X. S. Puente, L. M. Sánchez, A. Gutiérrez-fernández, G. Velasco, and C. López-otín, A genomic view of the complexity of mammalian proteolytic systems, Biochemical Society Transactions, vol.33, issue.2, pp.331-334, 2005.

N. Rawlings and G. Salvesen, Handbook of Proteolytic Enzymes, 2012.

A. W. Segal, How neutrophils kill microbes, Annual Review of Immunology, vol.23, issue.1, pp.197-223, 2005.

B. Turk, Targeting proteases: successes, failures and future prospects, Nature Reviews Drug Discovery, vol.5, issue.9, pp.785-799, 2006.

L. Hedstrom, Serine protease mechanism and specificity, Chemical Reviews, vol.102, issue.12, pp.4501-4524, 2002.

A. Wlodawer, M. Miller, and M. Jaskolski, Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease, Science, vol.245, issue.4918, pp.616-621, 1989.

H. Neurath and K. A. Walsh, Role of proteolytic enzymes in biological regulation (a review), Proceedings of the National Academy of Sciences, vol.73, issue.11, pp.3825-3832, 1976.

B. Korkmaz, M. S. Horwitz, D. E. Jenne, and F. Gauthier, Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases, Pharmacological Reviews, vol.62, issue.4, pp.726-759, 2010.

C. T. Pham, Neutrophil serine proteases: specific regulators of inflammation, Nature Reviews Immunology, vol.6, issue.7, pp.541-550, 2006.

B. Korkmaz, T. Moreau, and F. Gauthier, Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions, Biochimie, vol.90, issue.2, pp.227-242, 2008.

M. Faurschou and N. Borregaard, Neutrophil granules and secretory vesicles in inflammation, Microbes and Infection, vol.5, issue.14, pp.1317-1327, 2003.

A. Belaaouaj, R. Mccarthy, and M. Baumann, Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis, Nature Medicine, vol.4, issue.5, pp.615-618, 1998.

A. A. Belaaouaj, Degradation of outer membrane protein a in Escherichia coli killing by neutrophil elastase, Science, vol.289, issue.5482, pp.1185-1187, 2000.

Y. S. Lopez-boado, M. Espinola, S. Bahr, and A. Belaaouaj, Neutrophil serine proteinases cleave bacterial flagellin, abrogating its host response-inducing activity, Journal of Immunology, vol.172, issue.1, pp.509-515, 2004.

N. Guyot, J. Wartelle, and L. Malleret, Unopposed cathepsin G, neutrophil elastase, and proteinase 3 cause severe lung damage and emphysema, American Journal of Pathology, vol.184, issue.8, pp.2197-2210, 2014.

J. B. Soriano, A. A. Abajobir, and K. H. Abate, Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study, Lancet Respiratory Medicine, vol.5, issue.9, pp.691-706, 2015.

K. Kawabata, T. Hagio, and S. Matsuoka, e role of neutrophil elastase in acute lung injury, European Journal of Pharmacology, vol.451, issue.1, pp.1-10, 2002.

A. S. Dittrich, I. Kühbandner, and S. Gehrig, Elastase activity on sputum neutrophils correlates with severity of lung disease in cystic fibrosis, European Respiratory Journal, vol.51, issue.3, p.1701910, 2018.

R. Pawar and S. Abhang, Evaluation of serum level of neutrophil elastase, superoxide dismutase and nitric oxide in COPD patients and its correlation with lung function test, International Journal of Biochemistry Research & Review, vol.5, issue.2, pp.153-161, 2015.

J. D. Chalmers, K. L. Moffitt, and G. Suarez-cuartin, Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis, American Journal of Respiratory and Critical Care Medicine, vol.195, issue.10, pp.1384-1393, 2017.

G. Moroy, A. J. Alix, J. Sapi, W. Hornebeck, and E. Bourguet, Neutrophil elastase as a target in lung cancer, Anti-Cancer Agents in Medicinal Chemistry, vol.12, issue.6, pp.565-579, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00716495

K. G. Mann, E. B. Williams, S. Krishnaswamy, W. Church, A. Giles et al., Active site-specific immunoassays, Blood, vol.76, issue.4, pp.755-766, 1990.

F. Zou, M. Schmon, and M. Sienczyk, Application of a novel highly sensitive activity-based probe for detection of cathepsin G, Analytical Biochemistry, vol.421, issue.2, pp.667-672, 2012.

