J. L. Anderson-;-anderson, The Impact of Dynamical Constraints on the Selection of Initial Conditions for Ensemble Predictions: Low-Order Perfect Model Results, Monthly Weather Review, vol.125, pp.2969-2983, 1997.

. Andrews, Examination of the wind speed limit function in the Rothermel surface fire spread model, International Journal of Wildland Fire, vol.22, 2013.

[. Benali, Deciphering the impact of uncertainty on the accuracy of large wildfire spread simulations, Science of The Total Environment, vol.569, pp.73-85, 2016.

[. Benali, Fire spread predictions: Sweeping uncertainty under the rug, Science of The Total Environment, vol.592, pp.187-196, 2017.

, Caflisch RE (1998) Monte Carlo and quasi-Monte Carlo methods, Acta Numerica, vol.7, pp.1-49

[. Cai, Analysis of the uncertainty of fuel model parameters in wildland fire modelling of, 2019.

F. Auguste, P. Bechtold, S. Berthet, S. Bieilli, F. Bosseur et al.,

P. Mascart, M. Mogé, G. Molinié, O. Nuissier, F. Pantillon et al.,

S. Riette, Q. Rodier, R. Schoetter, L. Seyfried, J. Stein et al., Overview of the Meso-NH model version 5.4 and its applications, Geoscientific Model Development Discussions, vol.11, pp.1929-1969, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01712969

, Lautenberger C (2017) Mapping areas at elevated risk of large-scale structure loss using Monte Carlo simulation and wildland fire modeling, Fire Safety Journal, vol.91, pp.768-775

. Liu, Global sensitivity analysis for the Rothermel model based on high-dimensional model representation, Fire Safety Science: Proceedings of the 12th International Symposium, vol.45, pp.1474-1479, 2015.

[. Liu, Parametric uncertainty quantification in the Rothermel model with randomised quasi-Monte Carlo methods, International Journal of Wildland Fire, vol.24, pp.307-316, 2015.

[. Miller, SPARK -A Bushfire Spread Prediction Tool, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01328559

, Infrastructures, Services and Applications, pp.262-271

A. H. Murphy, A New Vector Partition of the Probability Score, Journal of Applied Meteorology, vol.12, pp.595-600, 1962.

. Parisien, , 2005.

. Paz, Postfire analysis of pre-fire mapping of fire-risk: A recent case study from Mt. Carmel (Israel), Forest Ecology and Management, vol.262, pp.1184-1188, 2011.

[. Pinto, Probabilistic fire spread forecast as a management tool in an operational setting, SpringerPlus, vol.5, p.1205, 2016.

R. Rothermel and . Salis, Assessing exposure of human and ecological values to wildfire in Sardinia, Italy. International Journal of Wildland Fire, vol.40, pp.549-565, 1972.

. Salis, Predicting wildfire spread and behavior in Mediterranean landscapes, International Journal of Wildland Fire, vol.25, pp.1015-1032, 2016.

[. Salvador, Global sensitivity analysis and scale effects of a fire propagation model used over Mediterranean shrublands, Ecological Modelling, vol.136, pp.419-420, 2001.

[. Schroeder, The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment, Remote Sensing of Environment, vol.143, pp.85-96, 2014.

A. L. Sullivan, Wildland surface fire spread modelling, 1990-2007. 1: Physical and quasi-physical models, International Journal of Wildland Fire, vol.18, pp.349-368, 2009.

. Termonia, The AL-ADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1, Geoscientific Model Development, vol.11, pp.257-281, 2018.

. Thompson, Uncertainty and probability in wildfire management decision support: An example from the United States, Natural Hazard Uncertainty Assessment: Modelling and Decision Support, vol.223, pp.215-300, 2011.