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The increasing access to 3d digital images of porous media provides an ideal avenue for the determination
of their transport properties, by solving the governing equations in their actual microscale geometry and eval-
uating the tensor coefficient that relates the mean flux and driving gradient. However, the first and puzzling
question along the way is the choice of the conditions to be imposed for this resolution at the boundaries of
the sample. This methodological issue is explored here with the purpose of quantifying the influence of the
boundary conditions (BC) in relation with the parameters of the system (porosity, characteristic length scale of
the microstructure, ratio of the phase conductivities), assessing the level of confidence associated with the pre-
dictions, devising criteria to anticipate the risk of serious artifacts, and if possible proposing ways to limit them.
Although the terminology of thermal transfer is used, the developments apply to the upscaling of any transport
property governed by a diffusion equation, including thermal or electrical conduction, mass diffusion or Darcy
flow. Quantitative indicators are introduced for a rigorous individual or comparative assessment of conductivity
tensors, and they are used in the analysis of the results of extensive calculations based on four tomographic
images of various kinds of porous materials, with a broad range of conductivity contrasts, and various kinds of
BC’s. Ultimately, practical criteria are proposed for the a priori and a posteriori detection of at-risk situations,
and a self-diagnosing protocol is proposed to screen out the influence of the BC’s, when this is possible.
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I. INTRODUCTION

The present study was originally motivated by a
practical problem, during the investigation of the ther-
mal degradation of polymer-based composite materials
in a fire safety context [29]. Since thermal conduc-
tivity is influential in the pyrolysis process and diffi-
cult to measure in degradated materials, it was decided
to determine it on the basis of tomographic images at
successive stages of the degradation. Direct solution
of the Laplace equation in the exhaustively known mi-
crostructure is the natural avenue. But unsurprisingly,
it was observed that the results can be very sensitive
to the kind of boundary conditions (BC’s) applied in
the calculations. This is a well-known problem, com-
monly encountered in such situations. Therefore, it
was thought of interest to investigate it in some details,
in the hope to provide guidelines and criteria applicable
in a wider context than our specific situation.

Since the earliest days of numerical upscaling based
on tomographic digital images [30], various procedures
based on different kinds of boundary conditions have
been used and many examples taken from the litera-
ture are cited later in the text. Some of them such
as [10, 32] implemented two or more procedures and
briefly compare their results. The following review fo-
cuses on contributions which present more systematic
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comparisons and/or address theoretical aspects of the
issue. Note that a large part of the cited literature ac-
tually adresses the upscaling of Darcy flow in geolog-
ical media, from a mesoscale permeability field to a
macroscale permeability, rather than thermal conduc-
tivity, but the two problems are mathematically equiv-
alent. Although a heat transfer terminology is used, the
word ”conductivity” can be understood throughout this
paper as thermal, electric or hydraulic, i.e., permeabil-
ity with temperature T replaced by pressure P, or mass
diffusivity (see Section II C).

The general review [28] of theoretical aspects of
the upscaling techniques for Darcy flow in heterogene-
neous media surweys various protocols and stresses the
sensitivity of the determined block permeability to the
BC’s. Darcy flow upscaling procedures are also exten-
sively reviewed in [11], including the aspects associ-
ated with BC’s and post-treatments. Periodicity, per-
meameter and immersion conditions (see Section II E),
as well as others involving the introduction of border
regions (see below and Section II H) are surveyed, and
their relative merits and shortcomings are discussed.
More recently, various boundary conditions have been
tested in [4] for the evaluation of the electrical conduc-
tivity of rock samples from tomographic images. It was
stressed again that the choice of boundary conditions is
important (with results differing by factors up to 3/2),
but no conclusion or advice was put forward.

In spite of their opposite denominations, the over-
sampling and undersampling approaches proceed from
the same idea in the search of an intrinsic value of an
effective conductivity. In the undersampling method,
the sampling domain is reduced by excluding from the
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measurements a peripheral layer so that boundary ef-
fects are minimized. It is applied in [20], but without
quantification of the difference it makes or investiga-
tion of the requirements for the removed layer thick-
ness. The procedure described in Section II H proceeds
along these lines. The oversampling approach follows
the opposite way by using an enlarged sampling block
so that the conductivity measured in the domain of in-
terest is not “polluted” by the boundary effects con-
fined in the peripheral region and becomes indepen-
dent of the imposed boundary conditions. The term
”oversampling” is due to [35] but the method was in-
troduced earlier [13] and used under different names by
others, such as [33]. It requires a knowledge of what
surrounds the investigated domain, which can be avail-
able in the situations addressed in [13, 33, 35] where
the aim is the coarsening of a detailed large scale per-
meability field, but not when operating with a tomo-
graphic image. However, the oversampling approach
will be considered in a forthcoming study which ex-
tends the present work by making use of synthetic ma-
terials.

For completeness, let us mention that similar issues
in the upscaling of the microscale Stokes equations
for flows in porous media to obtain a macroscopic
permeability tensor have also been treated. The
problem is mathematically different, but sensitivity to
the prescibed boundary conditions is also important,
and even more critically that in a conduction process.
Indeed, the solid phase is strictly impervious and
the flow is confined in the pores, which corresponds
to the limiting and most sensitive case of infinite
conductivity contrasts in these situations explored in
the present work. The classical BC’s are of the same
type as those for conduction problems, combining pe-
riodicity, Dirichlet (pressure) and Neumann (no flow)
conditions. Several of them have been implemented in
[25], yielding significantly different predictions, and
the undersampling procedure was also used for the
identification of a region that is not sensibly affected
by the boundary conditions. Systematic investigations
have also been conducted in [14], where many kinds
of BC’s have been applied and compare, including
an effective medium approach similar to [E+P] in the
following (see Section II E).

Thus, it appears that a corpus of knowledge exists in
the literature. Unfortunately, it consists in many com-
parisons of approaches in particular cases, and whereas
the influence of the choice of a procedure and BC’s
is always pointed out, the differences between predic-
tions is often presented in an illustrative and/or quali-
tative way. Even the most systematic studies provide
general observations and mention some pitfalls but do
not come up with practical recommendations. Quoting
[11], it is not clear from previous work which of these
approaches is the more accurate . It is likely that the
method of choice will be case dependent. Thus, some-
one in search for practical advices for an application is
at a loss to find explicit guidance.

Of course, at least in the case of tomographic sam-
ple images, there is no ”right answer”, since what lies
beyond the sample boundaries is unknown. If two
methods yield different results, it generally cannot be
claimed that one of them is ”right”. However, it can
sometimes be detected that one (or both) of them is
wrong, with a quantitative estimates of just how wrong
it has to be. Therefore, our work was conducted with
several objectives in mind :

- contribute to the knowledge base by a systematic
examination of a variety of materials, with quan-
tification of the influence of the boundary condi-
tions, in relation with the parameters of the sys-
tem (volume fractions, characteristic length scale
of the microstructure, contrast of the local con-
ductivities);

- provide quantitative tools for the assessment
of the expected level of confidence associated
with predictions, and if possible, propose self-
diagnosing procedures;

- identify criteria (possibly just rules of thumb),
a priori or a posteriori, for the detection of the
risk-situations where serious artifacts can be ex-
pected and particular caution is required.

Fullfilling this involves extensive numerical calcula-
tions, but also the definition of quantitative indicators
for a rigorous analysis of the results. The samples
treated in the present work are tomographic images
of several kinds of real materials. Phenomenological
knowledge can be gained from this collection of par-
ticular cases, quantitative assessments are conducted
for each of them, and general trends are identified.
In order to explore systematically a wider range of
morphological parameters, synthetic, numerically
generated media are used in an ungoing extension
which will be the object of another forthcoming paper.

The paper is organised as follows. Section II starts
with a description of the context and of the investigated
samples. The mathematical problem to be solved is
then stated, and a brief description of the numerical
solver is provided. The set of BC’s considered in the
study is introduced and some of their expected artefacts
are commented. The procedure to obtain the full effec-
tive conductivity tensor is described, from the whole
sample or from measurements in inner sub-domains
(undersampling). Finally, some rigorous quantification
tools for the comparative analysis of the results are in-
troduced. The results are presented in Sections III-V,
starting with global indicators such as the mean con-
ductivities, the eigenvalues of the conductivity tensors
and the distances between tensors resulting from dif-
ferent BC’s. Then, qualitative comparisons in Section
of the local fields are presented in IV, which provide a
phenomenological picture of the effects of the bound-
ary conditions, and a quantitative analysis of their dif-
ferences is conducted. Finally, the undersampling ap-
proach is applied in Section V. A discussion in Section
VI concludes the paper.
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II. CONTEXT AND METHODS

A. Context

As already mentioned, our initial motivation
stemmed from a practical problem, for the determina-
tion on the basis of tomographic images of the ther-
mal conductivity of thermally degraded polymer-based
composite materials. The thermal conductivity of the
constituents ranges from λg=0.02 to 0.2 W/m.K for the
gas phase, depending on temperature and on the nature
of the gas, from λs=O(10−1) to O(1) W/m.K for the
polymer, and up to 20∼ 30 W/m.K for alumina parti-
cles which are the main remaining solid constituent in
the final stages of decomposition. Thus, the conduc-
tivity contrast can range from O(1) to O(103), with the
solid generally more conducting than the gas phase.