K. Oikonomopoulou, K. K. Hansen, A. Baruch, M. D. Hollenberg, and E. P. Diamandis, Immunofluorometric activity-based probe analysis of active KLK6 in biological fluids, Biological Chemistry, vol.389, 2008.

R. Yan and D. Ye, Molecular imaging of enzyme activity in vivo using activatable probes, Science Bulletin, vol.61, issue.21, pp.1672-1679, 2016.

M. L. James and S. S. Gambhir, A molecular imaging primer: modalities, imaging agents, and applications, Physiological Reviews, vol.92, issue.2, pp.897-965, 2012.

W. Rut, M. Por?ba, P. Kasperkiewicz, S. J. Snipas, and M. Dr?g, Selective substrates and activity-based probes for imaging of the human constitutive 20S proteasome in cells and blood samples, Journal of Medicinal Chemistry, vol.61, issue.12, pp.5222-5234, 2018.

M. Poreba, W. Rut, and M. Vizovisek, Selective imaging of cathepsin L in breast cancer by fluorescent activity-based probes, Contrast Media & Molecular Imaging, vol.9, issue.8, pp.2113-2129, 2018.

Y. Shaulov-rotem, E. Merquiol, and T. Weiss-sadan, A novel quenched fluorescent activity-based probe reveals caspase-3 activity in the endoplasmic reticulum during apoptosis, Chemical Science, vol.7, issue.2, pp.1322-1337, 2016.

I. Abd-elrahman, H. Kosuge, and T. W. Sada, Cathepsin activity-based probes and inhibitor for preclinical atherosclerosis imaging and macrophage depletion, PLos One, vol.11, 2016.

B. F. Gilmore, D. J. Quinn, T. Duff, G. R. Cathcart, C. J. Scott et al., Expedited solid-phase synthesis of fluorescently labeled and biotinylated aminoalkane diphenyl phosphonate affinity probes for chymotrypsin-and elastaselike serine proteases, Bioconjugate Chemistry, vol.20, issue.11, pp.2098-2105, 2009.

M. J. Page, A. L. Lourenço, and T. David, Non-invasive imaging and cellular tracking of pulmonary emboli by nearinfrared fluorescence and positron-emission tomography, Nature Communications, vol.11, issue.6, 2015.

J. Charlton, J. Sennello, and D. Smith, In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase, Chemistry & Biology, vol.4, issue.11, pp.809-816, 1997.

M. Rusckowski, T. Qu, and J. Pullman, Inflammation and infection imaging with a 99m TC-neutrophil elastase inhibitor in monkeys, Journal of Nuclear Medicine, vol.41, issue.2, pp.363-374, 2000.

P. Kasperkiewicz, M. Poreba, and S. J. Snipas, Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling, Proceedings of the National Academy of Sciences, vol.111, issue.7, pp.2518-2523, 2014.

B. C. Lechtenberg, P. Kasperkiewicz, H. Robinson, M. Drag, and S. J. , e elastase-PK101 structure: mechanism of an ultrasensitive activity-based probe revealed, ACS Chemical Biology, vol.10, issue.4, pp.945-951, 2015.

K. Nakajima, J. C. Powers, B. M. Ashe, and M. Zimmerman, Sensitive mapping the extended substrate binding site of cathepsin G and human leucocyte elastase, Journal of Biological Chemistry, vol.254, issue.10, pp.4027-4032, 1979.

T. Kalupov, M. Brillard-bourdet, and S. Dadé, Structural characterization of mouse neutrophil serine proteases and identification of their substrate specificities, Journal of Biological Chemistry, vol.284, issue.49, pp.34084-34091, 2009.

H. Crisford, E. Sapey, and R. A. Stockley, Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases, Respiratory Research, vol.19, issue.1, 2018.

O. R. Mook, C. V. Overbeek, E. G. Ackema, F. V. Maldegem, and W. M. Frederiks, In situ localization of gelatinolytic activity in the extracellular matrix of metastases of colon cancer in rat liver using quenched fluorogenic DQgelatin, Journal of Histochemistry & Cytochemistry, vol.51, issue.6, pp.821-829, 2003.

I. Lerman, M. D. Hernandez, and J. Rangel-moreno, Infiltrating myeloid cells exert protumorigenic actions via neutrophil elastase, Molecular Cancer Research, vol.15, issue.9, pp.1138-1152, 2017.

H. E. Scales, M. Ierna, and K. M. Smith, Assessment of murine collagen-induced arthritis by longitudinal non-invasive duplexed molecular optical imaging, Rheumatology, vol.55, issue.3, pp.564-572, 2015.

