W. M. Abi-saab, D. G. Maggs, T. Jones, R. Jacob, V. Srihari et al., Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia, J. Cereb. Blood Flow Metab, vol.22, pp.271-279, 2002.

P. Bednarík, I. Tká?, F. Giove, L. E. Eberly, D. K. Deelchand et al., Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex, J. Cereb. Blood Flow Metab, vol.38, pp.347-359, 2018.

O. A. Boubriak, J. P. Urban, and Z. Cui, Monitoring of metabolite gradients in tissue-engineered constructs, J. R. Soc. Interface, vol.3, pp.637-648, 2006.

K. Caesar, P. Hashemi, A. Douhou, G. Bonvento, M. G. Boutelle et al., Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo, J. Physiol, vol.586, pp.1337-1349, 2008.

Y. Crémillieux, R. Salvati, U. Dumont, N. Pinaud, V. Bouchaud et al., Online (1) H-MRS measurements of time-varying lactate production in an animal model of glioma during administration of an antitumoral drug, NMR Biomed, p.31, 2018.

S. B. Duckett and R. E. Mewis, Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging, Acc. Chem. Res, vol.45, pp.1247-1257, 2012.

M. A. Elmeliegy, A. M. Carcaboso, L. M. Chow, Z. M. Zhang, C. Calabrese et al., Magnetic resonance imaging-guided microdialysis cannula implantation in a spontaneous high-grade glioma murine model, J. Pharm. Sci, vol.100, pp.4210-4214, 2011.

L. K. Fellows, M. G. Boutelle, and M. Fillenz, Extracellular brain glucose levels reflect local neuronal activity: a microdialysis study in awake, freely moving rats, J. Neurochem, vol.59, pp.2141-2147, 1992.

S. Glöggler, S. Rizzitelli, N. Pinaud, G. Raffard, V. Zhendre et al., In vivo online magnetic resonance quantification of absolute metabolite concentrations in microdialysate, Sci. Rep, vol.6, p.36080, 2016.

T. Horn and J. Klein, Lactate levels in the brain are elevated upon exposure to volatile anesthetics: a microdialysis study, Neurochem. Int, vol.57, pp.940-947, 2010.

R. E. Hurd, F. , and D. , Proton editing and imaging of lactate, NMR Biomed, vol.4, pp.73-80, 1991.

R. E. Hurd, Y. F. Yen, A. Chen, and J. H. Ardenkjaer-larsen, , 2012.

, Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization, J. Magn. Reson. Imaging, vol.36, pp.1314-1328

K. Ide and N. H. Secher, Cerebral blood flow and metabolism during exercise, Prog. Neurobiol, vol.61, pp.397-414, 2000.

R. T. Kennedy, Emerging trends in in vivo neurochemical monitoring by microdialysis, Curr. Opin. Chem. Biol, vol.17, pp.860-867, 2013.

J. Korf, J. De-boer, R. Baarsma, K. Venema, and A. Okken, Monitoring of glucose and lactate using microdialysis: applications in neonates and rat brain, Dev. Neurosci, vol.15, pp.240-246, 1993.

H. Langemann, B. Alessandri, A. Mendelowitsch, T. Feuerstein, H. Landolt et al., Extracellular levels of glucose and lactate measured by quantitative microdialysis in the human brain, Neurol. Res, vol.23, pp.531-536, 2001.

C. J. Lawrence, F. W. Prinzen, and S. De-lange, The effect of dexmedetomidine on nutrient organ blood flow, Anesth. Analg, vol.83, pp.1160-1165, 1996.

S. Mangia, I. Tkác, R. Gruetter, P. F. Van-de-moortele, B. Maraviglia et al., Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1 H NMR spectroscopy in the human visual cortex, J. Cereb. Blood Flow Metab, vol.27, pp.1055-1063, 2007.

K. Masamoto and I. Kanno, Anesthesia and the quantitative evaluation of neurovascular coupling, J. Cereb. Blood Flow Metab, vol.32, pp.1233-1247, 2012.

L. Mazuel, J. Blanc, C. Repond, V. Bouchaud, G. Raffard et al., A neuronal MCT2 knockdown in the rat somatosensory cortex reduces both the NMR lactate signal and the BOLD response during whisker stimulation, PLoS ONE, vol.12, p.174990, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02348315

V. Mosienko, A. G. Teschemacher, and S. Kasparov, Is L-lactate a novel signaling molecule in the brain?, J. Cereb. Blood Flow Metab, vol.35, pp.1069-1075, 2015.

S. Muravchick and R. J. Levy, Clinical implications of mitochondrial dysfunction, Anesthesiology, vol.105, pp.819-837, 2006.

E. M. Nemoto, J. T. Hoff, and J. W. Severinghaus, Lactate uptake and metabolism by brain during hyperlactatemia and hypoglycemia, Stroke, vol.5, pp.48-53, 1974.

J. Prichard, D. Rothman, E. Novotny, O. Petroff, T. Kuwabara et al., Lactate rise detected by 1 H NMR in human visual cortex during physiologic stimulation, Proc. Natl. Acad. Sci. U.S.A, vol.88, pp.5829-5831, 1991.

M. J. Rogatzki, B. S. Ferguson, M. L. Goodwin, and L. B. Gladden, , 2015.

, Lactate is always the end product of glycolysis, Front. Neurosci, vol.27, pp.9-22

D. Sappey-marinier, G. Calabrese, G. Fein, J. W. Hugg, C. Biggins et al., Effect of photic stimulation on human visual cortex lactate and phosphates using 1 H and 31P magnetic resonance spectroscopy, J. Cereb. Blood Flow Metab, vol.12, pp.584-592, 1992.

N. F. Shram, L. I. Netchiporouk, C. Martelet, N. Jaffrezic-renault, C. Bonnet et al., In vivo voltammetric detection of rat brain lactate with carbon fiber microelectrodes coated with lactate oxidase, Anal. Chem, vol.70, pp.2618-2622, 1998.

I. A. Simpson, A. Carruthers, and S. J. Vannucci, Supply and demand in cerebral energy metabolism: the role of nutrient transporters, J. Cereb. Blood Flow Metab, vol.27, pp.1766-1791, 2007.

M. D. Sinclair, A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice, Can. Vet. J, vol.44, pp.885-897, 2003.

R. Weber, P. Ramos-cabrer, D. Wiedermann, N. Van-camp, and M. Hoehn, A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat, Neuroimage, vol.29, pp.1303-1310, 2006.

H. R. Zielke, C. L. Zielke, and P. J. Baab, Direct measurement of oxidative metabolism in the living brain by microdialysis: a review, J. Neurochem, vol.109, pp.24-29, 2009.