Nevertheless, a much broader range was explored,
with 10−4 ≤ λs/λg ≤ 104. Its upper part is the usual
situation in thermal conduction. However, the opposite
case is worth considering since it is representative of
other diffusive transports, governed by mathematically
equivalent problems, such as electrical conduction or
solute diffusion. Then, the interstitial fluid is much
more conducting than the solid phase, which is nearly
(if microporous) or totally impervious. Furthermore,
the two phases are referred to as ”pore” and ”solid”,
but this bears no particular meaning since the develop-
ments apply for any mixture of two components with
different conductivities. In particular, when consider-
ing Darcy flow in heterogenous media, what is called
here ”gas” and ”solid” can correspond to regions with
different and very contrasted permeabilities.

In the following, various kinds of media are consid-
ered, for a range of λs/λg, and the predictions of calcu-
lations with various kinds of boundary conditions are
compared. Only binary media are considered, contain-
ing two phases with constant, isotropic conductivities.
Media with continuous variations of the local conduc-
tivity could be treated in the same way. Some of the ef-
fects would probably be milder, but the general trends
are not expected to differ and the methods and quan-
tification tools presented in the following would retain
their interest.

B. Investigated materials

The main characteristics of the investigated tomo-
graphic images are summarized in Table I. In all cases,
the geometry is described by a phase function Z, de-
fined in a [Lx×Ly×Lz] array of cubic p3

x voxels, equal
to 1 in the pores and to 0 in the solid. Two of its sta-
tistical moments are of a foremost interest. The first
one is the porosity ε which is the volume average 〈Z〉.
For convenience, we sometimes speak in terms of the
phase volume fractions εg = ε and εs = 1− ε . The
second one is the spatial correlation function RZ(u) =
Covar(Z(x), Z(x + u)) / Var(Z). The integral corre-
lation length lc =

∫
∞

0 RZ(u)du (per direction, if RZ is

anisotropic) provides a length scale associated with the
microstructure. When RZ(u) happens to decay expo-
nentially, this lc is also equal to the decay length.

Two kinds of porous media have been considered,
starting with the thermally degraded polymer-based
composite which initially motivated the present study,
at two successive stages BP and WP of its degradation
(P for polymer, and B or W for black or white accord-
ing to the sample color in each state). The samples
have been prepared at C2MA (IMT Mines Alès) [12]
and imaged at LEM3 (Lorraine University). BP has a
roughly cylindrical shape, with its axis along the z di-
rection. Cross-sections at roughly mid-position normal
to the x and z-axis are shown in Fig. 1a,b. The material
contains bubbles of various sizes, and it is obviously
anisotropic. The large bubbles are markedly oblate,
with their largest section roughly parallel to the (x,y)
plane. For the calculations, a parallelepipedic block of
[381×401×267] voxels was extracted. Bubbles with a
broad range of sizes are also visible in the mid-x and z
sections for the later stage WP in Fig. 1c,d. Due to the
irregular sample shape, the computational domain was
restricted to a [85×141×83] block.

Then, two rock samples already examined in ear-
lier works have been revisited. The first one is a
Fontainebleau sandstone (FS), with porosity 0.0692,
fully characterized in [31]. The 3d image contains
[512]3 voxels (Fig.1e). The correlation function is
isotropic and exponentially dacaying, with a decay
length lc = 4px. Thus, the sample size can be expressed
as [128lc]3 . The second one is a Bentheim sandstone
(BS), with porosity 0.232, studied in [32]. Again, the
correlation function is isotropic and exponential, with
a decay length lc =6.5px. The 3d image contains [500]3

voxels (Fig.1f), which can be expressed as [77lc]3.

C. Local and upscaled formulations

Stationary thermal conduction in a heterogeneous
medium with position-dependent thermal conductivity
λ is governed on the local scale by Fourier’s law and a
conservation equation

q =−λ∇T , ∇ ·q = 0 (1)

where q is the heat flux and T is the temperature. How-
ever, if the medium statististical properties are spatially
invariant, it can be regarded on a larger scale as an
equivalent homogeneous material with effective prop-
erties, and in particular with an effective conductivity
ΛΛΛ which relates the locally averaged flux and gradient

〈q〉=−ΛΛΛ · 〈∇T 〉 , ∇ · 〈q〉= 0 (2)

Even though the local conductivity is assumed to be
isotropic, quantified by a scalar coefficient λ , the ef-
fective coefficient ΛΛΛ is in general tensorial, since the
medium structure can be anisotropic. It may be that
the medium is not strictly statistically homogeneous,
but that its characteristics are slowly varying. Then,
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Sample px Block size ε Physical length scale
(µm) [Lx×Ly×Lz]

BP 9.8 381×401×267 0.280 Integral lengths lcx ≈ 22px, lcy ≈ 22px, lcz ≈ 5px

WP 9.8 85×141×83 0.599 Integral lengths lcx ≈ 3.6px, lcy ≈ 11px, lcz ≈ 9px

FS 6.3 [512]3 ≈ [128 lc]3 0.0692 Correlation exponential decay length, lc= 4px

BS 6.0 [500]3 ≈ [ 77 lc]3 0.232 Correlation exponential decay length, lc= 6.5px

TABLE I. Main sample characteristics : voxel size px, computational domain size [Lx×Ly×Lz] in voxels, porosity ε , and a
typical scale for their microstructure.

(a) (b) (c) (d)

(e) (f)

FIG. 1. Mid-sections through sample BP, normal to the x (a) and z (b) axes. Mid-section through sample WP, normal to the x
(c) and z (d) axes. Samples FS (e) and BS (f). The green frames in (a-d) show the computational domain cut from the whole
image.

(2) still applies with a position-dependent ΛΛΛ if the
macroscale of the regional variations is much larger
than the microscale of the λ fluctuations. Then, an in-
termediate scale (the so-called Representative Elemen-
tary Volume) smaller than the former and larger than
the latter can exist, upon which volume averages of the
flux and gradient can be taken. Note that the REV is
often defined only in geometrical terms, as the mini-
mal averaging volume required to damp porosity fluc-
tuations, whereas we are talking here of the averaging
volume necessary for a robust estimation of a transport

coefficient. Very often, this is a more stringent crite-
rion, for instance close to a percolation threshold when
the conductivity contrast is strong. But as illustrated in
Section V, it can also be a milder criterion in the case of
a moderate conductivity contrast or if the most present
phase is also the most conducting.

The interest of the upscaling from (1) to (2) is of
course in the tremendeously reduced computational ef-
fort required for simulations, since much coarser vol-
ume elements with effective properties can be used
when solving (2). The theoretical background for the
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homogenization process is classical and not detailed
here (see e.g., [2]). Let us just mention that ΛΛΛ is a sym-
metric, positive tensor.

The following developments apply to many other
processes, such as mass diffusion of electrical conduc-
tion, which give rise to similar problems and which can
be handled in the same way. Furthermore, even though
creeping fluid flow through a porous medium is gov-
erned locally by Stokes equations, a first upscaling step
can reduce the flow problem into a homogenized form
similar to (1) involving Darcy’s law,

v =− 1
µ

k∇p , ∇ ·v = 0 (3)

where v is the seepage velocity, p is the pressure, µ

is the fluid viscosity and k is a permeability coeffi-
cient. This formulation applies on a scale much larger
than the medium microstructure, but the medium can
be heretogeneous on a still larger scale which makes
k position-dependent. In this case, a second upscaling
can be performed to obtain a counterpart of (2) involv-
ing an effective permeability tensor K.

D. Solution of the local problem

The thermal problem governed by (1) is solved in a
domain Ω subject to various conditions on its bound-
ary, which are detailed in the next Section II E and
which all consist in imposing temperatures or temper-
ature jumps on ∂Ω. The gas phase is given a unit
conductivity λg=1 and the solid conductivity is set in
a range λs= 10−4 to 104.

The solver is a distant descendant of that presented
in [17], where the formulation is described in full de-
tails. Equations (1) are discretized in a finite volume
formulation, according to the so-called box integration
method. The temperature is determined at the vertices
of the cubic volume elements. The resulting set of lin-
ear equations A ·T = B is solved by a conjugate gradi-
ent method. Iterations are stopped when the global rel-
ative residue ‖ A ·T−B ‖ becomes smaller than 10−6

‖ B ‖. Note that this a much more stringent stopping
criterion than for routine applications, where 10−4 is
regarded as sufficient. This much finer (and numeri-
cally much costlier) accuracy is required for a reliable
comparison of the solutions for different BC’s. The
10−6 criterion for the global residue translates into a
10−4 relative accuracy for the components of the pre-
dicted mean flux, and to at most 10−3 for pointwise
temperature, relative to the overall temperature drop.

