F. J. Wolters and M. A. Ikram, Epidemiology of dementia: the burden on society, the challenges for research, Methods Mol. Biol, vol.1750, pp.3-14, 2018.

H. W. Querfurth and F. M. Laferla, Alzheimer's disease, N. Engl. J. Med, vol.362, pp.329-344, 2010.

J. C. Polanco, Amyloid-beta and tau complexitytowards improved biomarkers and targeted therapies, Nat. Rev. Neurol, vol.14, pp.22-39, 2018.

J. A. Hardy and G. A. Higgins, Alzheimer's disease: the amyloid cascade hypothesis, Science, vol.256, pp.184-185, 1992.

C. R. Jack and . Jr, Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers, Lancet Neurol, vol.12, pp.207-216, 2013.

H. Zetterberg and N. Mattsson, Understanding the cause of sporadic Alzheimer's disease, Expert Rev. Neurother, vol.14, pp.621-630, 2014.

L. S. Honig, Trial of solanezumab for mild dementia due to Alzheimer's disease, N. Engl. J. Med, vol.378, pp.321-330, 2018.

S. Salloway, Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease, N. Engl. J. Med, vol.370, pp.322-333, 2014.

S. Ostrowitzki, A phase III randomized trial of gantenerumab in prodromal Alzheimer's disease, Alzheimers Res. Ther, vol.9, p.95, 2017.

J. Sevigny, Addendum: The antibody aducanumab reduces Abeta plaques in Alzheimer's disease, Nature, vol.546, p.564, 2017.

G. Mckhann, Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease, Neurology, vol.34, pp.939-944, 1984.

G. M. Mckhann, The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimers Dement, vol.7, pp.263-269, 2011.

C. R. Jack and . Jr, NIA-AA Research Framework: toward a biological definition of Alzheimer's disease, Alzheimers Dement, vol.14, pp.535-562, 2018.

N. J. Allen and B. A. Barres, Neuroscience: Glia -more than just brain glue, Nature, vol.457, pp.675-677, 2009.

S. Jakel and L. Dimou, Glial cells and their function in the adult brain: a journey through the history of their ablation, Front. Cell. Neurosci, vol.11, p.24, 2017.

E. R. Zimmer, Tracking neuroinflammation in Alzheimer's disease: the role of positron emission tomography imaging, J. Neuroinflammation, vol.11, p.120, 2014.

A. Verkhratsky and M. Nedergaard, Physiology of astroglia, Physiol. Rev, vol.98, pp.239-389, 2018.

M. Simard, Signaling at the gliovascular interface, J. Neurosci, vol.23, pp.9254-9262, 2003.

C. Iadecola, The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease, Neuron, vol.96, pp.17-42, 2017.

A. C. Luissint, Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation, Fluids Barriers CNS, vol.9, p.23, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00772323

L. Pellerin and P. J. Magistretti, Sweet sixteen for ANLS, J. Cereb. Blood Flow Metab, vol.32, pp.1152-1166, 2012.

M. M. Halassa and P. G. Haydon, Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior, Annu. Rev. Physiol, vol.72, pp.335-355, 2010.

N. C. Danbolt, Neuronal vs glial glutamate uptake: resolving the conundrum, Neurochem. Int, vol.98, pp.29-45, 2016.

E. E. Benarroch, Glutamate transporters: diversity, function, and involvement in neurologic disease, Neurology, vol.74, pp.259-264, 2010.

U. Wilhelmsson, Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.17513-17518, 2006.

M. A. Mccall, Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology, Proc. Natl. Acad. Sci. U. S. A, vol.93, pp.6361-6366, 1996.

D. Triolo, Vimentin regulates peripheral nerve myelination, Development, vol.139, pp.1359-1367, 2012.

J. Ekblom, Monoamine oxidase-B in astrocytes, Glia, vol.8, pp.122-132, 1993.

J. Tong, Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders, Brain, vol.140, pp.2460-2474, 2017.

H. Gaweska and P. F. Fitzpatrick, Structures and mechanism of the monoamine oxidase family, Biomol. Concepts, vol.2, pp.365-377, 2011.

A. Serrano-pozo, A phenotypic change but not proliferation underlies glial responses in Alzheimer disease, Am. J. Pathol, vol.182, pp.2332-2344, 2013.

