P. Kaye and P. Scott, Leishmaniasis: complexity at the host-pathogen interface, Nat Rev Microbiol, vol.9, pp.604-615, 2011.

E. C. Saunders, W. W. Ng, J. M. Chambers, M. Ng, and T. Naderer, Isotopomer profiling of Leishmania mexicana promastigotes reveals important roles for succinate fermentation and aspartate uptake in tricarboxylic acid cycle (TCA) anaplerosis, glutamate synthesis, and growth, J Biol Chem, vol.286, pp.27706-27717, 2011.

E. C. Saunders, W. W. Ng, J. Kloehn, J. M. Chambers, and M. Ng, Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism, PLoS Pathog, vol.10, 2014.

D. T. Hart and G. H. Coombs, Leishmania mexicana: energy metabolism of amastigotes and promastigotes, Exp Parasitol, vol.54, pp.397-409, 1982.

M. J. Mcconville, E. C. Saunders, J. Kloehn, and M. J. Dagley, Leishmania carbon metabolism in the macrophage phagolysosome-feast or famine?, vol.4, p.938, 2015.

P. J. Alcolea, A. Alonso, M. J. Gomez, I. Moreno, and M. Dominguez, Transcriptomics throughout the life cycle of Leishmania infantum: high down-regulation rate in the amastigote stage, Int J Parasitol, vol.40, pp.1497-1516, 2010.

P. J. Alcolea, A. Alonso, M. J. Gomez, M. Postigo, and R. Molina, Stage-specific differential gene expression in Leishmania infantum: from the foregut of Phlebotomus perniciosus to the human phagocyte, BMC Genomics, vol.15, p.849, 2014.

T. R. Holzer, W. R. Mcmaster, and J. D. Forney, Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana, Mol Biochem Parasitol, vol.146, pp.198-218, 2006.

J. Kloehn, E. C. Saunders, S. O'callaghan, and M. J. Dagley, McConville MJ Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling, PLoS Pathog, vol.11, p.1004683, 2015.

T. Naderer, J. Heng, E. C. Saunders, J. Kloehn, and T. W. Rupasinghe, Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages, PLoS Pathog, vol.11, 2015.

K. Leifso, G. Cohen-freue, N. Dogra, A. Murray, and W. R. Mcmaster, Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed, Mol Biochem Parasitol, vol.152, pp.35-46, 2007.

P. A. Michels, F. Bringaud, and M. Herman, Hannaert V Metabolic functions of glycosomes in trypanosomatids, Biochim Biophys Acta, vol.1763, pp.1463-1477, 2006.

E. J. Kerkhoven, F. Achcar, V. P. Alibu, R. J. Burchmore, and I. H. Gilbert, Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei, PLoS Comput Biol, vol.9, 2013.

B. M. Bakker, F. I. Mensonides, B. Teusink, P. Van-hoek, and P. A. Michels, Compartmentation protects trypanosomes from the dangerous design of glycolysis, Proc Natl Acad Sci U S A, vol.97, pp.2087-2092, 2000.

A. Stincone, A. Prigione, T. Cramer, M. M. Wamelink, and K. Campbell, The return of metabolism: biochemistry and physiology of the pentose phosphate pathway, Biol Rev Camb Philos Soc, vol.90, pp.927-963, 2015.

A. T. Cordeiro, O. H. Thiemann, and P. A. Michels, Inhibition of Trypanosoma brucei glucose-6-phosphate dehydrogenase by human steroids and their effects on the viability of cultured parasites, Bioorg Med Chem, vol.17, pp.2483-2489, 2009.

A. Mukherjee, S. Boisvert, R. L. Monte-neto, A. C. Coelho, and F. Raymond, Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania, Mol Microbiol, vol.88, pp.189-202, 2013.

J. Faria, I. Loureiro, N. Santarem, P. Cecilio, and S. Macedo-ribeiro, Disclosing the essentiality of ribose-5-phosphate isomerase B in Trypanosomatids, Sci Rep, vol.6, p.26937, 2016.

W. I. Staiger, J. F. Coy, R. Grobholz, R. D. Hofheinz, and N. Lukan, Expression of the mutated transketolase TKTL1, a molecular marker in gastric cancer, Oncol Rep, vol.16, pp.657-661, 2006.

I. Xu, R. Lai, S. Lin, A. Tse, and D. Chiu, Transketolase counteracts oxidative stress to drive cancer development, Proceedings of the National Academy of Sciences, vol.113, pp.725-734, 2016.

S. Langbein, M. Zerilli, Z. Hausen, A. Staiger, W. Rensch-boschert et al., Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted, Br J Cancer, vol.94, pp.578-585, 2006.