The volume average 〈q〉 of the flux mean in Ω is
actually evaluated by the surface integral

〈q〉= 1
Ω

∫
∂Ω

q(x) ·nx ds (4)

where n is the unit outwards vector normal to ∂Ω. Note
that the volume average of the gradient 〈∇T 〉 can also

be obtained by the a surface integral

〈∇T 〉= 1
Ω

∫
∂Ω

T nds (5)

E. Investigated boundary conditions

When faced with a finite sample Ω without knowl-
edge of what lies beyond its boundaries ∂Ω, a natural
way to set the overall boundary contitions for the so-
lution of problem (1) is to try and mimic real or vir-
tual experimental settings. Permeameter conditions,
nammed after a common apparatus for the measure-
ment of permeability, correspond to the situation where
the sample is placed between two isopotential cham-
bers (Dirichlet pressure conditions, or temperature in
the present terms) and enclosed transversally in an im-
pervious jacket. One may imagine a virtual experiment
where the single jacketed sample is replaced by an in-
finite layer of juxtaposed replicas exposed to the same
upstream and downstream Dirichlet conditions. This
correspond to [D/P] as defined below. One may also
imagine that the entire space is covered by such iden-
tical replicas, which gives rise to [P/P] below. One
may consider that the sample is encased in an homo-
geneous material with the same effective conductivity
(to be determined) and solve the problem in an en-
larged domain with periodicity conditions, which cor-
responds to [E+P]. Finally one may assume that the
far-field conditions of [E+P] apply down to ∂Ω and
impose there Dirichlet conditions corresponding to a
prescribed mean gradient. These so-called ”Immer-
sion” conditions are denoted [D/D] below. In the labels
[X/Y], X and Y stand for the axial and transverse con-
ditions, respectively, with P for periodicity and D for
Dirichlet. [E+P] stands for ”encased” with full period-
icity.

In the present investigations, the following four
kinds of conditions have been used for the solution of
problem (1), imposed on the boundaries of the compu-
tational domain ∂Ω or ∂Ω+.

[P/P] Periodicity of fluxes and temperature gradient is
applied, regardless of whether the medium struc-
ture is periodic or not. If x1 and x2 are homol-
ogous points on opposite faces of the domain
boundaries

q2 = q1 , T2−T1 = G · (x2−x1) (6)

where G is a prescribed macroscopic tempera-
ture gradient.

[D/P] Dirichlet conditions are imposed on inlet/outlet
faces, while periodicity is kept in the transerve
directions. For instance, for a calculation along
the x direction,
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T (x = 0) = GLx T (x = Lx) = 0 (7a)

q2 = q1 , T2 = T1 at homologous points (x1, x2) on opposite transverse faces (7b)

[D/D] Immersion conditions are imposed, whereby
temperature is prescribed on the entire boundary
∂Ω of the domain, with

T (x) = G ·x , on ∂Ω (8)

within some arbitrary additive constant. In
practice, with G along one of the axes of coor-
dinates, this results in Dirichlet conditions (7a)
on inlet/outlet faces and linear profiles along the
transverse faces.

[E+P] Embedding the sample Ω in a sheath of homo-
geneous material with appropriate properties is
an attempt to screen out most of the influence of
the outer BC’s. Thus, the problem is solved in a
wider domain Ω+ ⊃ Ω, with periodicity condi-
tions (6) applied on ∂Ω+. Integrations (4,5) to
obtain the mean flux and gradient are restricted
to Ω. The embedding medium is given an con-
ductivity ΛΛΛE , possibly anisotropic, equal to that
obtained in Ω. Since the latter is not known be-
forehand, this is an iterative process. A reason-
able guess for ΛΛΛE is used first, which is updated
after successive resolutions, until convergence.
The layer added on the six faces of the samples
was 16 voxels thick. It has been checked that this
is sufficient to make the results nearly indepen-
dent of the layer thickness, both for the global
parameters and for the local deviations in Ω, by
a systematic comparison with data obtained with
a thickness of 8 voxels.

Examples of applications can be found in [4, 10, 11,
18, 30] for [P/P], in [3, 7, 32] for [D/P] and in
[6, 11, 14, 21, 26] for [D/D]. Although the idea of
a self-consistent scheme is very common in theoreti-
cal models for the conductivity of composites such as
those of Bruggeman [8] or Landauer [19], it seems that
its numerical counterpart [E+P] has not been imple-
mented in earlier works for the upscaling of conduc-
tion properties (but it is in [14] for the upscaling of the
Stokes flow equations).

Other kinds of BC’s are found in the literature which
are not considered here. As already mentioned, the
so-called permeameter conditions are used quite often
[3, 5, 9–11, 16, 20, 22–24, 31] . Their no-flux condition
through the transverse boundaries obviously constrains
the flux directionally and cannot provide reliable esti-
mates of the transverse components of 〈q〉. Thus, this
approach is not appropriate for the determination of the
full tensors ΛΛΛ or K in anisotropic media, and it was
not considered for this reason. In other cases, period-
icity conditions [P/P] are applied with a sample made

periodic by juxtaposing mirrored images of Ω [4, 14].
Again, this introduces directional constraints and the
eigen-directions of ΛΛΛ or K can only be found aligned
with the artificial planes of symmetry. Various ad-hoc
methods can be found where [P/P] is applied to Ω sup-
plemented with upstream and/or downstream layers of
a homogeneous material, in order ensure the connec-
tion of the conductive paths on the inlet and outlet sides
of Ω [3, 30]. Finally, a counterpart of [D/D] was con-
sidered in [26] where the normal flux instead of the
temperature is prescribed on the boundaries,

q(x) ·n = B ·n , on ∂Ω (9)

where B is a prescribed vector, which (4) shows to cor-
respond to 〈q〉.

F. Artefacts associated with the boundary conditions

With the exception of [P/P] applied to periodic me-
dia, which generally means model media, all the con-
ditions listed in Sec.II E present some undesirable fea-
tures. Consider for illustration purposes the most se-
vere situations where only the pore phase is conducting
(λs=0). The same effects, though milder, are expected
for smaller contrasts.

Periodicity [P/P] imposes that the fluxes on oppo-
site faces are equal, but since the phase arrangements
in these faces do not match in aperiodic media, the flux
has to cross a plane with a much reduced open fraction,
equal to ε2 in the average (Fig. 2a). This introduces a
”skin” resistance, and the overall conductivity is un-
derestimated. With Dirichlet conditions [D/P], flux can
enter any pore showing on the inlet face of Ω, although
some of them are actually dead-ends and would re-
ceive no flux from the actual upstream material (Fig.
2b). The overall conductivity is overestimated. With
the pressure condition (8) of [D/D], flux can leave or
enter any pore showing on a lateral face of Ω, as if
some continuous conducting material lay beyond ∂Ω.
This creates long-range connections all along the lat-
eral faces (Fig. 2c), which can behave as an appar-
ent lateral conducting skin. The overall conductivity is
overestimated.

Note that the artefacts associated with [P/P] and
[D/P] are local features. They affect the transfers
through a surface which the flux has to cross (if ⊥
〈∇T 〉) or might cross (if ‖ 〈∇T 〉). Conversely, the arte-
fact introduced by [D/D] has long range effects gener-
ally with stronger impact on the predicted conductiv-
ity, as indeed observed in the following. In a carica-
tured situation, it would yield non-zero flux and effec-
tive conductivity if Ω were entirely filled with insulat-
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ing material except for small unconnected conducting
parts located at its corners.

G. Determination of a full tensor ΛΛΛ

Equations (1) are solved subject to one of the BC’s
listed in Sec.II G, say [BC], with the vector G set suc-
cessively along the x-, y- and z-directions. In each case,
the mean flux 〈qqq〉ξ and gradient 〈∇T 〉ξ (ξ =x, y or z)
are evaluated by means of (4,5). Note that 〈∇T 〉 in Ω

is equal to G in the cases of [P/P], [D/P] and [D/D],
as shown by injecting (6), (7) or (8) in (5). However,
when G is applied on the boundaries of the enlarged
domain Ω+ for conditions [E+P], the mean gradient in
Ω can be different and has to be calculated from the
temperature field by application of (5). Then, the fol-
lowing set of 9 linear equations is solved to determined
the 9 components of ΛΛΛ[BC]

〈q〉ξ =−ΛΛΛ[BC] · 〈∇T 〉ξ , ξ =x, y and z (10)

With conditions [P/P], [D/D] and [E+P], the solutions
obtained with different vectors G can be superposed, in
view of the linearity of the governing equations. There-
fore, the solution for any G can be obtained by a lin-
ear combination of the solutions with G set along the
three axes, and ΛΛΛ[BC] determined by (10) can be used
to predict the mean flux resulting from any mean gra-
dient consistent with the specific conditions [BC]. This
does not mean of course that identical mean fluxes re-
sult from identical mean gradients if the T -fields are
constrained by different conditions (6) or (8), for in-
stance.

Conversely, the solutions obtained with [D/P] ap-
plied along x, y and z cannot be superposed. Thus, the
derivation of ΛΛΛ[D/P] is only formal, and (10) applies
only for G set along x, y or z. Anyway, it is difficult
to conceive a numerical experiment where conditions
of the type [D/P] would be imposed along a direction
oblique relative to a parallelepipedic sample. Note that
the same observations apply as well to the permeame-
ter conditions where transverse periodicity is replaced
by a no-flux condition. However, this does not preclude
ΛΛΛ[D/P] from bearing information about the sample con-
ductive properties.

