V. Mironov, Biofabrication: a 21st century manufacturing paradigm, Biofabrication, vol.1, p.22001, 2009.

L. G. Griffith and G. Naughton, Tissue engineering-current challenges and expanding opportunities, Science, vol.295, pp.1009-1014, 2002.

V. Mironov, T. Boland, T. Trusk, G. Forgacs, and R. R. Markwald, Organ printing: computer-aided jet-based 3D tissue engineering, Trends Biotechnol, vol.21, pp.157-161, 2003.

N. R. Schiele, Laser-based direct-write techniques for cell printing, Biofabrication, vol.2, p.32001, 2010.

J. A. Barron, P. Wu, H. D. Ladouceur, and B. R. Ringeisen, Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns, Biomed. Microdevices, vol.6, pp.139-147, 2004.

M. Colina, P. Serra, J. M. Fernández-pradas, L. Sevilla, and J. L. Morenza, DNA deposition through laser induced forward transfer, Biosens. Bioelectron, vol.20, pp.1638-1642, 2005.

V. Dinca, Development of peptide-based patterns by laser transfer, Appl. Surf. Sci, vol.254, pp.1160-1163, 2007.

B. Hopp, Laser-based techniques for living cell pattern formation, Appl. Phys. Mater. Sci. Process, vol.93, pp.45-49, 2008.

M. Gruene, Laser Printing of Stem Cells for Biofabrication of Scaffold-Free Autologous Grafts, Tissue Eng. Part C Methods, vol.17, pp.79-87, 2010.

P. Serra, Laser-induced forward Transfer: a Direct-writing Technique for Biosensors Preparation, J. Laser MicroNanoengineering, vol.1, pp.236-242, 2006.

T. B. Phamduy, Printing cancer cells into intact microvascular networks: a model for investigating cancer cell dynamics during angiogenesis, Integr. Biol, vol.7, pp.1068-1078, 2015.

G. M. Cooper, Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation, Tissue Eng. Part A, vol.16, pp.1749-1759, 2010.

A. Skardal, Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds, Stem Cells Transl. Med, vol.1, pp.792-802, 2012.

V. Keriquel, In vivo bioprinting for computer-and robotic-assisted medical intervention: preliminary study in mice, Biofabrication, vol.2, p.14101, 2010.

V. Keriquel, In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications, Sci. Rep, vol.7, p.1778, 2017.

R. Gaebel, Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration, Biomaterials, vol.32, pp.9218-9230, 2011.

G. Papaccio, Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair, J. Cell. Physiol, vol.208, pp.319-325, 2006.

A. Arthur, G. Rychkov, S. Shi, S. A. Koblar, and S. Gronthos, Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues, Stem Cells Dayt. Ohio, vol.26, pp.1787-1795, 2008.

A. Arthur, Implanted adult human dental pulp stem cells induce endogenous axon guidance, Stem Cells Dayt. Ohio, vol.27, pp.2229-2237, 2009.

E. P. Chalisserry, S. Y. Nam, S. H. Park, and S. Anil, Therapeutic potential of dental stem cells, J. Tissue Eng, vol.8, p.2041731417702531, 2017.

M. F. Kircher, S. S. Gambhir, and J. Grimm, Noninvasive cell-tracking methods, Nat. Rev. Clin. Oncol, vol.8, pp.677-688, 2011.

E. Terreno, Effect of the intracellular localization of a Gd-based imaging probe on the relaxation enhancement of water protons, Magn. Reson. Med, vol.55, pp.491-497, 2006.

A. C. Silva, J. H. Lee, I. Aoki, and A. P. Koretsky, Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations, NMR Biomed, vol.17, pp.532-543, 2004.

G. A. Dekaban, Tracking and evaluation of dendritic cell migration by cellular magnetic resonance imaging, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol, vol.5, pp.469-483, 2013.

E. Tarulli, Effectiveness of micron-sized superparamagnetic iron oxide particles as markers for detection of migration of bone marrow-derived mesenchymal stromal cells in a stroke model, J. Magn. Reson. Imaging JMRI, vol.37, pp.1409-1418, 2013.

X. Chen, Dynamic Tracking of Injected Mesenchymal Stem Cells after Myocardial Infarction in Rats: A Serial 7T MRI Study, Stem Cells Int, p.4656539, 2016.

S. Valable, In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma, NeuroImage, vol.40, pp.973-983, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00178542

I. V. Balyasnikova, Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors, Mol. Ther. J. Am. Soc. Gene Ther, vol.22, pp.140-148, 2014.

M. Y. Emmert, Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart, Biomaterials, vol.34, pp.2428-2441, 2013.

M. M. Chaumeil, Longitudinal evaluation of MPIO-labeled stem cell biodistribution in glioblastoma using high resolution and contrast-enhanced MR imaging at 14.1 tesla, Neuro-Oncol, vol.14, pp.1050-1061, 2012.

