A. Almeida, S. Moncada, and J. P. Bolaños, Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway, Nat. Cell Biol, vol.6, pp.45-51, 2004.

O. Ben-yoseph, D. M. Camp, T. E. Robinson, and B. D. Ross, Dynamic measurements of cerebral pentose phosphate pathway activity in vivo using [1,6-13 C 2 ,6,6-2 H 2 ]glucose and microdialysis, J. Neurochem, vol.64, pp.1336-1342, 1995.

J. P. Bolaños, S. J. Heales, S. Peuchen, J. E. Barker, J. M. Land et al., Nitric oxide-mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radic, Biol. Med, vol.21, pp.995-1001, 1995.

A. K. Bouzier, B. Quesson, H. Valeins, P. Canioni, M. et al., ]glucose metabolism in the tumoral and nontumoral cerebral tissue of a glioma-bearing rat, J. Neurochem, vol.72, pp.2445-2455, 1999.

A. K. Bouzier, E. Thiaudiere, M. Biran, R. Rouland, P. Canioni et al., The metabolism of [3-13 C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment, J. Neurochem, vol.75, pp.480-486, 2000.

A. K. Bouzier-sore, P. Voisin, V. Bouchaud, E. Bezancon, J. M. Franconi et al., Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study, Eur. J. Neurosci, vol.24, pp.1687-1694, 2006.

E. M. Brekke, A. B. Walls, A. Schousboe, H. S. Waagepetersen, and U. Sonnewald, Quantitative importance of the pentose phosphate pathway determined by incorporation of 13 C from, 2012.

, C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons, J. Cereb. Blood Flow Metab, vol.32, pp.1788-1799

S. Cerdan, B. Künnecke, and J. Seelig, Cerebral metabolism of [1,2-13 C 2 ]acetate as detected by in vivo and in vitro 13 C NMR, J. Biol. Chem, vol.265, pp.12916-12926, 1990.

Z. Chen and C. Zhong, Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies, Progr. Neurobiol, vol.108, pp.21-43, 2013.

F. Cruz, S. R. Scott, I. Barroso, P. Santisteban, and S. Cerdán, Ontogeny and cellular localization of the pyruvate recycling system in rat brain, J. Neurochem, vol.70, pp.2613-2619, 1998.

R. Dringen, H. H. Hoepken, T. Minich, and C. Ruedig, Pentose phosphate pathway and NADPH metabolism, Handbook of Neurochemistry and Molecular Neurobiology, vol.5, pp.41-62, 2007.

S. M. Fitzpatrick, H. P. Hetherington, K. L. Behar, and R. G. Shulman, The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13 C-edited NMR spectroscopy, J. Cereb. Blood Flow Metab, vol.10, pp.170-179, 1990.

M. K. Gaitonde, E. Murray, and V. J. Cunningham, Effect of 6-phosphogluconate on phosphoglucose isomerase in rat brain in vitro and in vivo, J. Neurochem, vol.52, pp.1348-1352, 1989.

P. Garcia-nogales, A. Almeida, and J. P. Bolaños, Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection, J. Biol. Chem, vol.278, pp.864-874, 2003.

G. W. Goodwin, D. M. Cohen, and H. Taegtmeyer, ]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway, Am. J. Physiol. Endocrinol. Metab, vol.280, pp.502-508, 2001.

A. Herrero-mendez, A. Almeida, E. Fernandez, C. Maestre, S. Moncada et al., The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1, Nat. Cell Biol, vol.11, pp.747-752, 2009.

J. S. Hothersall, N. Z. Baquer, A. L. Greenbaum, and P. Mclean, Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulphate on the integration of metabolic routes, Arch. Biochem. Biophys, vol.198, pp.478-492, 1979.

I. Jalloh, K. L. Carpenter, P. Grice, D. J. Howe, A. Mason et al., Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose, J. Cereb. Blood Flow Metab, vol.35, pp.111-120, 2015.

T. Kanamatsu and Y. Tsukada, Measurement of amino acid metabolism derived from [1-13 C]glucose in the rat brain using 13 C magnetic resonance spectroscopy, Neurochem. Res, vol.19, pp.603-612, 1994.

J. Katz, R. Rognstad, and R. G. Kemp, Isotope discrimination effects in the metabolism of tritiated glucose, J. Biol. Chem, vol.240, pp.1484-1486, 1965.

M. G. Larrabee, Rigorous evaluation of limits to the flux from glucose using 14 CO 2 data, with applications to peripheral ganglia of chicken embryos, J. Biol. Chem, vol.264, pp.15875-15879, 1989.

M. C. Mckenna, J. H. Stevenson, X. Huang, J. T. Tildon, C. L. Zielke et al., Mitochondrial malic enzyme activity is much higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons or cerebellar granule cells, Neurochem. Int, vol.36, pp.451-459, 2000.

J. R. Neely, R. M. Denton, P. J. England, and P. J. Randle, The effects of increased heart work on the tricarboxylate cycle and its interactions with glycolysis in the perfused rat heart, Biochem. J, vol.128, pp.147-159, 1972.

E. Olstad, G. M. Olsen, H. Qu, and U. Sonnewald, Pyruvate recycling in cultured neurons from cerebellum, J. Neurosci. Res, vol.85, pp.3318-3325, 2007.

L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. U.S.A, vol.91, pp.10625-10629, 1994.

P. Rodriguez-rodriguez, E. Fernandez, and J. P. Bolaños, Underestimation of the pentose-phosphate pathway in intact primary neurons as revealed by metabolic flux analysis, J. Cereb. Blood Flow Metab, vol.33, pp.1843-1845, 2013.

B. D. Ross, P. B. Kingsley, and O. Ben-yoseph, Measurement of pentose phosphate-pathway activity in a single incubation with [1,6-13 C 2 ,6,6-2 H 2 ]glucose, Biochem. J, vol.302, pp.31-38, 1994.

R. Vogel, G. Jennemann, J. Seitz, H. Wiesinger, and B. Hamprecht, Mitochondrial malic enzyme: purification from bovine brain, generation of an antiserum, and immunocytochemical localization in neurons of rat brain, J. Neurochem, vol.71, pp.844-852, 1998.

M. M. Wamelink, E. A. Struys, J. , and C. , The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review, J. Inherit. Metab. Dis, vol.31, pp.703-717, 2008.