed, this language is well-suited for the definition of such properties, as
they involve the logical time history of node states. Such Lustre formalizations are used
as oracles to automate the test decision [18]. Finally, RDBG [17], a programmable de-
bugger for reactive programs, provides the ability to perform interactive simulations,
visualize the network, and implement user tailored features.

4 Experimental Results

To validate the tool, we have implemented and tested classical algorithms using var-
ious assumptions on the daemon and topology. Below, we give our methodology and
some results.

Algorithms under test. We have implemented the following self-stabilizing algo-
rithms: a token circulation for rooted unidirectional rings assuming a distributed dae-
mon (DTR [8]); a breadth first search spanning tree construction for rooted networks
assuming a distributed daemon (BFS [2]); a depth first search spanning tree construc-
tion for rooted networks assuming a distributed daemon (DFS [6]); a coloring algorithm
for anonymous networks assuming a locally central daemon (COL [13]); a synchronous
unison for anonymous networks assuming a synchronous daemon (SYN [3]); and Al-
gorithm 1 (ASY [7]). All these algorithms can be found in the SASA gitlab repository.2

Methodology. For each algorithm of the above list, we have written a direct imple-
mentation of the original guarded-command algorithm. Such implementations include
the running assumptions, e.g., the topology and daemon. Then, we have used the inter-
active graphical feature of SASA through the debugger RDBG to test and debug them
on well-chosen small corner-case topologies. Finally, we have implemented test ora-
cles to check known properties of these algorithms, including correctness from (resp.
convergence to) a legitimate configuration, as well as bounds on their stabilization time
in moves, steps, and rounds, when available. Testing all those properties is a way to
check the implementation of the algorithms. But, as these properties are well-known
results, this is, above all, a mean to check whether the implementation of SASA fits the
computational model and its semantics.

Performances. The results, given in Table 1, have been obtained on an Intel(R)
Xeon(R) Gold 6 138 CPU at 2.00GHz with 50GB of RAM. We are interested in com-
paring the performances of the simulator on the above algorithms, according to different
topologies. Note that every algorithm assumes an arbitrary topology, except DTR which
requires a ring network. Hence we perform measurements on every algorithm, except
DTR. We have ran simulations on several kinds of topologies: two square grids, noted
grid.dot and biggrid.dot, of 100 nodes (180 links) and 10 000 nodes (19 800
links), respectively; as well as two random graphs, noted ER.dot and bigER.dot,
built using the Erdös-Rényi model [10] with 256 nodes (9 811 links, average degree



10

76) and 2 000 nodes (600 253 links, average degree 600), respectively. Every simula-
tion, launched automatically, lasts up to 10 000 steps, except for the two big graphs
(biggrid.dot and bigER.dot). For these latter, we have only performed 10 steps.
For fair evaluation, we provide the execution time elapsed per step (Time/Step). Note
that the DFS algorithm has been implemented using two different data structures to en-
code the local states, namely lists and arrays. This leads to different performances; see
DFS-l for list implementation and DFS-a for array implementation.

grid.dot ER.dot biggrid.dot bigER.dot
Time/Step Memory Time/Step Memory Time/Step Memory Time/Step Memory

BFS 0.6 ms 10 MB 12 ms 22 MB 2 s 59 MB 2 s 922 MB
DFS-l 0.8 ms 11 MB 66 ms 31 MB 3 s 67 MB 14 s 953 MB
DFS-a 0.6 ms 12 MB 70 ms 112 MB 8 s 7464 MB 64 s 30808 MB
COL 0 ms 10 MB 12 ms 21 MB 18 s 59 MB 7 s 941 MB
SYN 0.4 ms 11 MB 12 ms 31 MB 826 s 898 MB 12 s 1019 MB
ASY 0.1 ms 10 MB 5 ms 31 MB 0 s 67 MB 2 s 953 MB

Table 1. Performance evaluation of SASA on the benchmark algorithms. Time elapsing is mea-
sured in user+system time in seconds or milliseconds, and has been divided by the number of
simulation steps. Memory consumption is given in MegaBytes, and has been obtained using the
“Maximum resident set size” given by the GNU time utility.

The results in Table 1 show that SASA can handle dense networks of huge size.
Hence, it allows to measure the evolution of time complexity of algorithms using a
wide size variety of networks. Note that every simulation has been performed without
data file (.rif, see Figure 2) generation. Indeed, for large networks, this would pro-
duce huge files and the simulator would use most of its time writing the data file. For
example, a 10 000 steps simulation of DFS-a on bigER.dot generates 2GB of data
and takes several days (instead of 15 minutes). Indeed, 100 millions values are gener-
ated at each step. For such examples, being able to generate inputs and check oracles
on the fly is a real advantage.

5 Conclusion and Future Work

This article presents an open-source SimulAtor of Self-stabilizing Algorithms, called
SASA. Its programming interface is simple, yet rich enough to allow a direct encoding
of any distributed algorithm written in the atomic-state model, the most commonly used
model in the self-stabilizing area.

In order to limit the engineering effort, SASA relies on existing tools such as, the
OCAML programming environment to define the algorithms, DOT to define the net-
works, and the Synchrone Reactive Toolbox [19] to carry out formal testing and inter-
active simulations.

In the spirit of TLA+ [20], an interesting future work consists in connecting SASA
to tools enabling formal verification of self-stabilizing algorithms. By connecting SASA
to model-checkers [5,22], the expected properties specified as LUSTRE oracles could be



11

verified on some particular networks. This would imply to provide a LUSTRE version
of the OCAML API to encode algorithms.