The effective tensor ΛΛΛ should be symmetric, and
ΛΛΛ[P/P] obtained by (10) with periodicity conditions
[P/P] is indeed symmetric. The demonstration relies
on a reciprocal theorem (see e.g., [2]). The same line
of reasoning shows that ΛΛΛ[D/D] is also symmetric. In-
terestingly, this also applies to the flux immersion (9)
[26]. However, ΛΛΛ[D/P] and ΛΛΛ[E+P] are not necessarily
symmetric, even though periodicity conditions are ap-
plied on ∂Ω+ in the case of [E+P]. Symmetry would
be ensured with [E+P] only if the averages used in (10)
were evaluated over ∂Ω+ instead of ∂Ω .

Asymmetric macroscopic tensors are defective, and
two techniques are widely used to put up with situa-
tions where the upscaling procedure yields an asym-
metric result. The simplest one is to make the tensor

symmetric by averaging it with its transpose,

ΛΛΛ =
(

ΛΛΛ[BC]+ΛΛΛ
t
[BC]

)
/2 (11)

Another approach is to supplement (10) with additional
equations stating the symmetry of ΛΛΛ[BC]. The sys-
tem becomes overdetermined, and it has to be solved
in some least-square sense. Generally, some residual
asymmetry remains which can be eliminated with (11)
[11]. Such expedients are necessary for the practical
use of ΛΛΛ in simulation models, but no such step was
taken in the present investigation. The purpose is not
to cure the asymmetry of ΛΛΛ[BC], but to quantify it and
explore the circumstances of its occurence.

H. Undersampling

The fundamental idea underlying the application of
upscaled models is the belief that an effective coeffi-
cient ΛΛΛ exists which relates the locally averaged flux
and gradient, regardless of the circumstances (i.e., far-
field conditions) which induce 〈∇T 〉 at the position
where (2) is applied. On this premise, it can be at-
tempted to determine this value of ΛΛΛ by focusing on
some inner subdomain Ωc in Ω. If the tensor ΛΛΛc ob-
tained by (10) with the mean fluxes and gradients given
by the integrals (4,5) applied to Ωc is found indepen-
dent of the conditions applied at ∂Ω, this ΛΛΛ fulfills
the aforementioned requirement for its use in upscaled
models. This methodology has been applied in [20] for
conduction processes, and in [25] for fluid flow.

In practice, we have applied this approach with sub-
domains Ωc(M) obtained by removing from Ω a pe-
ripheral layer with thickness M. The conductivity ten-
sor of Ωc obtained from the solution of (1) with condi-
tions [BC] at ∂Ω is denoted ΛΛΛ[BC],c(M).

Obviously, a thick enough margin (M not too small)
is required to screen out the influence of the outer con-
ditions. On the other hand, the subvolume Ωc has to
be sufficient (M not too large) to remain representative,
i.e., to prevent the occurence of large statistical fluc-
tuations. If the whole sample Ω is large enough, an
intermediate range for M can exist where both of these
criteria are fulfilled. This means that over this interval,
ΛΛΛ[BC],c(M) should be independent of [BC] (first crite-
rion) and of M (second criterion). This constant value
would be the effective tensor ΛΛΛ for the investigated ma-
terial.

Of course, the terms ”constant” and ”independent”
have to be understood within some practical tolerance,
and a quantitative indicator is required to measure the
difference between two tensors. Such an indicator is
defined in Sec.II I.

I. Notations and quantification tools

A few notations and definitions are introduced here,
which are used in the subsequent discussions. First, the
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(a) (b) (c) (d)

FIG. 2. Artefacts associated with the [P/P], [D/P] and [D/D]. Examples when only the white phase (pores) is conducting. The
mean flux is oriented from left to right in all cases. (a) With [P/P], the inlet and outlet faces have a reduced open fraction
(in green) due to geometrical mismatch. (b) With [D/P] and [D/D], flux enters all open parts of the inlet face, although some
are actually dead-ends (arrows; simil at the outlet). (c) At transverse boundaries, [P/P] and [D/P] can create links between
unconnected pores (arrow), or ignore links which should exist, whereas (d) [D/D] creates long-range connections between all
pores showing on a face.

mean of the diagonal terms of a tensor ΛΛΛ is denoted Λ

and an anisotropy index N is defined as the ratio of its
largest and smallest eigenvalues, ΛMax and ΛMin,

Λ =
1
3 ∑

i
Λii , N =

ΛMax

ΛMin
(12)

A distance is introduced to quantify the difference be-
tween two tensors, say ΛΛΛ1 and ΛΛΛ2, resulting for in-

stance from different upscaling protocols. In response
to a same unit gradient ggg, these tensors predict fluxes
qqqi = −ΛΛΛi · ggg. The squared norm of their deviation
‖ qqq2−qqq1 ‖2 is equal to gggt ·(ΛΛΛ2−ΛΛΛ1)

t ·(ΛΛΛ2−ΛΛΛ1) ·ggg. It
is maximum when ggg is aligned with the eigendirection
of (ΛΛΛ2−ΛΛΛ1)

t · (ΛΛΛ2−ΛΛΛ1) associated with its largest
eigenvalue. Therefore, we mreasure the difference of
ΛΛΛ1 and ΛΛΛ2 by the distance D and the normalized di-
mensionless quantity D ′ defined by

D2 (ΛΛΛ1,ΛΛΛ2) = largest eigenvalue of
[
(ΛΛΛ2−ΛΛΛ1)

t · (ΛΛΛ2−ΛΛΛ1)
]
, D ′ =

D[
Λ1 Λ2

]1/2 (13)

Thus, D ′ (ΛΛΛ1,ΛΛΛ2) is the maximal relative deviation
(combining magnitude and direction differences) of
the fluxes predicted by ΛΛΛ1 and ΛΛΛ2 when applied to
the same gradient. Note that the ΛΛΛi’s do not need
to be symmetric in the definition (13), and that D is
a distance in the mathematical sense, i.e., a symmet-
ric positive-definite function satisfying the triangle in-
equality. The distance D actually derives from the
matrix norm ‖ AAA ‖2 = spectral radius of AAAt · AAA, with

D (ΛΛΛ1,ΛΛΛ2) =‖ ΛΛΛ1 −ΛΛΛ2 ‖ . Although D is used in
other contexts to measure the difference between ma-
trices (to monitor the convergence of iterative numer-
ical schemes [27]) we are not aware of its use for the
comparison of tensorial transport coefficients in earlier
works. Finally, an additional quantity of interest is the
asymmetry index A and its normalized dimensionless
counterpart A ′ defined by

A 2 (ΛΛΛ) = ∑
1≤i< j≤3

[(Λi j−Λ ji)/2]2 , A ′ (ΛΛΛ) = A (ΛΛΛ)/Λ (14)

This indicator has an interesting relation with D ,
namely that if ΛΛΛ2 − ΛΛΛ1 is antisymmetric, then
D (ΛΛΛ1,ΛΛΛ2) = A (ΛΛΛ2−ΛΛΛ1). This implies that if a
tensor ΛΛΛ[BC] resulting from an upscaling procedure
is not symmetric, it differs from ΛΛΛ obtained by the
symmetrization technique (11) by A

(
ΛΛΛ[BC]

)
, and

by at least that much from any possible acceptable
(and therefore symmetric) conductivity tensor. Of
course, this is only a lower bound for the error. For
instance, if ΛΛΛ[BC] differs for all its components from
an actual spherical tensor ΛIII by independent random
gaussian errors with standard deviation σΛ, then

〈A ′ (ΛΛΛ[BC]

)
〉 ≈ 0.33σ and 〈D ′

(
ΛΛΛ[BC],ΛIII

)
〉 ≈ 1.6 σ ≈

4.9 〈A ′〉 (averages over 108 Monte Carlo realizations).

Finally, the arithmetic and harmonic volume aver-
ages of the local conductivities are denoted by 〈λ 〉 and
〈λ 〉H . They correspond to the fully general upper and
lower Wiener’s bounds [34]. In addition, Hashin &
Shtrikman’s upper and lower bounds [15] are denoted
by ΛU

HS and ΛL
HS. Both sets of bounds only depend

on the phase conductivities and volume fractions, but
the tighter Hashin & Shtrikman’s bounds apply only to
isotropic media.
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III. RESULTS FOR GLOBAL INDICATORS

We consider here some global indicators, resulting
from the solution of problem (1) subject to the bound-
ary condictions [P/P], [D/P], [D/D] and [E+P], with a
broad range of conductivity contrasts 10−4 ≤ λs/λg ≤
104.

The simplest indicator and the first considered here
is the mean conductivity Λ. However, since some of
the samples are anisotropic, the eigenvalues ΛMax and
ΛMin of ΛΛΛ are also addressed. They are plotted for the
polymer-based materials BP and WP in Figs.3 and 4,
as functions λs/λg. For an easier comparison, they are
normalized by the volume average 〈λ 〉. Note that the
ratio Λ/〈λ 〉 can be viewed as a tortuosity factor, since it
approaches one when most heat flow takes place along
straight streamlines in the most conducting phase. Sev-
eral general features stand out, whatever the BC’s.

(a) When the conductivity contrast is very large, one
expects that one of the phases ultimately plays a
negligible role, and that an infinite ratio or some
very large finite value makes vanishing differ-
ence. This is confirmed in all cases, with estab-
lished asymptotical values beyond 10±3, except
when the solid tends to become insulating in BP.
It has been checked that the gas space is perco-
lating, which implies that some non-zero asymp-
totic value exists when λs/λg →0, but conver-
gence is not reached in the investigated range.