S. A. Stoffel, V. P. Alibu, J. Hubert, C. Ebikeme, and J. C. Portais, Transketolase in Trypanosoma brucei, Mol Biochem Parasitol, vol.179, pp.1-7, 2011.

D. J. Creek, M. Mazet, F. Achcar, J. Anderson, and D. H. Kim, Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose, PLoS Pathog, vol.11, p.1004689, 2015.

C. N. Cronin and D. P. Nolan, Voorheis HP The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei, FEBS Lett, vol.244, pp.26-30, 1989.

N. J. Veitch, D. A. Maugeri, J. J. Cazzulo, Y. Lindqvist, and M. P. Barrett, Transketolase from Leishmania mexicana has a dual subcellular localization, Biochem J, vol.382, pp.759-767, 2004.

W. Moreira, P. Leprohon, and M. Ouellette, Tolerance to drug-induced cell death favours the acquisition of multidrug resistance in Leishmania, Cell Death Dis, vol.2, 2011.

F. P. Keegan and J. Blum, Utilization of a carbohydrate reserve comprised primarily of mannose by Leishmania donovani, Molecular and Biochemical Parasitology, vol.53, pp.193-200, 1992.

W. N. Lee, L. G. Boros, J. Puigjaner, S. Bassilian, and S. Lim, Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose, Am J Physiol, vol.274, pp.843-851, 1998.

M. B. Hughes and J. C. Lucchesi, Genetic rescue of a lethal "null" activity allele of 6-phosphogluconate dehydrogenase in Drosophila melanogaster, Science, vol.196, pp.1114-1115, 1977.

Z. Lobo and P. K. Miatra, Pentose Phosphate Pathway Mutants of Yeast, Mol Gen Genet, vol.185, pp.367-368, 1982.

M. Silverberg, Dalziel K 6-Phospho-D-gluconate dehydrogenase from sheep liver, Methods Enzymol, vol.41, pp.214-220, 1975.

R. H. Villet and K. Dalziel, Purification and properties of 6-phosphogluconate dehydrogenase from sheep liver, Biochem J, vol.115, pp.639-643, 1969.

R. J. Burchmore, D. Rodriguez-contreras, K. Mcbride, P. Merkel, and M. P. Barrett, Genetic characterization of glucose transporter function in Leishmania mexicana, Proc Natl Acad Sci U S A, vol.100, pp.3901-3906, 2003.

A. Seyfang and M. Duszenko, Functional reconstitution of the Trypanosoma brucei plasma-membrane D-glucose transporter, Eur J Biochem, vol.214, pp.593-597, 1993.

J. E. Ralton, T. Naderer, H. L. Piraino, T. A. Bashtannyk, and J. M. Callaghan, Evidence that intracellular beta1-2 mannan is a virulence factor in Leishmania parasites, J Biol Chem, vol.278, pp.40757-40763, 2003.

T. Naderer, J. Heng, and M. J. Mcconville, Evidence that intracellular stages of Leishmania major utilize amino sugars as a major carbon source, PLoS Pathog, vol.6, p.1001245, 2010.

J. Kovarova and M. P. Barrett, The Pentose Phosphate Pathway in Parasitic Trypanosomatids, Trends Parasitol, vol.32, pp.622-634, 2016.

M. A. Comini, C. Ortíz, and J. J. Cazzulo, Drug Targets in Trypanosomal and Leishmanial Pentose Phosphate Pathway, Trypanosomatid Diseases, pp.297-313, 2013.

D. Rodriguez-contreras and N. Hamilton, Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase, J Biol Chem, vol.289, pp.32989-33000, 2014.

R. Bais, H. M. James, and A. M. Rofe, Conyers RA The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol, Biochem J, vol.230, pp.53-60, 1985.

A. Lal and W. C. Plaxton, Kayastha AM Purification and characterization of an allosteric fructose-1,6-bisphosphate aldolase from germinating mung beans (Vigna radiata), Phytochemistry, vol.66, pp.968-974, 2005.

G. B. Moorhead, Plaxton WC Purification and characterization of cytosolic aldolase from carrot storage root, Biochem J, vol.269, pp.133-139, 1990.

A. Garami and T. Ilg, Disruption of mannose activation in Leishmania mexicana: GDP-mannose pyrophosphorylase is required for virulence, but not for viability, Embo j, vol.20, pp.3657-3666, 2001.

D. A. Maugeri, J. J. Cazzulo, R. Burchmore, and M. P. Barrett, Ogbunude POJ Pentose phosphate metabolism in Leishmania mexicana, Molecular and Biochemical Parasitology, vol.130, pp.117-125, 2003.

R. Mancilla and C. Naquira, Comparative metabolism of C 14 -glucose in two strains of Trypanosoma cruzi, J Protozool, vol.11, pp.509-513, 1964.

