M. Naghavi, From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I, Circulation, vol.108, pp.1664-1672, 2003.

A. J. Lusis and . Atherosclerosis, Nature, vol.407, pp.233-241, 2000.

J. M. Chan, C. Monaco, M. Wylezinska-arridge, J. L. Tremoleda, and R. G. Gibbs, Imaging of the Vulnerable Carotid Plaque: Biological Targeting of Inflammation in Atherosclerosis using Iron Oxide Particles and MRI, Eur. J. Vasc. Endovasc. Surg, vol.47, pp.462-469, 2014.

C. Tarin, Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI, Sci. Rep, vol.5, 2015.

L. Käll, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. Maccoss, Semi-supervised learning for peptide identification from shotgun proteomics datasets, Nat. Methods, vol.4, pp.923-925, 2007.

M. Jacobin, Human IgG Monoclonal Anti-? IIb ? 3 -Binding Fragments Derived from Immunized Donors Using Phage Display, J. Immunol, vol.168, pp.2035-2045, 2002.

K. Deramchia, In Vivo Phage Display to Identify New Human Antibody Fragments Homing to Atherosclerotic Endothelial and Subendothelial Tissues, Am. J. Pathol, vol.180, pp.2576-2589, 2012.

J. Sanz and Z. A. Fayad, Imaging of atherosclerotic cardiovascular disease, Nature, vol.451, pp.953-957, 2008.

D. Shiuan, Exploration of Peptide Inhibitors of Human Squalene Synthase through Molecular Modeling and Phage Display Technique, Appl. Biochem. Biotechnol, vol.178, pp.312-323, 2016.

L. H. Hofmeister, Phage-display-guided nanocarrier targeting to atheroprone vasculature, ACS Nano, vol.9, pp.4435-4446, 2015.

M. C. Luque, Phage Display Identification of CD100 in Human Atherosclerotic Plaque Macrophages and Foam Cells, PLOS ONE, vol.8, p.75772, 2013.

R. Robert, Identification of human scFvs targeting atherosclerotic lesions: selection by single round in vivo phage display, J. Biol. Chem, vol.281, pp.40135-40143, 2006.

K. Deramchia, By-Passing Large Screening Experiments Using Sequencing as a Tool to Identify scFv Fragments Targeting Atherosclerotic Lesions in a Novel In Vivo Phage Display Selection, Int. J. Mol. Sci, vol.13, pp.6902-6923, 2012.

P. Mondon, Method for generation of human hyperdiversified antibody fragment library, Biotechnol. J, vol.2, pp.76-82, 2007.

P. Mondon, K. Bouayadi, A. Kharrat, and . Millegen, , 2006.

R. A. Irizarry, C. Wang, Y. Zhou, and T. P. Speed, Gene Set Enrichment Analysis Made Simple, Stat. Methods Med. Res, vol.18, pp.565-575, 2009.

S. Jung, Stratified Fisher's Exact Test and its Sample Size Calculation, Biom. J. Biom. Z, vol.56, 2014.

P. Libby, Inflammation in atherosclerosis, Arterioscler. Thromb. Vasc. Biol, vol.32, pp.2045-2051, 2012.

P. J. Barter, Antiinflammatory Properties of HDL, Circ. Res, vol.95, pp.764-772, 2004.

E. Veseli and B. , Animal models of atherosclerosis, Eur. J. Pharmacol, 2017.

V. Giudicelli, P. Duroux, S. Kossida, and M. Lefranc, IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST, BMC Immunol, vol.18, p.35, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01549701

R. P. Choudhury, V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad, MRI and Characterization of Atherosclerotic Plaque, Arterioscler. Thromb. Vasc. Biol, vol.22, pp.1065-1074, 2002.

P. M. Winter, Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With ? v ? 3 -Integrin-Targeted Nanoparticles, Circulation, vol.108, pp.2270-2274, 2003.

M. Sirol, Chronic Thrombus Detection With In Vivo Magnetic Resonance Imaging and a Fibrin-Targeted Contrast Agent, Circulation, vol.112, pp.1594-1600, 2005.

B. L. Kietselaer, Noninvasive Detection of Plaque Instability with Use of Radiolabeled Annexin A5 in Patients with Carotid-Artery Atherosclerosis, N. Engl. J. Med, vol.350, pp.1472-1473, 2004.

K. C. Briley-saebo, Targeted Molecular Probes for Imaging Atherosclerotic Lesions With Magnetic Resonance Using Antibodies That Recognize Oxidation-Specific Epitopes, Circulation, vol.117, pp.3206-3215, 2008.

V. Amirbekian, Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI, Proc. Natl. Acad. Sci. USA, vol.104, pp.961-966, 2007.

M. Jacobin-valat, MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis, NMR Biomed, vol.24, pp.413-424, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00589664

P. X. Shaw, Human-Derived Anti-Oxidized LDL Autoantibody Blocks Uptake of Oxidized LDL by Macrophages and Localizes to Atherosclerotic Lesions In Vivo, Arterioscler. Thromb. Vasc. Biol, vol.21, pp.1333-1339, 2001.

D. Fessart, Proteomic remodeling of proteasome in right heart failure, J. Mol. Cell. Cardiol, vol.66, pp.41-52, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00903386