J. Boulland, Evaluation of intracellular labeling with micron-sized particles of iron oxide (MPIOs) as a general tool for in vitro and in vivo tracking of human stem and progenitor cells, Cell Transplant, vol.21, pp.1743-1759, 2012.

J. Bourget, Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study CellMigration, BioMed Res. Int, p.2016, 2016.

L. Xiao and M. Nasu, From regenerative dentistry to regenerative medicine: progress, challenges, and potential applications of oral stem cells, Stem Cells Cloning Adv. Appl, vol.7, pp.89-99, 2014.

C. Mcfadden, C. L. Mallett, and P. J. Foster, Labeling of multiple cell lines using a new iron oxide agent for cell tracking by MRI, Contrast Media Mol. Imaging, vol.6, pp.514-522, 2011.

C. Lalande, Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering, Eur. Cell. Mater, vol.21, pp.341-354, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594106

M. K. Nkansah, D. Thakral, and E. M. Shapiro, Magnetic poly(lactide-co-glycolide) and cellulose particles for MRI-based cell tracking, Magn. Reson. Med, vol.65, pp.1776-1785, 2011.

M. F. Bennewitz, K. S. Tang, E. A. Markakis, and E. M. Shapiro, Specific chemotaxis of magnetically labeled mesenchymal stem cells: implications for MRI of glioma, Mol. Imaging Biol. MIB Off. Publ. Acad. Mol. Imaging, vol.14, pp.676-687, 2012.

J. Noad, MRI tracking of transplanted iron-labeled mesenchymal stromal cells in an immune-compromised mouse model of critical limb ischemia, NMR Biomed, vol.26, pp.458-467, 2013.

E. J. Ribot, J. M. Gaudet, Y. Chen, K. M. Gilbert, and P. J. Foster, In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence, Int. J. Nanomedicine, vol.9, pp.1731-1739, 2014.

E. M. Shapiro, MRI detection of single particles for cellular imaging, Proc. Natl. Acad. Sci. USA, vol.101, pp.10901-10906, 2004.

E. M. Shapiro, S. Skrtic, and A. P. Koretsky, Sizing it up: cellular MRI using micron-sized iron oxide particles, Magn. Reson. Med, vol.53, pp.329-338, 2005.

C. Heyn, In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain, Magn. Reson. Med, vol.56, pp.1001-1010, 2006.

E. M. Shapiro, K. Sharer, S. Skrtic, and A. P. Koretsky, In vivo detection of single cells by MRI, Magn. Reson. Med, vol.55, pp.242-249, 2006.

S. J. Dodd, Detection of single mammalian cells by high-resolution magnetic resonance imaging, Biophys. J, vol.76, pp.103-109, 1999.

, Scientific RepORtS |, vol.8, 2018.

E. J. Ribot and P. J. Foster, In vivo MRI discrimination between live and lysed iron-labelled cells using balanced steady state free precession, Eur. Radiol, vol.22, pp.2027-2034, 2012.

R. Di-corato, High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs, ACS Nano, vol.7, pp.7500-7512, 2013.

H. E. Burks, Laser Direct-Write Onto Live Tissues: A Novel Model for Studying Cancer Cell Migration, J. Cell. Physiol, vol.231, pp.2333-2338, 2016.

D. Granot, Clinically viable magnetic poly (lactide-co-glycolide) particles for MRI-based cell tracking, Magn. Reson. Med, vol.71, pp.1238-1250, 2014.

E. T. Ahrens, B. M. Helfer, C. F. O'hanlon, and C. Schirda, Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI, Magn. Reson. Med, vol.72, pp.1696-1701, 2014.

N. A. Sears, D. R. Seshadri, P. S. Dhavalikar, and E. Cosgriff-hernandez, A Review of Three-Dimensional Printing in Tissue Engineering, Tissue Eng. Part B Rev, vol.22, pp.298-310, 2016.

E. J. Ribot, In vivo single scan detection of both iron-labeled cells and breast cancer metastases in the mouse brain using balanced steady-state free precession imaging at 1.5 T, J. Magn. Reson. Imaging JMRI, vol.34, pp.231-238, 2011.

C. Heyn, In vivo magnetic resonance imaging of single cells in mouse brain with optical validation, Magn. Reson. Med, vol.55, pp.23-29, 2006.

F. Guillemot, High-throughput laser printing of cells and biomaterials for tissue engineering, Acta Biomater, vol.6, pp.2494-2500, 2010.

B. Guillotin, Laser assisted bioprinting of engineered tissue with high cell density and microscale organization, Biomaterials, vol.31, pp.7250-7256, 2010.