A. Tagarelli, Alois Alzheimer: a hundred years after the discovery of the eponymous disorder, Int. J. Biomed. Sci, vol.2, pp.196-204, 2006.

A. Serrano-pozo, Reactive glia not only associates with plaques but also parallels tangles in Alzheimer's disease, Am. J. Pathol, vol.179, pp.1373-1384, 2011.

A. Marutle, )H-deprenyl and (3)H-PIB autoradiography show different laminar distributions of astroglia and fibrillar beta-amyloid in Alzheimer brain, J. Neuroinflammation, vol.10, issue.3, p.90, 2013.

L. Lemoine, Cortical laminar tau deposits and activated astrocytes in Alzheimer's disease visualised by, 2017.

P. Yan, Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ, J. Biol. Chem, vol.281, pp.24566-24574, 2006.

K. J. Yin, Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism, J. Neurosci, vol.26, pp.10939-10948, 2006.

J. M. Tarasoff-conway, Clearance systems in the brain-implications for Alzheimer disease, Nat. Rev. Neurol, vol.11, pp.457-470, 2015.

S. Lesne, Transforming growth factor-beta 1 potentiates amyloid-beta generation in astrocytes and in transgenic mice, J. Biol. Chem, vol.278, pp.18408-18418, 2003.

G. Leuba, Neuronal and nonneuronal quantitative BACE immunocytochemical expression in the entorhinohippocampal and frontal regions in Alzheimer's disease, Dement. Geriatr. Cogn. Disord, vol.19, pp.171-183, 2005.

J. Hardy, Region-specific loss of glutamate innervation in Alzheimer's disease, Neurosci. Lett, vol.73, pp.77-80, 1987.

H. Beckstrom, Interindividual differences in the levels of the glutamate transporters GLAST and GLT, but no clear correlation with Alzheimer's disease, J. Neurosci. Res, vol.55, pp.218-229, 1999.

P. Garcia-esparcia, Glutamate transporter GLT1 expression in Alzheimer disease and dementia with Lewy bodies, Front. Aging Neurosci, vol.10, p.122, 2018.

O. Peters, Astrocyte function is modified by Alzheimer's disease-like pathology in aged mice, J. Alzheimers Dis, vol.18, pp.177-189, 2009.

E. Masliah, Abnormal glutamate transport function in mutant amyloid precursor protein transgenic mice, Exp. Neurol, vol.163, pp.381-387, 2000.

Z. Liang, Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer's disease patients, J. Neurochem, vol.80, pp.807-814, 2002.

J. D. Rothstein, Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate, Neuron, vol.16, pp.675-686, 1996.

P. Mookherjee, GLT-1 loss accelerates cognitive deficit onset in an Alzheimer's disease animal model, J. Alzheimers Dis, vol.26, pp.447-455, 2011.

J. K. Hefendehl, Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding Abeta plaques by iGluSnFR two-photon imaging, Nat. Commun, vol.7, p.13441, 2016.

S. Huang, Astrocytic glutamatergic transporters are involved in Abeta-induced synaptic dysfunction, Brain Res, vol.1678, pp.129-137, 2018.

K. Chen, Characterizing Alzheimer's disease using a hypometabolic convergence index, Neuroimage, vol.56, pp.52-60, 2011.

L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. U. S. A, vol.91, pp.10625-10629, 1994.

L. Pellerin, Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle, Dev. Neurosci, vol.20, pp.291-299, 1998.

B. Voutsinos-porche, Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex, Neuron, vol.37, pp.275-286, 2003.

E. R. Zimmer, 18)F]FDG PET signal is driven by astroglial glutamate transport, Nat. Neurosci, vol.20, pp.393-395, 2017.

M. A. Tarczyluk, Amyloid beta 1-42 induces hypometabolism in human stem cell-derived neuron and astrocyte networks, J. Cereb. Blood Flow Metab, vol.35, pp.1348-1357, 2015.

I. A. Simpson, Supply and demand in cerebral energy metabolism: the role of nutrient transporters, J. Cereb. Blood Flow Metab, vol.27, pp.1766-1791, 2007.

I. A. Simpson, Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease, Ann. Neurol, vol.35, pp.546-551, 1994.

Y. Liu, Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease, FEBS Lett, vol.582, pp.359-364, 2008.

C. X. Bittner, Fast and reversible stimulation of astrocytic glycolysis by K + and a delayed and persistent effect of glutamate, J. Neurosci, vol.31, pp.4709-4713, 2011.