M. M. Muley, A. R. Reid, B. Botz, K. Bölcskei, Z. Helyes et al., Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinaseactivated receptor-2, British Journal of Pharmacology, vol.173, issue.4, pp.766-777, 2016.

A. Glinzer, X. Ma, and J. Prakash, Targeting elastase for molecular imaging of early atherosclerotic lesions, Arteriosclerosis, rombosis, and Vascular Biology, vol.37, pp.525-533, 2016.

C. A. Owen, Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases, Journal of Cell Biology, vol.131, issue.3, pp.775-789, 1995.

P. Mellet, P. Massot, and G. Madelin, New concepts in molecular imaging: non-invasive MRI spotting of proteolysis using an overhauser effect switch, PLoS One, vol.4, issue.4, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00626527

S. I. Rennard, G. Basset, and D. Lecossier, Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution, Journal of Applied Physiology, vol.60, issue.2, pp.532-538, 1986.

P. D. Edwards, D. W. Andisik, A. M. Strimpler, B. Gomes, and P. A. Tuthill, Nonpeptidic inhibitors of human neutrophil elastase. 7. Design, synthesis, andin vitroactivity of a series of pyridopyrimidine trifluoromethyl ketones, Journal of Medicinal Chemistry, vol.39, issue.5, pp.1112-1124, 1996.

J. C. Powers, B. F. Gupton, A. D. Harley, N. Nishino, and R. J. Whitley, Specificity of porcine pancreatic elastase, human leukocyte elastase and cathepsin G Inhibition with peptide chloromethyl ketones, Biochimica et Biophysica Acta (BBA)-Enzymology, vol.485, issue.1, pp.156-166, 1977.

P. Tuhy and J. C. Powers, Inhibition of human leukocyte elastase by peptide chloromethyl ketones, FEBS Letters, vol.50, issue.3, pp.359-361, 1975.

V. Ranga, J. Kleinerman, M. P. Ip, J. Sorensen, and J. C. Powers, Effects of oligopeptide chloromelhyl ketone administered after elastase: renal toxicity and lack of experimental emphysema, American Review of Respiratory Disease Returns, vol.124, pp.613-618, 1981.

R. Grzywa, E. Burchacka, and M. ??cka, Synthesis of novel phosphonic-type activity-based probes for neutrophil serine proteases and their application in spleen lysates of different organisms, ChemBioChem, vol.15, issue.17, pp.2605-2612, 2014.

E. F. Ruivo, L. M. Gonçalves, and L. A. Carvalho, Clickable 4-oxo-?-lactam-based selective probing for human neutrophil elastase related proteomes, Chem-MedChem, vol.11, issue.18, pp.2037-2042, 2016.

A. Schulz-fincke, A. S. Tikhomirov, and A. Braune, Design of an activity-based probe for human neutrophil elastase: implementation of the lossen rearrangement to induce förster resonance energy transfers, Biochemistry, vol.57, issue.5, pp.742-752, 2018.

L. E. Edgington, M. Verdoes, and M. Bogyo, Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes, Current Opinion in Chemical Biology, vol.15, issue.6, pp.798-805, 2011.

I. Schechter and A. Berger, On the size of the active site in proteases. I. Papain, Biochemical and Biophysical Research Communications, vol.27, issue.2, pp.157-162, 1967.

J. Bieth and C. G. Wermuth, e action of elastase on p-nitroanilide substrates, Biochemical and Biophysical Research Communications, vol.53, issue.2, pp.383-390, 1973.

J. Bieth, B. Spiess, and C. G. Wermuth, e synthesis and analytical use of a highly sensitive and convenient substrate of elastase, Biochemical Medicine, vol.11, issue.4, pp.350-357, 1974.

M. J. Castillo, K. Nakajima, M. Zimmerman, and J. C. Powers, Sensitive substrates for human leukocyte and porcine pancreatic elastase: a study of the merits of various chromophoric and fluorogenic leaving groups in assays for serine proteases, Analytical Biochemistry, vol.99, issue.1, pp.53-64, 1979.

L. P. Mcgarvey, K. Dunbar, and S. L. Martin, Cytokine concentrations and neutrophil elastase activity in bronchoalveolar lavage and induced sputum from patients with cystic fibrosis, mild asthma and healthy volunteers, Journal of Cystic Fibrosis, vol.1, issue.4, pp.269-275, 2002.

