M. P. Alvarez-flores, M. Fritzen, C. V. Reis, and A. M. Chudzinski-tavassi, Losac, a factor X activator from Lonomia obliqua bristle extract: its role in the pathophysiological mechanisms and cell survival, Biochem. Biophys. Res. Commun, vol.343, pp.1216-1223, 2006.

M. P. Alvarez-flores, D. Furlin, O. H. Ramos, A. Balan, K. Konno et al., Losac, the first hemolin that exhibits procogulant activity through selective factor X proteolytic activation, J. Biol. Chem, vol.286, pp.6918-6928, 2011.

C. R. Benton, S. E. Campbell, M. Tonouchi, H. Hatta, and A. Bonen, Monocarboxylate transporters in subsarcolemmal and intermyofibrillar mitochondria, Biochem. Biophys. Res. Commun, vol.323, pp.249-253, 2004.

C. Berthet, X. Castillo, P. J. Magistretti, and L. Hirt, New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration, Cerebrovasc. Dis, vol.34, pp.329-335, 2012.

T. M. Bliss, M. Ip, E. Cheng, M. Minami, L. Pellerin et al., Dual-gene, dual-cell type therapy against an excitotoxic insult by bolstering neuroenergetics, J. Neurosci, vol.24, pp.6202-6208, 2004.

J. Bockaert and P. Marin, mTOR in brain physiology and pathologies, Physiol. Rev, vol.95, pp.1157-1187, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02064368

R. V. Bosch, M. P. Alvarez-flores, D. A. Maria, and A. M. Chudzinski-tavassi, Hemolin triggers cell survival on fibroblasts in response to serum deprivation by inhibition of apoptosis, Biomed. Pharmacother, vol.82, pp.537-546, 2016.

G. J. Brewer, J. R. Torricelli, E. K. Evege, and P. J. Price, Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination, J. Neurosci. Res, vol.35, pp.567-576, 1993.

X. Castillo, K. Rosafio, M. T. Wyss, K. Drandarov, A. Buck et al., A probable dual mode of action for both L-and D-lactate neuroprotection in cerebral ischemia, J. Cereb. Blood Flow Metab, vol.35, pp.1561-1569, 2015.

J. Chenal and L. Pellerin, Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway, J. Neurochem, vol.102, pp.389-397, 2007.

J. Chenal, K. Pierre, and L. Pellerin, Insulin and IGF-1 enhance the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin pathway, Eur. J. Neurosci, vol.27, pp.53-65, 2008.

C. A. Cobb and M. P. Cole, Oxidative and nitrative stress in neurodegeneration, Neurobiol. Dis, vol.84, pp.4-21, 2015.

R. Debernardi, K. Pierre, S. Lengacher, P. J. Magistretti, and L. Pellerin, Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures, J. Neurosci. Res, vol.73, pp.141-155, 2003.

L. A. Demetrius, P. J. Magistretti, and L. Pellerin, Alzheimer's disease: the amyloid hypothesis and the Inverse Warburg effect, Front. Physiol, vol.5, p.522, 2014.

G. Fotakis and J. A. Timbrell, In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride, Toxicol. Lett, vol.160, pp.171-177, 2006.

A. P. Halestrap and N. T. Price, The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation, Biochem. J, vol.343, pp.281-299, 1999.

C. A. Hoeffer and E. Klann, mTOR signaling: at the crossroads of plasticity, memory and disease, Trends Neurosci, vol.33, pp.67-75, 2010.

S. Hong, J. Y. Ahn, and G. S. Cho, Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia, Neural. Reg. Res, vol.10, pp.1604-1611, 2015.

S. R. Hutton, J. M. Otis, and K. E. , ERK/MAPK signaling Is required for pathway-specific striatal motor functions, J. Neurosci, vol.37, pp.8102-8115, 2017.

P. Jourdain, I. Allaman, K. Rothenfusser, H. Fiumelli, P. Marquet et al., L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade, Sci. Rep, vol.6, p.21250, 2016.

I. Llorente-folch, C. B. Rueda, I. Li-ebana, J. Satr, and B. Pardo, ) l-lactate-mediated neuroprotection against glutamate-induced excitotoxicity requires ARALAR/AGC1, J. Neurosci, vol.36, pp.4443-4456, 2016.