I. Ruminot, NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K +, J. Neurosci, vol.31, pp.14264-14271, 2011.

I. Ruminot, Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue, J. Cereb. Blood Flow Metab, 2017.

Y. Zhang, An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex, J. Neurosci, vol.34, pp.11929-11947, 2014.

B. M. Schmitt, Na/HCO 3 cotransporters in rat brain: expression in glia, neurons, and choroid plexus, J. Neurosci, vol.20, pp.6839-6848, 2000.

T. Sotelo-hitschfeld, Channel-mediated lactate release by K(+)-stimulated astrocytes, J. Neurosci, vol.35, pp.4168-4178, 2015.

A. Karagiannis, Hemichannel-mediated release of lactate, J. Cereb. Blood Flow Metab, vol.36, pp.1202-1211, 2016.

J. P. Bolanos, Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes, J. Neurochem, vol.63, pp.910-916, 1994.

P. Cidad, Expression of glucose transporter GLUT3 by endotoxin in cultured rat astrocytes: the role of nitric oxide, J. Neurochem, vol.79, pp.17-24, 2001.

A. San-martin, Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism, J. Biol. Chem, vol.292, pp.9432-9438, 2017.

B. Brix, Endothelial cell-derived nitric oxide enhances aerobic glycolysis in astrocytes via HIF-1alpha-mediated target gene activation, J. Neurosci, vol.32, pp.9727-9735, 2012.

P. J. Norris, Neuronal nitric oxide synthase (nNOS) mRNA expression and NADPH-diaphorase staining in the frontal cortex, visual cortex and hippocampus of control and Alzheimer's disease brains, Brain Res. Mol. Brain Res, vol.41, pp.36-49, 1996.

K. J. Kwon, Disruption of neuronal nitric oxide synthase dimerization contributes to the development of Alzheimer's disease: involvement of cyclin-dependent kinase 5-mediated phosphorylation of neuronal nitric oxide synthase at Ser(293), Neurochem. Int, vol.99, pp.52-61, 2016.

E. Kaiser, Cerebrospinal fluid concentrations of functionally important amino acids and metabolic compounds in patients with mild cognitive impairment and Alzheimer's disease, Neurodegener. Dis, vol.7, pp.251-259, 2010.

C. Nathan, Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase, J. Exp. Med, vol.202, pp.1163-1169, 2005.

R. Lerchundi, NH 4 + triggers the release of astrocytic lactate via mitochondrial pyruvate shunting, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.11090-11095, 2015.

A. Suzuki, Astrocyte-neuron lactate transport is required for long-term memory formation, Cell, vol.144, pp.810-823, 2011.

R. A. Swanson, Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can, J. Physiol. Pharmacol, vol.70, pp.138-144, 1992.

J. Chuquet, Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex, J. Neurosci, vol.30, pp.15298-15303, 2010.

E. A. Winkler, GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration, Nat. Neurosci, vol.18, pp.521-530, 2015.

H. Zetterberg and K. Blennow, Fluid markers of traumatic brain injury, Mol. Cell. Neurosci, vol.66, pp.99-102, 2015.

V. Lam, The serum concentration of the calcium binding protein S100B is positively associated with cognitive performance in older adults, Front. Aging Neurosci, vol.5, p.61, 2013.

P. Mecocci, Serum anti-GFAP and anti-S100 autoantibodies in brain aging, Alzheimer's disease and vascular dementia, J. Neuroimmunol, vol.57, pp.165-170, 1995.

M. L. Chaves, Serum levels of S100B and NSE proteins in Alzheimer's disease patients, J. Neuroinflammation, vol.7, p.6, 2010.

K. Blennow, Cerebrospinal fluid and plasma biomarkers in Alzheimer disease, Nat. Rev. Neurol, vol.6, pp.131-144, 2010.

A. Ishiki, Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer's disease, dementia with Lewy bodies, and frontotemporal lobar degeneration, J. Neurochem, vol.136, pp.258-261, 2016.

R. Fukuyama, The cerebrospinal fluid level of glial fibrillary acidic protein is increased in cerebrospinal fluid from Alzheimer's disease patients and correlates with severity of dementia, Eur. Neurol, vol.46, pp.35-38, 2001.