(b) For comparison, Wiener’s lower bound 〈λ 〉H and
Hashin & Shtrikman’s bounds are also plotted
in Figs.3,4 (Wiener’s upper bound corresponds
to unity). Of course, all these bounds pro-
vide reasonable estimates for small contrasts, but
they grossly deviate from the numerical data for
λs/λg beyond 10±1. Note that values larger than
ΛU

HS (Fig.3a) or smaller than ΛL
HS (Fig.3c) exist.

This is not aberrant, since Hashin & Shtrikman’s
bounds apply to isotropic media and do not con-
strain ΛMax and ΛMin in anisotropic media.

(c) Sample BP is strongly anisotropic. The
anisotropy index N is of the order of 20 when
λs� λg and 2 when λs� λg. Sample WP is also
anisotropic but in a lesser respect, with N ∼
2 in both limit cases. This symmetry is due to
similar volume fractions of gas and solid in WP
(ε = 0.60), as opposed to their disproportion in
BP (ε = 0.28) .

(d) Solid is predominant in BP. Therefore, when
solid is the most conducting phase, tortuosity is
minimal and Λ is not much smaller than 〈λ 〉. It is
even very close to it in the most favorable direc-
tion with ΛMax/〈λ 〉 ≈0.95, and still nearly half
of it in the least favorable one. Conversely, ΛMax,
Λ and ΛMin are of the order of 〈λ 〉 divided by 10,
20 and 200, respectively, when gas is the most
conducting phase.

(e) Even though εg is larger than εs in WP, the
asymptote of the normalized conductivity is
smaller for λg � λs than that for λs � λg, for
both the mean, maximal and minimal values.
This points at a better connectivity of the solid
phase, despite its lesser fraction, which results
from the morphology: WP resemble gaseous,
poorly connected inclusions in a continuous,
well connected solid. This morphological fea-
ture also applies to BP and contributes, on top
of its smaller εg, to the strong disymmetry of the
curves in Fig.3.

Figure 5 for the rock samples FS and BS displays only
Λ because their anisotropy is small (N ∼ at most 1.2,
when λs� λg) and the plots of ΛMax and ΛMin are very
similar. In both cases, solid is predominant (εs=0.93
and 0.77), and Λ is of the order of 〈λ 〉 when it is
the most conducting phase. In the opposite case of
λg� λs, Λ is about 1/20 (FS) or 1/3 (BS) 〈λ 〉, which is
similar to BP and WP, even though their porosities are
much smaller. This is because the pores, which are the
intergranular space in a partially cemented sand bed,
are better connected than the inclusions in the degraded
polymers.

The volume fractions of each phase and the connec-
tivity issues due to the pore morphology mentioned in
(d,e) are expected to influence the impact of the BC’s
on the determination of ΛΛΛ. When the most conduct-
ing phase is predominant and well connected, artefacts
such as those illustrated in Fig.2(a,b) are expected to
be minimized. Conversely, strong effects are probable
when a poorly connected phase with low volume frac-
tion is the most conducting. The comparison of the data
in Figs.3-5 confirm these expectations. The relative de-
viations between the predictions from various BC’s are
small when λs � λg and very large when λg � λs in
BP (Fig.3). They are also quite significant in FS and
BS when λg � λs (Fig.5), and in both limit cases in
WP (Fig.4), and slightly more so when λg � λs. It
is also observed that as a rule the predictions of [P/P]
and [E+P] are in good agreement, that those of [D/P]
somewhat deviates from them, and that [D/D] can yield
very different and always larger results. This is a con-
sequence of the artefact discussed in Sec.II F and illus-
trated in Fig.2d. The apparent conducting skin along
the transverse boundaries provides an additional path
for the heat flux.

Of course, comparing the eigenvalues of ΛΛΛ is mean-
ingful only if the associated eigendirections are sim-
ilar. This has been checked, and whereas the eigendi-
rections of the tensors resulting from different BC’s are
not exactly identical, their deviations are small. For in-
stance, in the most severe case of BP with λs/λg=10−4

where very large discrepancies between the conductiv-
ity predictions for the various BC’s are observed in
Fig.3, the directions associated with ΛMin for [P/P],
[D/P] and [E+P] never deviate by more than 2◦, and
that for [D/D] is always within 3 to 4◦ from the others.
Similarly, in sample WP with λs/λg=10−4, the four di-
rections of ΛMin are within less than 3◦ from eachother.
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(a) (b) (c)

FIG. 3. Largest eigenvalue ΛMax (a), mean diagonal term Λ (b) and smallest eigenvalue ΛMin of ΛΛΛ, normalized by the volume
average 〈λ 〉, obtained with various BC’s in sample BP, as functions of λs/λg. Hashin & Shtrikman’s bounds and the harmonic
average 〈λ 〉H are shown for comparison.

(a) (b) (c)

FIG. 4. Largest eigenvalue ΛMax (a), mean diagonal term Λ (b) and smallest eigenvalue ΛMin of ΛΛΛ, normalized by the volume
average 〈λ 〉, obtained with various BC’s in sample WP, as functions of λs/λg. Hashin & Shtrikman’s bounds and the harmonic
average 〈λ 〉H are shown for comparison.

(a: FS) (b: BS)

FIG. 5. Mean diagonal term Λ normalized by the volume average 〈λ 〉, obtained with various BC’s in samples FS (a) and BS
(b), as functions of λs/λg. Hashin & Shtrikman’s bounds and 〈λ 〉H are shown for comparison.
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(a: BP) (b: WP)

(c: FS) (d: BS)

FIG. 6. Distance D ′ (ΛΛΛ1,ΛΛΛ2) between the conductivity tensors obtained in the four samples from tomographic images with
various pairs of BC’s, as functions of the conductivity contrast ratio λs/λg.

Anyway, the relative difference between two tensors
quantified by D ′ defined in (13) incorporates the differ-
ences between their eigenvalues but also the deviations
between their eigenvectors. It is used in the following
to analyze quantatively the features mentioned qualita-
tively in the above. The distance D ′ (ΛΛΛ1,ΛΛΛ2) between
the conductivity tensors obtained in the four samples
from tomographic images BP, WP, FS and BS, with
the ΛΛΛi’s resulting from calculations with four kinds of
BC’s, are plotted in Fig.6 as functions of λs/λg.

Unsurprisingly, the distance D ′ between the predic-
tions increases with the contrast in the conductivities
of the components, and reaches asymptotes when the
contrast is large. This is observed in all cases except
for BP and FS where the asymptote for λs/λg →0 is
not reached yet in the investigated range. When one
of the phases is present in a large amount (such as the
solid with εs=0.72, 0.93 or 0.77 in BP, FS and BS) and
is also the most conducting component, no dramatic in-
fluence of the BC’s is to be feared. D ′ never exceeds
a few percents in these cases. Conversely, when the
most conducting phase is present in a small amount
(FS, with εg=0.07) or in a moderate amount but poorly
connected (BP, with εg=0.28) a very strong influence
with differences D ′ of order O(1) is observed. WP,
where both phases are present in important amounts

(εg=0.60, εs=0.40) is an intermediate case, as well as
BS when the gas is very conducting (εg=0.23 but well
connected). In these case, significant differences occur
but do not exceed ≈20%.

These observations provide a clue for a practical, a
priori detection of cases where caution is required. The
at-risk situations are associated with a scarce and/or
poorly connected conducting phase. They can be de-
tected by an effective conductivity much smaller than
the volume average 〈λ 〉, especially regarding its small-
est eigenvalue ΛMin. All the data for D ′ (ΛΛΛ1,ΛΛΛ2) from
Figs.3 and 5, for all pairs of BC’s and ratios λs/λg in
samples BP, FS and BS are plotted in Fig.7 as functions
of ΛMin/〈λ 〉 (the smallest of ΛMin,1 and ΛMin,2, but it
makes a difference only when is very large). Sample
WP is not included because it is too small to provided
reliable predictions, regardless of the choice BC (see
fig.1c,d).

The results show the same hierarchy as in Fig.6,
with the largest D ′ for pairs of BC’s involving [D/D],
but when ΛMin/〈λ 〉 is small, D ′ scales roughly as
〈λ 〉/ΛMin in all cases. A ”safe zone” exist for
ΛMin/〈λ 〉 ≥ 1/2, where D ′ is always smaller than 0.05.
Hence, if a calculation with some condition BC1 yields
ΛΛΛ1, it can be confidently assumed that the fluxes pre-
dicted from ΛΛΛ1 for any gradient direction never de-
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FIG. 7. Distance D ′ (ΛΛΛ1,ΛΛΛ2) as a function of ΛMin/〈λ 〉. The results for all pairs of BC’s and all ratios λs/λg in BP, FS and BS
are included. The lines join data for all ratios λs/λg in a particular sample and pair of BC’s.

viate by more that 5% from those of a tensor result-
ing from a different upscaling protocol with any other
BC. Conversely, caution is required if it is found that
ΛMin,1/〈λ 〉 < 1/2, since another protocol might yield
a significantly different ΛΛΛ. As a rule of thumb, its de-
viation D ′ from ΛΛΛ1 can reach up to ≈ 0.04〈λ 〉/ΛMin.
Then, depending on the desired degree of confidence,
it can be wise to investigate more precisely the impact
of the upscaling protocol in the targeted situation.