D. A. Maugeri and J. J. Cazzulo, The pentose phosphate pathway in Trypanosoma cruzi, FEMS Microbiol Lett, vol.234, pp.117-123, 2004.

J. R. Dusick, T. C. Glenn, W. N. Lee, P. M. Vespa, and D. F. Kelly, Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans, J Cereb Blood Flow Metab, vol.27, pp.1593-1602, 2007.

R. J. Kleijn, W. A. Van-winden, W. M. Van-gulik, and J. J. Heijnen, Revisiting the 13C-label distribution of the nonoxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence, FEBS J, vol.272, pp.4970-4982, 2005.

S. H. Lee and J. L. Stephens, Englund PT A fatty-acid synthesis mechanism specialized for parasitism, Nat Rev Microbiol, vol.5, pp.287-297, 2007.

D. Vas, M. G. Portal, P. Alonso, G. D. Schlesinger, M. Flawia et al., The NADPH-cytochrome P450 reductase family in Trypanosoma cruzi is involved in the sterol biosynthesis pathway, Int J Parasitol, vol.41, pp.99-108, 2011.

F. Achcar and M. P. Barrett, Breitling R Explicit consideration of topological and parameter uncertainty gives new insights into a well-established model of glycolysis, Febs j, vol.280, pp.4640-4651, 2013.

P. A. Bates, C. D. Robertson, L. Tetley, and G. H. Coombs, Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms, Parasitology, vol.105, issue.2, pp.193-202, 1992.

A. Misslitz, J. C. Mottram, and P. Overath, Aebischer T Targeted integration into a rRNA locus results in uniform and high level expression of transgenes in Leishmania amastigotes, Mol Biochem Parasitol, vol.107, pp.251-261, 2000.

B. Raz, M. Iten, Y. Grether-buhler, and R. Kaminsky, Brun R The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro, Acta Trop, vol.68, pp.139-147, 1997.

S. Allmann, P. Morand, C. Ebikeme, L. Gales, and M. Biran, Cytosolic NADPH homeostasis in glucosestarved procyclic Trypanosoma brucei relies on malic enzyme and the pentose phosphate pathway fed by gluconeogenic flux, J Biol Chem, vol.288, pp.18494-18505, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268097

D. J. Creek, A. Jankevics, R. Breitling, D. G. Watson, and M. P. Barrett, Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: improved metabolite identification by retention time prediction, Anal Chem, vol.83, pp.8703-8710, 2011.

R. A. Scheltema, A. Jankevics, R. C. Jansen, and M. A. Swertz, Breitling R PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis, Anal Chem, vol.83, pp.2786-2793, 2011.

D. J. Creek, A. Jankevics, K. E. Burgess, R. Breitling, and M. P. Barrett, IDEOM: an Excel interface for analysis of LC-MS-based metabolomics data, Bioinformatics, vol.28, pp.1048-1049, 2012.

A. Chokkathukalam, A. Jankevics, D. J. Creek, F. Achcar, and M. P. Barrett, mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data, Bioinformatics, vol.29, pp.281-283, 2013.

J. Xia and D. S. Wishart, Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst, Nat Protoc, vol.6, pp.743-760, 2011.

S. Weidt, J. Haggarty, R. Kean, C. I. Cojocariu, and P. J. Silcock, A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms, vol.12, p.189, 2016.

L. Wu, M. R. Mashego, J. C. Van-dam, A. M. Proell, and J. L. Vinke, Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards, Anal Biochem, vol.336, pp.164-171, 2005.

E. Afgan, B. Chapman, M. Jadan, V. Franke, and J. Taylor, Using cloud computing infrastructure with CloudBio-Linux, CloudMan, and Galaxy, Curr Protoc Bioinformatics, vol.11, 2012.

B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, and L. Elnitski, Galaxy: a platform for interactive largescale genome analysis, Genome Res, vol.15, pp.1451-1455, 2005.

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat Methods, vol.9, pp.357-359, 2012.

C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, and G. Kwan, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation, Nat Biotechnol, vol.28, pp.511-515, 2010.

E. Tetaud, I. Lecuix, T. Sheldrake, and T. Baltz, Fairlamb AH A new expression vector for Crithidia fasciculata and Leishmania, Mol Biochem Parasitol, vol.120, pp.195-204, 2002.

D. H. Kim, F. Achcar, R. Breitling, and K. E. Burgess, Barrett MP LC-MS-based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes, Metabolomics, vol.11, p.26491423, 2015.

D. Rodriguez-contreras and S. M. Landfear, Metabolic changes in glucose transporter-deficient Leishmania mexicana and parasite virulence, J Biol Chem, vol.281, pp.20068-20076, 2006.

A. Garami, A. Mehlert, and T. Ilg, Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants, Mol Cell Biol, vol.21, pp.8168-8183, 2001.