X. M. Ma and J. Blenis, Molecular mechanisms of mTOR-mediated translational control, Nat. Rev. Mol. Cell Biol, vol.10, pp.307-318, 2009.

F. Maekawa, K. Minehira, K. Kadomatsu, and L. Pellerin, Basal and stimulated lactate fluxes in primary cultures of astrocytes are differentially controlled by distinct proteins, J. Neurochem, vol.107, pp.789-798, 2008.

F. Maekawa, T. Tsuboi, M. Fukuda, and L. Pellerin, Regulation of the intracellular distribution, cell surface expression, and protein levels of AMPA receptor GluR2 subunits by the monocarboxylate transporter MCT2 in neuronal cells, J. Neurochem, vol.109, pp.1767-1778, 2009.

F. Marcillac, B. Brix, C. Repond, O. Johren, and L. Pellerin, Nitric oxide induces the expression of the monocarboxylate transporter MCT4 in cultured astrocytes by a cGMP-independent transcriptional activation, Glia, vol.59, pp.1987-1995, 2011.

R. S. Morrison, Y. Kinoshita, M. D. Johnson, S. Ghatan, J. T. Ho et al., Neuronal survival and cell death signaling pathways, Adv. Exp. Med. Biol, vol.513, pp.41-86, 2002.

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol.65, pp.55-63, 1983.

S. W. Park, J. G. Lee, M. K. Seo, C. H. Lee, H. Y. Cho et al., Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons, Int. J. Neuropsychopharmacol, vol.17, pp.1831-1846, 2014.

C. Patet, H. Quintard, T. Suys, J. Bloch, R. T. Daniel et al., Neuroenergetic response to prolonged cerebral glucose depletion after severe brain injury and the role of lactate, J. Neurotrauma, vol.32, pp.1560-1566, 2015.

L. Pellerin, Lactate as a pivotal element in neuron-glia metabolic cooperation, Neurochem. Int, vol.43, pp.331-338, 2003.

J. Perez-escuredo, V. F. Van-hee, M. Sboarina, J. Falces, V. L. Payen et al., Monocarboxylate transporters in the brain and in cancer, Biochim. Biophys. Acta, vol.1863, pp.2481-2497, 2016.

K. Pierre and L. Pellerin, Monocarboxylate transporters in the central nervous system: distribution, regulation and function, J. Neurochem, vol.94, pp.1-14, 2005.

K. Pierre, L. Pellerin, R. Debernardi, B. M. Riederer, and P. J. Magistretti, Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy, Neuroscience, vol.100, pp.617-627, 2000.

K. Pierre, P. J. Magistretti, and L. Pellerin, MCT2 is a major neuronal monocarboxylate transporter in the adult mouse brain, J. Cereb. Blood Flow Metab, vol.22, pp.586-595, 2002.

K. Pierre, J. Y. Chatton, A. Parent, C. Repond, F. Gardoni et al., Linking supply to demand: the neuronal monocarboxylate transporter MCT2 and the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptor GluR2/3 subunit are associated in a common trafficking process, Eur. J. Neurosci, vol.29, pp.1951-1963, 2009.

H. Quintard, C. Patet, J. B. Zerlauth, T. Suys, P. Bouzat et al., Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/ pyruvate ratio, J. Neurotrauma, vol.33, pp.681-687, 2016.

D. E. Read and A. M. Gorman, Involvement of Akt in neurite outgrowth, Cell. Mol. Life Sci, vol.66, pp.2975-2984, 2009.

C. Robinet and L. Pellerin, Brain-derived neurotrophic factor enhances the expression of the monocarboxylate transporter 2 through translational activation in mouse cultured cortical neurons, J. Cereb. Blood Flow Metab, vol.30, pp.286-298, 2010.

R. M. Sapolsky, Neuroprotective gene therapy against acute neurological insults, Nat. Rev. Neurosci, vol.4, pp.61-69, 2003.

J. E. Young, R. A. Martinez, L. Spada, and A. R. , Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation, J. Biol. Chem, vol.284, pp.2363-2373, 2009.