Note that it is advocated later that using the [D/D]
immersion condition is not recommended, because it
introduces by itself strong artefacts. It induces thereby
large values of D ′ from the predictions with other
BC’s, but mostly due to its own identified sources of
error. If the pairs of BC’s involving [D/D] are disre-
garded in Fig.7, the ”safe zone” is somewhat wider,
with D ′ ≤ 0.05 whenever ΛMin/〈λ 〉 ≥ 1/3. Fur-
thermore, the uncertainty outside this zone is also
reduced, with a maximal value of D ′ (ΛΛΛ,ΛΛΛ1) about
0.02〈λ 〉/ΛMin.

IV. COMPARISON OF LOCAL FIELDS

Whatever the BC’s, ΛΛΛ[BC] is deduced via (10) from
the fluxes 〈q〉 obtained when imposing a unit mean gra-
dient 〈∇T 〉. Thus, comparing ΛΛΛ[BC1] and ΛΛΛ[BC2] means
comparing the fluxes obtained for an identical 〈∇T 〉
with different BC’s. From a reversed point of view, the
temperature fields corresponding to different BC’s but
identical mean fluxes can be compared. They are de-
duced from our data simply by renormalizing the fields
so that the mean flux becomes one, i.e., basically by
dividing the fields obtained for a unit gradient by the
corresponding diagonal component of ΛΛΛ. Let T (1)

[BC], j
denote the field with mean gradient along direction j
which yields a unit flux q j under the boundary con-

ditions [BC]. Two such fields for different BC’s can
then be compared, and their difference δ̃T [BC1],[BC2], j is
made dimensionless by dividing it by the overall drop
∆T (1) over the whole sample.

Examples are displayed in Fig.8 for the cross-section
of BS shown in (a), when λs/λg=10−2. Large devi-
ations between the fields for [P/P] and [D/P] are ob-
served in (b) near the inlet and outlet faces (exceed-
ing 5% of ∆T (1)), as expected since this is where
the BC’s differ (periodicity or Dirichlet). Differences
also exist along the transverse boundaries, even though
the boundary conditions are identical. This is be-
cause the global differences in flow pattern (including
a marginal deviation of the overall mean flux, in this
slightly anisotropic sample) induce slightly different
fluxes across them. Since they often have to cross con-
strictions due to mismatches of the aperiodic geometry,
this translates into noticeable differences in the local
gradients. However, the deviations near the transverse
boundaries are much weaker and reach a much smaller
depth than those near the inlet and outlet boundaries.
The comparison in (c) of [P/P] and [E+P] yields a sim-
ilar picture, but with deviations of a smaller amplitude.
In all comparisons involving [P/P], [D/P] and [E+P],
the fields are nearly identical in a very large central part
of the domain.

However, the comparison of [D/D] with [D/P] in
Fig.8d (as well as the confrontations of [D/D] with
[P/P] and [E+P], not shown) is quite different. As noted
in Sec.III, the immersion conditions increase the effec-
tive conductivity due to a supplementary conduction in
a skin along the transverse boundaries. Therefore, the
overall mean flux 〈q j〉 is not representative of the flux
in the bulk of the sample, and consequently, after cali-
bration of the T-field into T (1)

[D/D], j, the mean gradient in
the bulk does not correspond to a unit mean flux. As
a result, the good agreements of the fields in the cen-
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(a) (b) (c)

(d) (e)

FIG. 8. Comparaison of local fields. Exemple for the cross-section (a) through sample BS. The mean gradient is vertical (arrow)
and λs/λg=10−2. Maps of |δ̃T | for BC’s [P/P] and [D/P] (b), [P/P] and [E+P] (c) and [D/P] and [D/D] (d), in logscale. The
white lines corresponds to 10−2. Profiles of the RMS mean 〈δ̃T 〉2 along the gradient direction (e). The transverse averages are
taken in the central half of the domain, i.e., over the green streaks in (a).

tral regions of Figs.8b,c is replaced by the difference of
two different linear trends in Fig.8d.

This is made more explicit in Fig.8e. The transverse
RMS average 〈δ̃T 〉2, measured over transverse seg-
ments in the middle half of the sample (green streaks
in Fig.8a), is plotted as a function of the position in
the direction parallel to the flow. For the comparisons
of [P/P], [D/P] and [E+P], large mean deviations take
place at the inlet and oulet, which rapidly decrease in
the depth of the sample, and 〈δ̃T 〉2 nearly vanishes
in a broad central region. For the comparisons of
[D/D] with other BC’s, the same pattern is superim-
posed with a linear function of position. Note that this
could be cured by renormalizing the fields for [D/D]
by a flux averaged over a region excluding the vicinity
of the transverse boundaries instead of the overall 〈q〉
when constructing T (1)

[D/D], j. This would result in a good
match with other BC’s in the central region and large
deviations δ̃T along the sides. This is the basic idea of
the treatments in Sec.V but it was not implemented for
the local comparisons which are discussed here.

The treatments of Fig.8 were repeated for samples
BP, WP, FS and BS, all values of the contrast ra-
tio λs/λg, mean gradients along x, y and z, and all
BC’s. In each case and for each pair of BC’s, δ̃T was
measured in six sections parallel to the mean gradient
(e.g., planes y/Ly and z/Lz = 1/4, 1/2 and 3/4 when
〈∇T 〉 ‖ x). The data from the six sections, folded to
make use of the fore/aft symmetry, are included in the

RMS average 〈δ̃T 〉2.

The results are shown for sample BS in Fig9. Since
BS is nearly isotropic, the data for 〈∇T 〉 ‖ x, y and z
have also been merged when evaluating 〈δ̃T 〉2. Small
fluctuations (never larger than ≈10−3) are sometimes
visible when λs/λg ∼104. These local instabilities in
the solver are caused by a very poor conditionning of
the problem but do not induce any macroscopic effect.
The general picture is identical to that for one section
of BP in Fig.8e, with a much reduced noise due to the
larger sampling domain (9 sections vs. a single one,
and BS is also larger than BP in terms of L/lc, see Ta-
ble I). The same features are obtained, with significant
deviations at the inlet and outlet, rapidly decreasing to-
wards a nearly vanishing value in a wide central region
as long as the pair of BC’s does not involve [D/D]. If
it does, a linear function of position is again superim-
posed with the former pattern. In the comparison of
[D/D] vs. [D/P], this linear part induced by the lat-
eral conducting skin introduced by [D/D] is actually
the only contribution to 〈δ̃T 〉2, since identical Dirich-
let conditions are imposed at the upstream and down-
stream faces. Unsurprisingly, the deviations increase
with the conductivity contrast, and reach a higher level
when conduction relies on the phase with the smallest
volume fraction (the gas, in BS, with εg=0.23) than in
the opposite case.

To conclude with the comparisons of local fields,
the data for FS, BS and BP are summarized in Fig.10.
Attention is focused on the region near the inlet/oulet
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FIG. 9. Profiles of 〈δ̃T 〉2 along the mean gradient direction in BS, for pairs of BC’s involving (bottom row) or not (top row)
[D/D], and conductivity ratios λs/λg indicated by the color code.

faces, and 〈δ̃T 〉2 is plotted as a function of depth d for
pairs of BC’s involving [P/P], [D/P] and [E+P] . The
immersion conditions [D/D] are not included since the
fields cannot be calibrated for a meaninful comparison.
The data for 〈∇T 〉 ‖ x, y and z are averaged for FS and
BS. However, the data for 〈∇T 〉 ‖ x or y and those for
〈∇T 〉 ‖ z (respectively parallel and normal to the plane
of the oblate bubbles visible in Fig.1) are treated sepa-
rately in the anisotropic sample BP.

An exponential decay establishes rapidly in FS with
a decay length ld remarkably independent of the BC’s
and λs/λg,

〈δ̃T 〉2 ∝ e−d/ld for d & 4 lc, with ld ≈ 19lc in FS
(15)

The corresponding slope is indicated by broken lines
in Fig.10. Slight deviations from this general trend take
place very near to the sample faces. A plot as a function
of λs/λg (not shown) of 〈δ̃T 〉2 at the origin d=0, i.e.,
of the RMS T -deviations measured at the inlet/outlet
faces, looks very similar to that of the tensor distance
D ′ in Fig.6 (this remark applies to all the samples con-
sidered here). Similar comments apply to BS. The ex-
ponential regime establishes at a depth of the order of
5 lc, with a decay length ld ≈ 13lc. Thus, it seems that
two scales are involved in the screening of the BC’s in-
fluence within the medium. One might be related to
the texture, i.e., to the typical size of the pores and of
the grains underlying the structure of these sandstones,
governing the impact of the geometrical mismatches at
the sample boundaries and the range of the strong local
disturbances that they induce. Then, these disturbances
are damped on a larger scale, associated with the orga-

nization of the more or less conducting regions, which
might span several grain sizes.