D. S. Armstrong, S. M. Hook, and K. M. Jamsen, Lower airway inflammation in infants with cystic fibrosis detected by newborn screening, Pediatric Pulmonology, vol.40, issue.6, pp.500-510, 2005.

S. Mizukami, K. Kazuya, and T. Higuchi, Imaging of caspase-3 activation in HeLa cells stimulated with etoposide using a novel fluorescent probe, FEBS Letters, vol.453, issue.3, pp.356-360, 1999.

L. M. Felber, S. M. Cloutier, and C. Kündig, Evaluation of the CFP-substrate-YFP system for protease studies: advantages and limitations, Biotechniques, vol.36, issue.5, pp.878-885, 2004.

C. Schulenburg, G. Faccio, D. Jankowska, K. Maniura-weber, and M. Richter, A FRET-based biosensor for the detection of neutrophil elastase, e Analyst, vol.141, issue.5, pp.1645-1648, 2016.

S. Kossodo, J. Zhang, and K. Groves, Noninvasive in vivo quantification of neutrophil elastase activity in acute experimental mouse lung injury, International Journal of Molecular Imaging, vol.2011, p.11, 2011.

A. Ho, C. Chen, and C. Cheng, Neutrophil elastase as a diagnostic marker and therapeutic target in colorectal cancers, Oncotarget, vol.5, issue.2, 2014.

B. Korkmaz, S. Attucci, and M. A. Juliano, Measuring elastase, proteinase 3 and cathepsin G activities at the surface of human neutrophils with fluorescence resonance energy transfer substrates, Nature Protocols, vol.3, issue.6, pp.991-1000, 2008.

E. J. Campbell and C. A. Owen, e sulfate groups of chondroitin sulfate-and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G, Journal of Biological Chemistry, vol.282, issue.19, p.14645, 2007.

A. J. O'donoghue, Y. Jin, and G. M. Knudsen, Global substrate profiling of proteases in human neutrophil extracellular traps reveals consensus motif predominantly contributed by elastase, PLoS One, vol.8, issue.9, 2013.

E. Kelly, C. M. Greene, and N. G. Mcelvaney, Targeting neutrophil elastase in cystic fibrosis, Expert Opinion on erapeutic Targets, vol.12, issue.2, pp.145-157, 2008.

P. D. Sly, C. L. Gangell, and L. Chen, Risk factors for bronchiectasis in children with cystic fibrosis, New England Journal of Medicine, vol.368, issue.21, pp.1963-1970, 2013.

P. D. Sly, S. Brennan, and C. Gangell, Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening, American Journal of Respiratory and Critical Care Medicine, vol.180, issue.2, pp.146-152, 2009.

S. Gehrig, M. A. Mall, and C. Schultz, Spatially resolved monitoring of neutrophil elastase activity with ratiometric fluorescent reporters, Angewandte Chemie International Edition, vol.51, issue.25, pp.6258-6261, 2012.

R. Weissleder, C. Tung, U. Mahmood, and A. Bogdanov, In vivo imaging of tumors with protease-activated nearinfrared fluorescent probes, Nature biotechnology, vol.17, issue.4, pp.375-378, 1999.

F. A. Jaffer, D. Kim, and L. Quinti, Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor, Circulation, vol.115, issue.17, pp.2292-2298, 2007.

R. A. Sheth, A. Kunin, and L. Stangenberg, In Vivo optical molecular imaging of matrix metalloproteinase activity following celecoxib therapy for colorectal cancer, Molecular imaging, vol.11, issue.5, 2012.

C. Bremer, C. Tung, and R. Weissleder, In vivo molecular target assessment of matrix metalloproteinase inhibition, Nature medicine, vol.7, issue.6, pp.743-748, 2001.

M. Sameni, J. Dosescu, and F. Sloane, Imaging proteolysis by living human glioma cells, Biological Chemistry, vol.382, issue.5, pp.785-788, 2001.

S. M. Messerli, S. Prabhakar, and Y. Tang, A novel method for imaging apoptosis using a caspase-1 near-infrared fluorescent probe, Neoplasia, vol.6, issue.2, pp.95-105, 2004.

F. A. Jaffer, C. Tung, R. E. Gerszten, and R. Weissleder, In vivo imaging of thrombin activity in experimental thrombi with thrombin-sensitive near-infrared molecular probe, Arteriosclerosis, rombosis, and Vascular Biology, vol.22, issue.11, pp.1929-1935, 2002.

B. Law, A. Curino, T. H. Bugge, R. Weissleder, and C. Tung, Design, synthesis, and characterization of urokinase plasminogen-activator-sensitive near-infrared reporter, Chemistry & Biology, vol.11, issue.1, pp.99-106, 2004.