P. T. Nooijen, Neuron-specific enolase, S-100 protein, myelin basic protein and lactate in CSF in dementia, Dement. Geriatr. Cogn. Disord, vol.8, pp.169-173, 1997.

S. Jesse, Glial fibrillary acidic protein and protein S-100B: different concentration pattern of glial proteins in cerebrospinal fluid of patients with Alzheimer's disease and Creutzfeldt-Jakob disease, J. Alzheimers Dis, vol.17, pp.541-551, 2009.

E. R. Peskind, Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer's disease, Neurochem. Int, vol.39, pp.409-413, 2001.

B. Olsson, CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis, Lancet Neurol, vol.15, pp.673-684, 2016.

C. Madeira, D-Serine levels in Alzheimer's disease: implications for novel biomarker development, Transl. Psychiatry, vol.5, p.561, 2015.

M. Querol-vilaseca, YKL-40 (chitinase 3-like I) is expressed in a subset of astrocytes in Alzheimer's disease and other tauopathies, J. Neuroinflammation, vol.14, p.118, 2017.

C. N. Rathcke and H. Vestergaard, YKL-40 -an emerging biomarker in cardiovascular disease and diabetes. Cardiovasc, Diabetol, vol.8, p.61, 2009.

D. Alcolea, Relationship between beta-secretase, inflammation and core cerebrospinal fluid biomarkers for Alzheimer's disease, J. Alzheimers Dis, vol.42, pp.157-167, 2014.

R. Craig-schapiro, YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer's disease, Biol. Psychiatry, vol.68, pp.903-912, 2010.

D. Alcolea, Amyloid precursor protein metabolism and inflammation markers in preclinical Alzheimer disease, Neurology, vol.85, pp.626-633, 2015.

A. Antonell, Cerebrospinal fluid level of YKL-40 protein in preclinical and prodromal Alzheimer's disease, J. Alzheimers Dis, vol.42, pp.901-908, 2014.

P. Edison, In vivo imaging of glial activation in Alzheimer's disease, Front. Neurol, vol.9, p.625, 2018.

M. Cosenza-nashat, Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain, Neuropathol. Appl. Neurobiol, vol.35, pp.306-328, 2009.

S. Lavisse, Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging, J. Neurosci, vol.32, pp.10809-10818, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02110993

J. S. Fowler, Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon, p.11, 1995.

, L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping, J. Nucl. Med, vol.36, pp.1255-1262

R. J. Tyacke, Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography ligand, Synapse, vol.99008, issue.2, pp.542-551, 2012.

H. Engler, Multitracer study with positron emission tomography in Creutzfeldt-Jakob disease, Eur. J. Nucl. Med. Mol. Imaging, vol.30, pp.85-95, 2003.

A. Johansson, Evidence for astrocytosis in ALS demonstrated by [11]C(L)-deprenyl-D2 PET, J. Neurol. Sci, vol.255, pp.17-22, 2007.

E. Kumlien, PET with 11 C-deuterium-deprenyl and 18 F-FDG in focal epilepsy, Acta Neurol. Scand, vol.103, pp.360-366, 2001.

M. Olsen, Astroglial responses to amyloid-beta progression in a mouse model of Alzheimer's disease, Mol. Imaging Biol, vol.20, pp.605-614, 2018.

E. Rodriguez-vieitez, Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study, Eur. J. Nucl. Med. Mol. Imaging, vol.42, pp.1119-1132, 2015.

S. F. Carter, Evidence for astrocytosis in prodromal Alzheimer disease provided by 11 C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11 C-Pittsburgh compound B and 18 F-FDG, J. Nucl. Med, vol.53, pp.37-46, 2012.

M. Scholl, Early astrocytosis in autosomal dominant Alzheimer's disease measured in vivo by multi-tracer positron emission tomography, Sci. Rep, vol.5, p.16404, 2015.

E. Rodriguez-vieitez, Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease, Brain, vol.139, pp.922-936, 2016.

C. A. Parker, Evaluation of 11C-BU99008, a PET ligand for the imidazoline2 binding sites in rhesus brain, J. Nucl. Med, vol.55, pp.838-844, 2014.

