L. Pellerin and P. J. Magistretti, Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization, Proc. Natl. Acad. Sci. USA, vol.91, pp.10625-10629, 1994.

J. Chuquet, P. Quilichini, E. A. Nimchinsky, and G. Buzsaki, Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex, J. Neurosci, vol.30, pp.15298-15303, 2010.

B. Voutsinos-porche, G. Bonvento, K. Tanaka, P. Steiner, E. Welker et al., Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex, Neuron, vol.37, pp.275-286, 2003.

E. R. Zimmer, M. J. Parent, D. G. Souza, A. Leuzy, C. Lecrux et al., 18 F]FDG PET signal is driven by astroglial glutamate transport, Nat. Neurosci, vol.20, pp.393-395, 2017.

K. Kacem, P. Lacombe, J. Seylaz, and G. Bonvento, Structural organization of the perivascular astrocyte endfeet and their relationship with the endothelial glucose transporter: a confocal microscopy study, Glia, vol.23, pp.1-10, 1998.

S. Morgello, R. R. Uson, E. J. Schwartz, and R. S. Haber, The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes, Glia, vol.14, pp.43-54, 1995.

M. S. Mü-ller, M. Fouyssac, and C. W. Taylor, Effective glucose uptake by human astrocytes requires its sequestration in the endoplasmic reticulum by glucose-6-phosphatase-b, Curr. Biol, vol.28, pp.3481-3486, 2018.

A. E. Waitt, L. Reed, B. R. Ransom, and A. M. Brown, Emerging roles for glycogen in the CNS, Front. Mol. Neurosci, vol.10, p.73, 2017.

K. Schmidt, G. Lucignani, K. Mori, T. Jay, E. Palombo et al., Refinement of the kinetic model of the 2-[14C]deoxyglucose method to incorporate effects of intracellular compartmentation in brain, J. Cereb. Blood Flow Metab, vol.9, pp.290-303, 1989.

E. Bindocci, I. Savtchouk, N. Liaudet, D. Becker, G. Carriero et al., Three-dimensional Ca 2+ imaging advances understanding of astrocyte biology, Science, vol.356, p.6339, 2017.

R. Dringen, R. Gebhardt, and B. Hamprecht, Glycogen in astrocytes: possible function as lactate supply for neighboring cells, Brain Res, vol.623, pp.208-214, 1993.

P. J. Magistretti, O. Sorg, N. Yu, J. L. Martin, and L. Pellerin, Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells, Dev. Neurosci, vol.15, pp.306-312, 1993.

P. G. Bittar, Y. Charnay, L. Pellerin, C. Bouras, and P. J. Magistretti, Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain, J. Cereb. Blood Flow Metab, vol.16, pp.1079-1089, 1996.

K. Pierre and L. Pellerin, , 2005.

, Monocarboxylate transporters in the central nervous system: distribution, regulation and function, J. Neurochem, vol.94, pp.1-14

T. Sotelo-hitschfeld, M. I. Niemeyer, P. Ruminot, I. Lerchundi, R. Wyss et al., Channel-mediated lactate release by K + -stimulated astrocytes, J. Neurosci, vol.35, pp.4168-4178, 2015.

L. Pellerin and P. J. Magistretti, Sweet sixteen for ANLS, J. Cereb. Blood Flow Metab, vol.32, pp.1152-1166, 2012.

A. K. Bouzier-sore, P. Voisin, P. Canioni, P. J. Magistretti, and L. Pellerin, , 2003.

, Lactate is a preferential oxidative energy substrate over glucose for neurons in culture, J. Cereb. Blood Flow Metab, vol.23, pp.1298-1306

P. M?-achler, M. T. Wyss, M. Elsayed, J. Stobart, R. Gutierrez et al., In vivo evidence for a lactate gradient from astrocytes to neurons, Cell Metab, vol.23, pp.94-102, 2016.

L. F. Barros, A. San-martin, T. Sotelo-hitschfeld, R. Lerchundi, I. Fernandez-moncada et al., Small is fast: astrocytic glucose and lactate metabolism at cellular resolution. Front, Cell. Neurosci, vol.7, p.27, 2013.

A. San-martin, S. Ceballo, I. Ruminot, R. Lerchundi, W. B. Frommer et al., A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells, PLoS One, vol.8, p.57712, 2013.