The case of sample BP is more complicated for sev-
eral reasons. First, it is smaller in terms of statisti-
cal content, i.e., of its relative size L/lc, which favors
strong fluctuations. Then, unlike FS and BS, sample
BP contains multiscale features (bubbles). The inte-
gral correlation lengths given in Table I are associated
with the larger ones. Finally, BP is anisotropic, which
is why the data for 〈∇T 〉 in the plane of the large bub-
bles or normal to it are analyzed separately (last two
rows in Fig.10). Nevertheless, the long range decay of
〈δ̃T 〉2 is well represented by the exponential form of
(15), with a same value of ld ≈ 3 lcx ≈ 13 lcz in most
cases. Exceptions result from statistical fluctuations in
some cases. These fluctuations make also difficult to
quantify precisely where the exponential regime estab-
lishes. However, whereas ld is fairly constant whenever
λs/λg ≥ 10−2, it tends to significantly increase in most
comparisons when the solid becomes insulating, with
λs/λg . 10−3. For instance, it reaches ld ≈ 7 lcx ≈ 31
lcz in the comparison of [P/P] vs. [D/P] for 〈∇T 〉 ⊥ z
(dotted line in Fig.10). The reason for this transition is
not elucidated.

V. UNDERSAMPLING : MEASUREMENTS IN
INNER SUBDOMAINS

The conductivity tensors associated with central sub-
blocks of the samples have been systematically evalu-
ated according to the procedure described in Section
II H. During the calculations for each individual case,



15

FIG. 10. 〈δ̃T 〉2 as a function of depth d measured from the inlet/outlet faces, for various pairs of BC’s (columns), in samples FS
(top row), BS (second row), and BP (bottom rows). Data for 〈∇T 〉 normal and parallel to the z-axis are presented separately for
BP. Colors correspond to the ratio λs/λg, with the same convention as in Fig.9. Broken lines indicate the slopes corresponding
to (15) with ld = 19 lc (FS), 13 lc (BS) or 13 lcz (BP). The dotted line for BP(x,y) corresponds to ld = 31 lcz.

the mean flux 〈q〉c and gradient 〈∇T 〉c have been mea-
sured in a series of concentric subdomains Ωc(M) ob-
tained by removing from Ω a peripheral layer with
thickness M. A tensor ΛΛΛ[BC],c(M) can be deduced
via (10) from the set of 〈q〉c and 〈∇T 〉c vectors mea-
sured in Ωc(M) when solving problem (1) submitted
to boundary conditions [BC] at ∂Ω with 〈∇T 〉 oriented
successively along the x-, y- and z-axes.

Results are presented in Fig.11 for the most extreme

values of the contrast ratio, with λg=1 and λs = 10±4, in
samples FS, BS and BP. Sample WP is not considered,
since it is too small to expect that any sub-block taken
from it can be representative. The volume average 〈λ 〉c
in Ωc is considered first (left column in Fig.11), to
check if the sub-block content remains representative
of the whole sample. Note that 〈λ 〉c is nearly equal to
the porosity when λs = 10−4.

The fluctuations are very small when M ≤ 110≈ 28



16

FIG. 11. Measurements in inner domains Ωc(M), for samples FS (top row), BS (middle row) and BP (bottom row), as functions
of the removed layer thickness M. The volume averages 〈λ 〉c for λg=1 and λs = 10±4 (left column). The mean conductivity Λc
for various BC’s, λg=1 and λs = 10±4 (middle columns). All the values in the green boxes are equal with ±5% (FS) or ±1.5%
(BS). The asymmetry index A ′c for various BC’s, λg=1 and λs = 104 (right column).

lc in FS and M≤ 130≈ 20 lc in BS, which is more than
the decay length ld of the disturbances measured in
Section IV. Conversely, fluctuations are much stronger
in the relatively smaller sample BP (L/lc ∼ O(10) vs.
L/lc ∼ O(102) in FS and BS), with porosity deviations
reaching 0.005 when M ≈30, although Ωc is still larger
than Ω/2. Thus a range of M can exist for FS and BS,
thick enough to screen the influence of the BC’s while
Ωc remains large enough to be representative, but this
is very dubious for BP.

The plots of the mean diagonal terms Λc result-
ing from various overall BC’s confirm these expecta-
tions. Note first that since the solid is always the most
present phase, nothing dramatic happens when it is also
the most conducting phase (λs = 104, third column in
Fig.11). For M=0, the predictions from the various

BC’s differ slightly (FS and BS) or moderately (BP),
as already seen in Figs.3 and 5 for λs/λg�1, but very
fast, they converge and become simply proportional to
〈λ 〉c measured in the same sub-block, with identical
(or nearly identical in BP) proportionality coefficients.

The opposite case of λs = 10−4 (second column in
Fig.11) differs by the much wider spread of the val-
ues of Λ for M=0 with various BC’s. Still, the same
trend is observed. As M increases, Λc becomes propor-
tional to 〈λ 〉c with identical coefficients. This regime
is reached very soon in BS, at M ≈20, and somewhat
later in FS, at M≈40. However, the initial deviations as
so strong and felt so deep in BP that convergence is far
from reached in the investigated range of M. The un-
normalized data for Λc in Fig.11 incorporate the com-
bined influence of the BC’s and of the variations of
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porosity in Ωc(M). Of course, they strongly differ in
BP, but Λc is found fairly constant for all BC’s and
over a broad range of M in FS and BS (green boxes
in the figure), which suggest a fairly robust estimate of
an intrinsic Λ for these materials. However, the plots
of A ′

c (right column in Fig.11) show that the tensors
Λc present some assymetry. For instance, A ′

c ≈ 0.03 in
FS and 0.01 in BS when M ∼100. Recall that Λc differ
by at least that much from any acceptable conductiv-
ity tensor, as discussed in Section II I. Therefore, this
minimal degree of uncertainty should be kept in mind
even if concordant predictions of the effective conduc-
tivity are obtained from different upscaling procedures.
In addition, the differences in mean diagonal Λ do not
incorporate all the differences between tensors and the
full distance D ′ should be considered for a rigorous as-
sessment.

A more complete set of data covering the whole
range of contrasts λs/λg is presented in Fig.12, in terms
of the distance D ′(ΛΛΛ[BC1],c,ΛΛΛ[BC2],c). This accounts
more fully of all the differences between tensors, in-
cluding in their individual eigenvalues and eigendirec-
tions, than the mere comparison of the mean diagonal
and indeed, D ′ is seen to reach sometimes 0.13 in the
range corresponding to the green box for FS in Fig.11,
where Λc remains constant within ±5%.

The general features observed in Fig.6 for the dis-
tances between the overall tensors ΛΛΛ also apply to their
values ΛΛΛc in inner sub-domains. D ′ increases with
the contrast in the component conductivities, and tends
toward asymptotic values when the contrast is large.
When the solid is the most conducting phase, the pic-
tures obtained for all λs/λg ≥ 10 are very similar, and

only those for λs/λg = 100 are shown. In the opposite
case, convergence is also observed in BS with similar
pictures whenever λs/λg ≤ 10−2. Therefore, the com-
ments made about Fig.11 for λs/λg = 10−4 apply over
this whole range. However, the limit for λs/λg →0 is
not reached yet in FS and BP when λs/λg = 10−4, as
already observed in Fig.6.

It is also clear from Fig.12 that it is easier to find
a range of subdomains where the predictions from all
the BC’s agree within some prescribed tolerance when
the contrast is milder. For instance, the tensor predic-
tions for M &20 never deviate by more than 1% in FS
and BS, or 20% in BP when λs/λg ≥10−2, whereas the
deviations reach 50% (FS), 3% (BS) or exceed unity
(BP) when λs/λg=10−4. This illustrate the fact that the
search for an REV cannot be conducted by consider-
ing only the geometry, and that it also depends on the
conductivity constrast.

VI. DISCUSSION AND CONCLUSIONS

The observations made about Fig.7 provide proba-
bly the most interesting clues for direct practical ap-
plications. Before elaborating about this, let us bring
a few complementary elements. Note first that when
the conductivity contrast is very large, its precise value
makes ultimately no difference and the macroscopic
coefficients are in practice equivalent to those for in-
finite contrast. For instance, if the solid tends to be
insulating (similar developments apply in the opposite
limit),

〈λ 〉 → λg εg and ΛΛΛ[BC]→ λg ΛΛΛ
(1,0)
[BC]

as λs/λg→ 0 (16a)

where ΛΛΛ
(1,0)
[BC]

is the tensor obtained when λg=1 and
λs=0. This convergence of ΛΛΛ has been observed in

Figs.3-5, although in some cases, the asymptotic value
is not reached yet in the investigated range of contrast.
As a direct consequence,

ΛMin,[BC]/〈λ 〉 → Λ
(1,0)
Min,[BC]

/εg and D ′
(
ΛΛΛ[BC1],ΛΛΛ[BC2]

)
→D ′

(
ΛΛΛ
(1,0)
[BC1],ΛΛΛ

(1,0)
[BC2]

)
as λs/λg→ 0 (16b)

Note that the limit for D ′ is a finite number, except
in the particular case when the long-range connections
along the transverse sample boundaries introduced by
immersion conditions [D/D] make a non percolating
medium to appear percolating. The convergence of
D ′ has been observed in Fig.6, although again, the
asymptotic value is not reached yet in the investigated
range for some cases. This implies that the curves in
Fig.7, which correspond to increasing contrasts for
each sample and pair of BC’s, have to reach a final
point on the left side corresponding to the asymptotic

values in (16b). Some of the curves in Fig.6 do indeed
reach this limit, while others have not reached it yet.
However, even though an asymptotic point is known
to exist, the arguments in the above tell nothing about
the path followed to reach it and the fact that D ′ is
roughly inversely proportional to ΛMin/〈λ 〉 is a new
piece of information. Advantage can be taken from
it for instance to infer the expected uncertainty for a
strong contrast from available knowledge for a milder
one.
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FIG. 12. The distances D ′(ΛΛΛ[BC1],c,ΛΛΛ[BC2],c) between the tensors obtained in inner domains Ωc(M) with various BC’s, as
functions of the removed layer thickness M. Data are for samples FS (top row), BS (middle row) and BP (bottom row), and
various ratios λs/λg (columns).