R. J. Tyacke, Evaluation of (11)C-BU99008, a positron emission tomography ligand for the imidazoline2 binding site in human brain, J. Nucl. Med, vol.59, pp.1597-1602, 2018.

J. L. Harris, Probing astrocyte metabolism in vivo: proton magnetic resonance spectroscopy in the injured and aging brain, Front. Aging Neurosci, vol.7, p.202, 2015.

F. Gao and P. B. Barker, Various MRS application tools for Alzheimer disease and mild cognitive impairment, AJNR Am. J. Neuroradiol, vol.35, pp.4-11, 2014.

N. Hattori, Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer's disease, Neuroreport, vol.13, pp.183-186, 2002.

K. Kantarci, Proton MR spectroscopy in mild cognitive impairment and Alzheimer disease: comparison of 1.5 and 3 T, AJNR Am. J. Neuroradiol, vol.24, pp.843-849, 2003.

M. E. Murray, Early Alzheimer's disease neuropathology detected by proton MR spectroscopy, J. Neurosci, vol.34, pp.16247-16255, 2014.

E. Dorey, Apolipoprotein E isoforms differentially regulate Alzheimer's disease and amyloid-beta-induced inflammatory response in vivo and in vitro, J. Alzheimers Dis, vol.57, pp.1265-1279, 2017.

S. Simonovitch, Impaired autophagy in APOE4 astrocytes, J. Alzheimers Dis, vol.51, pp.915-927, 2016.

J. Zhao, APOE epsilon4/epsilon4 diminishes neurotrophic function of human iPSC-derived astrocytes, Hum. Mol. Genet, vol.26, pp.2690-2700, 2017.

M. Koistinaho, Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides, Nat. Med, vol.10, pp.719-726, 2004.

Y. T. Lin, APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types, Neuron, vol.98, p.1294, 2018.

T. Mori, Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer's disease, Glia, vol.58, pp.300-314, 2010.

W. Kamphuis, Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease, Neurobiol. Aging, vol.35, pp.492-510, 2014.

T. Yamada, Vimentin immunoreactivity in normal and pathological human brain tissue, Acta Neuropathol, vol.84, pp.157-162, 1992.

L. J. Van-eldik and W. S. Griffin, S100 beta expression in Alzheimer's disease: relation to neuropathology in brain regions, Biochim. Biophys. Acta, vol.1223, pp.398-403, 1994.

M. Olabarria, Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer's disease, Glia, vol.58, pp.831-838, 2010.

C. Y. Yeh, Early astrocytic atrophy in the entorhinal cortex of a triple transgenic animal model of Alzheimer's disease, ASN Neuro, vol.3, pp.271-279, 2011.

A. Gomez-arboledas, Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer's disease, Glia, vol.66, pp.637-653, 2018.

T. G. Beach and E. G. Mcgeer, Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer's disease visual cortex, Brain Res, vol.463, pp.357-361, 1988.

V. K. Vijayan, Immunochemical and morphometric features of astrocyte reactivity vs. plaque location in Alzheimer's disease, Medicina (B Aires), vol.112, pp.213-218, 1991.

M. Matos, Astrocytic adenosine A2A receptors control the amyloid-beta peptide-induced decrease of glutamate uptake, J. Alzheimers Dis, vol.31, pp.555-567, 2012.

A. N. Shrivastava, beta-amyloid and ATP-induced diffusional trapping of astrocyte and neuronal metabotropic glutamate type-5 receptors, Glia, vol.61, pp.1673-1686, 2013.

M. Lee, Abeta pathology downregulates brain mGluR5 density in a mouse model of Alzheimer, Neuropharmacology, vol.133, pp.512-517, 2018.

M. Talantova, Abeta induces astrocytic glutamate release extrasynaptic NMDA receptor activation, and synaptic loss, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.2518-2527, 2013.

J. E. Simpson, Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain, Neurobiol. Aging, vol.31, pp.578-590, 2010.

D. Lim, Amyloid beta deregulates astroglial mGluR5-mediated calcium signaling via calcineurin and Nf-kB, Glia, vol.61, pp.1134-1145, 2013.

S. Mitew, Altered synapses and gliotransmission in Alzheimer's disease and AD model mice, Neurobiol. Aging, vol.34, pp.2341-2351, 2013.