V. Fritz, D. Noël, and C. Bouquet, Antitumoral activity and osteogenic potential of mesenchymal stem cells expressing the urokinase-type plasminogen antagonist amino-terminal fragment in a murine model of osteolytic tumor, Stem Cells, vol.26, issue.11, pp.2981-2990, 2008.

J. V. Edwards, N. T. Prevost, A. D. French, M. Concha, and B. D. Condon, Kinetic and structural analysis of fluorescent peptides on cotton cellulose nanocrystals as elastase sensors, Carbohydrate Polymers, vol.116, pp.278-285, 2015.

P. Massot, E. Parzy, and L. Pourtau, In vivo high-resolution 3D overhauser-enhanced MRI in mice at 0.2 T, Contrast Media & Molecular Imaging, vol.7, issue.1, pp.45-50, 2012.

N. Koonjoo, E. Parzy, and P. Massot, In vivo overhauserenhanced MRI of proteolytic activity, Contrast Media & Molecular Imaging, vol.9, issue.5, pp.363-371, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01460523

N. Jugniot, I. Duttagupta, and A. Rivot, An elastase activity reporter for electronic paramagnetic resonance (EPR) and overhauser-enhanced magnetic resonance imaging (OMRI) as a line-shifting nitroxide, Free Radical Biology and Medicine, vol.126, pp.101-112, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02091886

M. W. Crystal, K. A. Hilliard, T. M. Norvell, and M. Berger, Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation, American Journal of Respiratory and Critical Care Medicine, vol.150, issue.2, pp.448-454, 1994.

D. Moncelet, P. Voisin, and N. Koonjoo, Alkoxyamines: toward a new family of theranostic agents against cancer, Molecular Pharmaceutics, vol.11, issue.7, pp.2412-2419, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01460538

K. Akazawa, F. Sugihara, M. Minoshima, S. Mizukami, and K. Kikuchi, Sensing caspase-1 activity using activatable 19F MRI nanoprobes with improved turn-on kinetics, Chemical Communications, vol.54, issue.83, pp.11785-11788, 2018.

X. Yue, Z. Wang, and L. Zhu, Novel 19F activatable probe for the detection of matrix metalloprotease-2 activity by MRI/MRS, Molecular Pharmaceutics, vol.11, issue.11, pp.4208-4217, 2014.

M. Suchý, R. Ta, and A. X. Li, A paramagnetic chemical exchange-based MRI probe metabolized by cathepsin D: design, synthesis and cellular uptake studies, Organic & Biomolecular Chemistry, vol.8, issue.11, p.2560, 2010.

D. V. Hingorani, L. A. Montano, E. A. Randtke, Y. S. Lee, J. Cárdenas-rodríguez et al., A single diamagnetic catalyCEST MRI contrast agent that detects cathepsin B enzyme activity by using a ratio of two CEST signals, Contrast Media & Molecular Imaging, vol.11, issue.2, pp.130-138, 2016.

M. D. Pagel, B. Yoo, G. Liu, and R. Rosenblum, CMR 2005: 13.06: activatable MRI CEST agents that detect enzyme activities, vol.1, pp.88-89, 2006.

B. Yoo, V. R. Sheth, and C. M. Howison, Detection of in vivo enzyme activity with catalyCEST MRI, Magnetic Resonance in Medicine, vol.71, issue.3, pp.1221-1230, 2014.

S. Chakraborti, T. Chakraborti, and N. S. Dhalla, Proteases in Human Diseases, 2017.

Y. Wang and M. Deng, Medical imaging in new drug clinical development, Journal of oracic Disease, vol.2, pp.245-252, 2010.

R. Stockley, A. Soyza, and K. Gunawardena, Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis, Respiratory Medicine, vol.107, issue.4, pp.524-533, 2013.

H. Watz, J. Nagelschmitz, and A. Kirsten, Safety and efficacy of the human neutrophil elastase inhibitor BAY 85-8501 for the treatment of non-cystic fibrosis bronchiectasis: a randomized controlled trial, Pulmonary Pharmacology & erapeutics, vol.56, pp.86-93, 2019.

J. Holland, e role of molecular imaging in personalised healthcare, CHIMIA International Journal for Chemistry, vol.70, issue.11, pp.787-795, 2016.

, European Alliance for Personalised Medicine-Innovation and patient Access to personalised medicine

, Contrast Media & Molecular Imaging