It appears that the representation of D ′ as a func-
tion of ΛMin/〈λ 〉 (as opposed to the plots vs. λs/λg in
Fig.6) greatly unifies the data. Note first that each of
the curves is actually made of two branches, for λs/λg
larger or smaller than 1, which are very close together.
The curves for various samples with the same pair of
BC’s are also of the same order of magnitude, gener-
ally within a factor about 2 (when the deviations are
large) or 3 (for smaller deviations).

For any particular sample, the various values of D ′

at some abscissa in Fig.6 measure the difference of the
predictions of ΛΛΛ resulting from various pairs of BC’s.
Some pairs such as ([P/P],[E+P]) are always in a better
agreement than others, but the largest D ′ can be con-
sidered as an estimate of the intrinsic uncertainty of
the determination of ΛΛΛ, since at least two results dif-
fer by that much. Thus, only the upper envelop of the
curves is to be considered. It was characterized in Sec-
tion III in a very schematic way. In a ”safe region”

ΛMin/〈λ 〉≥1/2, D ′≤ 0.05 for all media and any choice
of BC (the choice of the 0.05 threshold is of course ar-
bitrary, different levels of tolerated uncertainty can be
chosen depending on the requirements for a specific ap-
plication). Out of this region, the uncertainty can reach
0.04〈λ 〉/ΛMin.

However, what exactly should be contained in the
envelop is questionable. It is clear in Fig.7 and in all
figures where determinations of ΛΛΛ are compared that
the largest D ′ are always observed when comparing
[D/D] to other BC’s, and this determines the envelop as
quantified in the above. On the other hand, the short-
comings of the immersion conditions have been repeat-
edly pointed out. By artificial introducing a conducting
layer along the transverse sample boundaries, they sig-
nificantly increase the apparent conductivity. This even
prevented in Section IV the comparison of local fields
under similar conditions (same overall mean flux). We
advocate that the large values of D ′ associated with



19

[D/D] originate in this artefact, that [D/D] should not
be used and that there is no need to include them in
the definition of the envelop (more generally, to include
any kind of defective BC, such as the permeameter con-
ditions which are clearly inappropriate for anisotropic
media). With this restriction, the envelop is somewhat
lower : the ”safe region” becomes ΛMin/〈λ 〉 ≥1/3, and
the uncertainty can reach 0.02〈λ 〉/ΛMin out of this re-
gion.

In summary, ΛMin/〈λ 〉 seems to provide an all-
purpose indicator to detect situations that might be
problematic in practical applications. Once a numer-
ical upscaling has been performed by applying some
particular BC, ΛMin/〈λ 〉 is readily available and if
it is too small, it is very likely that a solution of (1)
with another BC would yield a significantly different
result. Recall also that a noticeable asymmetry is also
a worrying feature, since the asymmetry index A ′ is a
lower bound for the distance of ΛΛΛ from any acceptable
value (see Section II I). In case of doubts, appropriate
measures should then be taken. The first step could
be to try different BC’s, and check whether the result
is really impacted. If it is, the next step might be
to consider ways to filter out the BC’s influence, by
excluding the potentially disturbed region from the
measurement volume.

Aside from the identification of phenomenological
features, the examination of the local fields in Section
IV and especially the comparison of the fields result-
ing from different BC’s aimed at the estimation of the
depth from the boundaries reached by the BC’s influ-
ence. The profiles of the RMS differences 〈δ̃T 〉2 in
Figs.9 and 10 provide an insight and show that the dis-
turbed thickness is quite significant, of the order for all
samples of at least 20 correlation lengths, including a
steep drop in a shallow peripheral layer followed by an
exponential decay with decay length ld . However, this
is not really conclusive, for several reasons. The ratios
ld/lc are different for the various samples (though of
similar orders of magnitude), and sometimes even for
different conductivity contrast in the same sample. The
initial drop can be important or minute, and no ratio-
nalization was found to account for these differences.
But most importantly, the value of 〈δ̃T 〉2 at some po-
sition on the profile depends on the depth but also pri-
marily on its value at sample boundary, which was not
rationalized either, except of course for the fact that it
increases with contrast.

A deeper analysis of this point will be conducted in
a future work, where the use of synthetic media will
make possible to vary systematically the geometrical
parameters and get a broader picture than provided by
the present tomographic images. However, the interest
of this characterization is mainly to devise an a priori
criterion to answer the question, ”how large should a
sample be to make sure that a central core exists where
measurements unaffected by the kind of BC’s can be
made?” We cannot answer this yet, but nevertheless,
given a specific sample, it is always possible to check

whether such a core exists. This is the undersampling
procedure described in Section V, and it should be
emphasized that it is virtually cost-free. Once problem
(1) has been solved with any kind of BC, measuring
the mean flux 〈q〉c and gradient 〈∇T 〉c in a series of
inner sub-domains does not require any significant
additional computational effort.

Hence, we recommand the following protocol.
When faced with a particular sample, if a first calcula-
tion with [BC1] yields ΛΛΛ[BC1] with ΛΛΛMin,[BC1]/〈λ 〉 out
of the ”safe region”, other calculations with other BC’s
should be made for a check. If the scatter of the re-
sults, quantified by their distances D ′, exceeds what
is regarded as tolerable for the targeted application,
then the conductivity tensors ΛΛΛ[BC],c should be evalu-
ated for the various BC’s and for a series of inner do-
mains. If ΛΛΛ[BC],c is found identical for all BC’s and in a
wide enough range of sub-domains sizes (within a user-
defined tolerance for D ′), this tensor can be regarded as
an intrinsic effective property, associated with and only
with the material under consideration. If this is not pos-
sible, it must be accepted that no reliable estimate of an
effective conductivity tensor can be obtained from this
sample.

Note that Fig.12 is incomplete in the sense that it
only compares tensors ΛΛΛ[BC],c from various BC’s in the
same subdomains, not their values in domains of differ-
ent sizes. Conversely, Fig.11 compares the tensors for
varying domain sizes, but only in terms of their mean
diagonal. Both checks for the independance on the do-
main size and on the BC’s have to be made in terms of
the distance D ′.

This search for a constant ΛΛΛ[BC],c can fail for two rea-
sons: (i) because the predictions from the various BC’s
are never in satisfactory agreement; or (ii) because no
range of domain size exist where these predictions re-
main acceptably constant (even if they are concordant).
Success is possible only if the sample is large enough,
so that the block after removal of a layer thick enough
to screen the influence of the BC is still representative.
Let us consider two examples taken from the foregoing.

Sample FS is an example of success but near-
failure for the second reason (ii). A threshold of
±5% uncertainty was arbitrarily chosen, and the search
was successful in the case of the most severe con-
trast λs/λg=10−4 (and a fortiori for milder contrasts).
In the range 35 . M .115 (remaining block size
2323 ∼4423), all the tensors are found equal within
±5% (green box in Fig.11). Some values of D ′ slightly
larger than 0.10 are seen in Fig.12 near M=35, but they
involve the immersion condition [D/D], which we ad-
vocated to disregard. As a matter of fact, if [D/D] is
excluded, the predictions from all the BC’s are found
in very good agreement in this range (D ′ always <
0.02), and the ±5% uncertainty results for the most
part from the dependance on the sampling domain size.
This means that if the threshold were set at a smaller
value, say ±3%, the search would fail because of the
variations with the sampling domain size, even though
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the predictions from various BC’s are concordant.

Of course, sample BP with a poorly conducting
solid is an example of utter failure for both reasons (i)
and (ii). The predictions from the various BC’s are
very different, even if [D/D] is excluded (D ′ is O(1) in
Fig.12), and they strongly vary also with the sampling
domain size. However, it is possible to come up with
a fairly reliable conductivity (all values of D ′ ≤ 0.03),
without even resorting to the undersampling, when the
contrast is mild or when the solid is very conducting
(λs/λg ≥10−1).

Let us conclude with this final remark. As already
mentioned, investigations in future works involving
a wider and more systematic exploration of geomet-
ric parameters, made possible by the use of synthetic
stochatically generated samples, will hopefully help to
rationalize the observations and improve the quanti-
tative criteria introduced in Sections III and IV. But
the self-diagnosing protocol proposed in the above and
based on the undersampling procedure described in
Section V applies in any case and can be used as it
stands, regardless of any other consideration.
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