Furthermore, SASA could be connected to the PADEC framework [1], which pro-
vides libraries to develop mechanically checked proofs of self-stabilizing algorithms
using the Coq proof assistant [4]. Since Coq is able to perform automatic OCAML pro-
gram extraction, we should be able to simulate the certified algorithms using the same
source. During the certification process, it could be useful to perform simulations in
order to guide the formalization into Coq theorems, or find flaws (e.g., into technical
lemmas) early in the proof elaboration.

References

1. Karine Altisen, Pierre Corbineau, and Stéphane Devismes. A framework for certified self-
stabilization. Logical Methods in Computer Science, 13(4), 2017.

2. Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Dis-
tributed Self-Stabilizing Algorithms, volume 8 of Synthesis Lectures on Distributed Comput-
ing Theory. Morgan & Claypool Publishers, 2019.

3. Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks in step.
Parallel Processing Letters, 1:11–18, 1991.

4. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

5. Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. The kind 2 model
checker. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,
pages 510–517, Cham, 2016. Springer International Publishing.

6. Zeev Collin and Shlomi Dolev. Self-stabilizing depth-first search. Inf. Process. Lett.,
49(6):297–301, 1994.

7. Jean-Michel Couvreur, Nissim Francez, and Mohamed G. Gouda. Asynchronous unison
(extended abstract). In Proceedings of the 12th International Conference on Distributed
Computing Systems, pages 486–493, 1992.

8. Edsger W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Communica-
tions of the ACM, 17(11):643–644, 1974.

9. Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
10. Paul Erdös and Alfred Rényi. On random graphs I. Publicationes Mathematicae Debrecen,

6:290, 1959.
11. Mitchell Flatebo and Ajoy Kumar Datta. Simulation of self-stabilizing algorithms in dis-

tributed systems. In Proceedings of the 25th Annual Simulation Symposium, pages 32–41.
IEEE Computer Society, 1992.

12. Emden R. Gansner and Stephen C. North. An open graph visualization system and its appli-
cations to software engineering. Softw. Pract. Exper., 30(11):1203–1233, 2000.

13. Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloration and arbitrary
graphs. In Franck Butelle, editor, Procedings of the 4th International Conference on Princi-
ples of Distributed Systems (OPODIS), Studia Informatica Universalis, pages 55–70, 2000.

14. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow program-
ming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

15. Oded Har-Tal. A simulator for self-stabilizing distributed algorithms. https://www.cs.
bgu.ac.il/~projects/projects/odedha/html/, 2000. Distributed Computing
Group at ETH Zurich.

https://www.cs.bgu.ac.il/~projects/projects/odedha/html/
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/


12

16. Erwan Jahier. Verimag Tools Tutorials: Tutorials related to SASA. https://verimag.
gricad-pages.univ-grenoble-alpes.fr/vtt/tags/sasa/.

17. Erwan Jahier. RDBG: a Reactive Programs Extensible Debugger. In International Workshop
on Software and Compilers for Embedded Systems, 2016.

18. Erwan Jahier, Nicolas Halbwachs, and Pascal Raymond. Engineering functional require-
ments of reactive systems using synchronous languages. In International Symposium on
Industrial Embedded Systems, 2013.

19. Erwan Jahier and Pascal Raymond. The synchrone reactive tool box. http://
www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox.

20. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA, 2002.

21. Nils Müllner, Abhishek Dhama, and Oliver E. Theel. Derivation of fault tolerance measures
of self-stabilizing algorithms by simulation. In Proceedings of the 41st Annual Simulation
Symposium, pages 183–192. IEEE Computer Society, 2008.

22. Chritophe Ratel, Nicolas, and Pascal Raymond. Programming and verifying critical systems
by means of the synchronous data-flow programming language Lustre. In ACM-SIGSOFT’91
Conference on Software for Critical Systems, New Orleans, December 1991.

23. Pascal Raymond, Yvan Roux, and Erwan Jahier. Lutin: a language for specifying and exe-
cuting reactive scenarios. EURASIP Journal on Embedded Systems, 2008.

24. Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science
Applications, Second Edition. Wiley, 2002.

A Artifact

We have set up a zenodo entry that contains the necessary materials to reproduce the
results given in this article: https://doi.org/10.5281/zenodo.3753012.
This entry contains:

– a zip file containing an artifact based on the (public) TAP 2020 Virtual Machine
(https://doi.org/10.5281/zenodo.3751283). It is the artefact that
has been validated by the TAP 2020 evaluation committee.

– a zip file made out of a public git repository containing the same set of scripts; the
differences are that it is much smaller, and that the top-level script uses docker to
replay the experiments. The entry also contains a link to this git repository.

– a zip file containing the raw data produced by the experiment scripts via a Gitlab
CI pipeline of the git repository.

In more details, the artefact contains instructions to install the necessary tools, to
replay the interactive session described in Section 2 of the present paper, and to au-
tomatically generate the data contained in Table 1 of Section 4. The objective of this
artifact is only to let one reproduce the results. If you want to learn more about the
toolset, we advice the reader to look at the documentation and tutorials online [16].

https://verimag.gricad-pages.univ-grenoble-alpes.fr/vtt/tags/sasa/
https://verimag.gricad-pages.univ-grenoble-alpes.fr/vtt/tags/sasa/
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/reactive-toolbox
https://doi.org/10.5281/zenodo.3753012
https://doi.org/10.5281/zenodo.3751283

	sasa: a SimulAtor of Self-stabilizing Algorithms 