Z. Wu, Tonic inhibition in dentate gyrus impairs longterm potentiation and memory in an Alzheimer's [corrected] disease model, Nat. Commun, vol.5, p.4159, 2014.

T. Teaktong, Alzheimer's disease is associated with a selective increase in alpha7 nicotinic acetylcholine receptor immunoreactivity in astrocytes, Glia, vol.41, pp.207-211, 2003.

W. F. Yu, High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer's disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques, Exp. Neurol, vol.192, pp.215-225, 2005.

T. Teaktong, Nicotinic acetylcholine receptor immunohistochemistry in Alzheimer's disease and dementia with Lewy bodies: differential neuronal and astroglial pathology, J. Neurol. Sci, vol.225, pp.39-49, 2004.

C. R. Hooijmans, Amyloid beta deposition is related to decreased glucose transporter-1 levels and hippocampal atrophy in brains of aged APP/PS1 mice, Brain Res, vol.1181, pp.93-103, 2007.

J. Zhao, The contribution of activated astrocytes to Abeta production: implications for Alzheimer's disease pathogenesis, J. Neuroinflammation, vol.8, p.150, 2011.

M. Hartlage-rubsamen, Astrocytic expression of the Alzheimer's disease beta-secretase (BACE1) is stimulusdependent, Glia, vol.41, pp.169-179, 2003.

M. C. Leal, Plaque-associated overexpression of insulin-degrading enzyme in the cerebral cortex of aged transgenic tg2576 mice with Alzheimer pathology, J. Neuropathol. Exp. Neurol, vol.65, pp.976-987, 2006.

T. E. Golde, Expression of beta amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer's disease using PCR, Neuron, vol.4, pp.253-267, 1990.

S. Rossner, Alzheimer's disease beta-secretase BACE1 is not a neuron-specific enzyme, J. Neurochem, vol.92, pp.226-234, 2005.

V. B. Dorfman, Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer's disease, Neurobiol. Aging, vol.31, pp.1743-1757, 2010.

J. S. Miners, Neprilysin and insulin-degrading enzyme levels are increased in Alzheimer disease in relation to disease severity, J. Neuropathol. Exp. Neurol, vol.68, pp.902-914, 2009.

C. J. Garwood, Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture, Cell Death Dis, vol.2, p.167, 2011.

B. D. Gitter, Amyloid beta peptide potentiates cytokine secretion by interleukin-1 beta-activated human astrocytoma cells, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.10738-10741, 1995.

J. Ojala, Expression of interleukin-18 is increased in the brains of Alzheimer'sdiseasepatients, Neurobiol. Aging, vol.30, pp.198-209, 2009.

D. S. Bouvier, High resolution dissection of reactive glial nets in Alzheimer's disease, Sci. Rep, vol.6, p.24544, 2016.

L. P. Diniz, Astrocyte transforming growth factor beta 1 protects synapses against Abeta oligomers in Alzheimer's disease model, J. Neurosci, vol.37, pp.6797-6809, 2017.

B. Ye, Dual pathways mediate beta-amyloid stimulated glutathione release from astrocytes, Glia, vol.63, pp.2208-2219, 2015.

A. Y. Abramov, Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity, J. Neurosci, vol.23, pp.5088-5095, 2003.

J. C. Jeong, Effects of Bambusae concretio Salicea (Chunchukhwang) on amyloid beta-induced cell toxicity and antioxidative enzymes in cultured rat neuronal astrocytes, J. Ethnopharmacol, vol.98, pp.259-266, 2005.

N. T. Hettiarachchi, Heme oxygenase-1 derived carbon monoxide suppresses Abeta1-42 toxicity in astrocytes, Cell Death Dis, vol.8, p.2884, 2017.

D. Aguirre-rueda, 212-2, agonist of cannabinoid receptors, prevents amyloid beta1-42 effects on astrocytes in primary culture, PLoS One, vol.55, p.122843, 2015.

A. Wong, Advanced glycation endproducts colocalize with inducible nitric oxide synthase in Alzheimer's disease, Brain Res, vol.920, pp.32-40, 2001.

E. Alberdi, Ca(2+)-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid beta-treated astrocytes and in a model of Alzheimer's disease, Aging Cell, vol.12, pp.292-302, 2013.

D. M. Wilcock, Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer's disease, Neuroscience, vol.159, pp.1055-1069, 2009.